Supporting Information for

Diabetes enhances translation of *Cd40* mRNA in murine retinal Müller glia via a 4E-BP1/2-dependent mechanism

Sadie K. Dierschke, Allyson L. Toro, William P. Miller, Siddharth Sunilkumar, and Michael D. Dennis*

*Corresponding author. Email: mdennis@psu.edu

The PDF file includes:

Fig S1. Working model for potential mechanism whereby diabetes-induced O-GlcNAcylation enhances retinal inflammation via upregulated *Cd40* mRNA translation.

Table S1. Main and Interaction Effects from Two-Way ANOVA

Figure S1

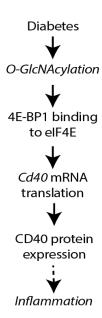


Fig S1. Working model for potential mechanism whereby diabetes-induced O-GlcNAcylation enhances retinal inflammation via upregulated *Cd40* mRNA translation. The findings here are consistent with a working model wherein diabetes-induced *O*-GlcNAcylation of 4E-BP1 promotes retinal inflammation by enhancing the translation of the *Cd40* mRNA in Müller glia.

Table S1. Main and Interaction Effects from Two-Way ANOVA

P value

	Interaction	TMG	Genotype
Fig 4F	0.0007	0.0003	0.0185

	Interaction	Diabetes	Genotype
Fig 5C	0.7642	0.972	0.771
Fig 5D	0.2656	0.0287	0.0538
Fig 5E	0.0235	0.0387	0.0027
Fig 5F	0.0188	0.0117	0.0062