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SN1 Figure 1: Illustration of the difference between a discrete and a continuous model of devel-
opment. NCL: non-conventional lymphocyte.

SN1.1 Introduction to this Supplementary Note

This document is intended to give some background on parameter estimation for partial differential
equation (PDE) models as well as an explanation of the input data, methods and results connected
to the pseudodynamics models in more detail. We start with a motivation for continuous models
of development (Sec. SN1.2). We go on to describe the pseudodynamics model in detail (Sec.
SN1.3). We then describe forward simulation of the pseudodynamics model (Sec. SN1.5.1) which
is necessary for parameter estimation (Sec. SN1.5). Subsequently, we describe how we integrated
Rag2 knock-out Drop-seq samples into the pseudodynamics framework to map out beta-selection
(Sec. SN1.6).

Cross-references to elements of the other Supplementary Notes are labels with "SNX" for
Supplementary Note X.

SN1.2 Discrete versus continuous models of development

We stated in the main text that development has often been "modeled" based on discrete cell
stages in cell biology, such as the progenitor, double-negative, double-positive and single-positive
cell stages of T-cell maturation. We illustrated the advantages of continuous models with gene ex-
pression trajectories, heat maps and applications of the pseudodynamics model. Here, we provide
another illustration of the conceptual difference between the two models (SN1 Figure 1). PDE
models can be viewed as a limiting case of an ordinary differential equation model with infinitely
many states. This limit consideration has no meaning with respect to the idea of cell biological
models as these are typically based on surface markers and could not resolve enough states to
reach this limit.
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SN1.3 Pseudodynamics model

SN1.3.1 The pseudodynamics model for a non-branching developmental process

We want to model the progression of a population of single cells along a developmental trajectory
in time. In this work, we define developmental progress as transcriptomic progress (cell state) and
quantify cell state as pseudotime. Pseudotime is a dimension reduction from the space of all genes
to a single dimension. Individual gene expression trajectories can therefore be mapped to cell state
and accordingly also to the cell state-specific parameters of the model discussed below. Note that
the dimensionality of the model can be increased by merging multiple one-dimensional trajectories
into a branching model. One could also look at such dynamic models in higher dimensions, for
example marker gene coordinates or diffusion components. We consider the cell density u(s, t)
for cell state s at a time point t. The integral over an interval [s1, s2],

R s2
s1

u(s, t)ds, provides the
number of cells with s 2 [s1, s2] at time point t. Assuming directed and random movement of
cells as well as cell division and cell death, the temporal evolution of u(s, t) can be described
using a PDE. The PDE model includes diffusion with diffusion rate D(s, t), drift (advection) with
parameter v(s, t) and a population growth term g(s, t). In general those rates can depend on both,
state and time.

@

@t
u(s, t) =

@

@s

✓
D(s, t)

@

@s
u(s, t)

◆

| {z }
diffusion

� @

@s
(v(s, t)u(s, t))

| {z }
drift

+ g(s, t)u(s, t)| {z }
population growth

. (SN1.1)

The population size N(t) is given by the integral of u(s, t) with respect to the cell state s over the
whole state domain [0, smax],

N(t) =

Z s=smax

s=0
u(s, t)ds. (SN1.2)

The cell state-dependent parameters drift, diffusion and the cell state- or time-dependent growth
rate are individually parameterized as natural cubic spline functions (ncs) of the cell state s with
parameters ↵ (Luzyanina, Roose, and Bocharov 2009). One can also add a parameter dependence
on time t which we show here using the example of the birth-death rate.

v(s) = exp (ncs (s|~↵v))

D(s) = exp (ncs (s|~↵D))

g(s) = ncs (s|~↵g,s)

g(t) = ncs (t|~↵g,t)

g(s, t) = g(s) ⇤ g(t).

(SN1.3)

The vectors ~↵v, ~↵D, ~↵g,t and ~↵g,s parameterize the values of the spline at predefined nodes. The
spline parameters of v and D are chosen in log-space and the exponential of the spline is computed
to guarantee that drift and diffusion rates are positive.

In summary, the full state-dependent parameter set with a time-dependence of the birth-death
rate of a non-branching pseudodynamics model that has to be estimated during fitting is:

✓non-branching = {~↵v, ~↵D, ~↵g,s, ~↵g,t}. (SN1.4)

SN1.3.1.1 Population size and growth

The initial condition u(s, 0) is the point-wise mean of the normalized kernel density estimates
(kde) of the set of cell states (cells) Sr

0 . Sr
0 is observed in each sample r at the initial time point

t = 0 and the kde is evaluated on a predefined grid and then normalized making it an initial
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SN1 Figure 2: Pseudodynamics models the total population size at a certain time point via the
integral of the simulated 1D density at this time point with respect to cell state. In the example
shown here, the population grows by factor 5 from N(t0) at time t0 = 0 to 5 ⇥ N(t0) at time
t1 = 1. Note that the population both increases in size and moves to a higher cell state (progresses
in development).

probability distribution. The initial probability distribution is scaled by the mean of population
size measurements N̄0 = 1

|Z|
P

z2Z N
z
0 of all replicates z at time point zero to yield a number

density. Note that the samples r 2 R are replicates of the cell state measurement (e.g. single-cell
RNA-seq) and the samples z 2 Z are replicates of the population size measurements, which are
independent experimental procedures.

u(s, 0) =
1

|R|
X

r2R

✓
kde (s|Sr

0)

◆
⇤ N̄0 (SN1.5)

We provide an example in which the population is predicted to grow by factor 5 from t = 0 to
t = 1 in SN1 Figure 2.

SN1.3.1.2 Boundary conditions

Depending on the biological hypothesis and data generation several boundary conditions could be
possible. It seems reasonable to assume a no-flux boundary condition at s = 0 and s = smax for
most applications. This corresponds to a Robin boundary condition at s = 0:

✓
D(s)

@u

@s
(s, t)� v(s)u(s, t)

◆����
s=0

= 0 (SN1.6)

At the right boundary, s = smax, we assume that the cells are differentiated and do not advance
further in the cell state leading to zero drift and the Robin boundary condition simplifies to:

@

@s
u(s, t)

����
s=smax

= 0 (SN1.7)

The assumption of zero drift at the right hand side improves numerical properties of the system. To
ensure no drift at the right-hand boundary without restraining variability in the model, we linearly
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SN1 Figure 3: Illustration of the pseudodynamics model for a branching process from progenitor
to fate A or fate B. NCL: non-conventional lymphocyte. Variables are named as in (SN1.8).

scaled the observations to the interval [0, 0.9] and ran simulations on the interval [0, 1]. On the
interval [0.9,1] the drift can be reduced to 0 by a smooth spline. Values in this interval correspond
to developmental states which were not observed. Note that pseudotime is on an arbitrary scale and
the ordering is invariant to scaling so that linear scaling does not change the biological meaning
of the coordinate.

SN1.3.2 The pseudodynamics model for a branching developmental process

Branching is the split of a developmental trajectory into two trajectories which correspond to
lineages with separate cellular fates and a common precursor cell state (SN1 Figure 1). Therefore,
a branching developmental process is characterized by an initial state (a root cell), two final states
(terminal fates, tip cells), a branching point or branching region in which the split occurs and three
regions (root to branching region, branching region to fate 1, branching region to fate 2) in which
the system is governed by (SN1.1). We split such a branching process into a main branch (root
via branching region to fate 1) and a side branch (branching region to fate 2) which overlap at a
branching region (SN1 Figure 3).

As before, the progress coordinate (cell state) is pseudotime computed on the full data set.
This pseudotime coordinate is still one dimensional, cells are divided into branches based on
other criteria (such as using diffusion component coordinates) but still carry these pseudotime
coordinates which are globally assigned to all cells from all branches (Haghverdi et al. 2016).

To account for branching trajectories we couple two PDEs which describe progression along
the main branch and the side branch of the developmental process (SN1 Figure 3). Note that those
two PDEs represent two processes in one state dimension, s 2 R. We define a branching region
on each branch to couple those two processes. The branching region is an interval [sa, sb] in cell
state in which cells can switch from branch i to branch j with a propensity �ij . Denoting the main
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branch with u1 and the side branch with u2 we can extend the non-branching model (SN1.1),
@
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(SN1.8)

in which the function T (s) defines the branching interval. T(s) is one in the interval in cell state
space (pseudotime coordinate) between sa (start of the branching interval in pseudotime) and sb

(end of the branching interval in pseudotime) and zero otherwise:

T (s) =

(
1, if s 2 [sa, sb]

0, otherwise.
(SN1.9)

Diffusion, drift and growth rates can differ between branches and are hence indexed. Further,
we dropped the dependence of the rates on time as in this manuscript only state-dependent rates
are considered for the model with branching. We again use boundary conditions as for the non-
branching system: ✓

Db1(s)
@u1

@s
(s, t)� vb1(s)u1(s, t)

◆����
s=0

= 0
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Db2(s)
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@
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����
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= 0.

(SN1.10)

These branching models can be designed with arbitrarily many branches and branching regions.
The initial condition on each branch is computed as in Sec. SN1.3.1.1 but is additionally scaled
with the fraction of cells measured on the respective branch in the single cell experiment,

ub(s, 0) =
1

|R|
X

r2R

✓
kde

�
s|Sr

b,0

�◆
⇤ wb,0 ⇤ N̄0. (SN1.11)

SN1.3.3 Illustration of the effects of diffusion, drift and birth-death rate on the
time-dependent population distribution

We designed three example parameterizations to illustrate the effects of the three pseudodynamics
model parameters diffusion (SN1 Figure 4a-c), drift (SN1 Figure 4d-f) and birth-death rate (SN1
Figure 4g-i). The diffusion parameter models population heterogeneity in development. A high
diffusion parameter therefore causes the variance of the population distribution in cell state space
to increase over time (SN1 Figure 4c) while it does not affect the total population size (SN1 Figure
4b). The drift parameter models directed components in development. A high drift parameter
therefore causes the mean of the population distribution in cell state space to change over time
(SN1 Figure 4f) while it does not affect the total population size (SN1 Figure 4e). The birth-death
parameter models changes in the population size during development. A constant birth-death
parameter in cell state therefore does not influence the normalized population distribution in cell
state space over time (SN1 Figure 4i) but it does affects the total population size (SN1 Figure 4h).
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SN1 Figure 4: Influence of the pseudo dynamics model parameters on the population distribution
across cell state and population size as functions of time. (a,b,c) Example to illustrate the effect
of the diffusion parameter. (d,e,f) Example to illustrate the effect of the drift parameter. (g,h,i)
Example to illustrate the effect of the birth-death parameter. (a,c,g) Parameters which are used
to forward simulate the system. The parameters are functions of cell state. (b,d,h) Simulated
population size as function of time. (c,e,i) Simulated population distribution across cell state as
function of time.
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SN1 Figure 5: Algorithm for parameter estimation on a PDE model. Green boxes: loops. Con-
tinue to SN1 Figure 6 for the methods of evaluation of the parameter estimates.

SN1.4 Forward simulation of the pseudodynamics model: Finite dif-
ferences and finite volumes

The pseudodynamics model is a system of PDEs and can be simulated using different numerical
methods. A first implementation using finite differences failed to conserve mass in the absence of
population growth terms (g(s) = g(t) = 0). A finite volumes implementation proved to be numer-
ically suitable for the pseudodynamics model both with and without branching. However, finite
volumes only simulate average densities in a grid volume and not density values at a grid point like
finite differences. Accordingly, we introduced the likelihood function presented in Sec. SN1.5.2
to allow parameter estimation.

SN1.5 Parameter estimation

SN1.5.1 Parameter estimation on PDE models

In this section we outline the parameter estimation for the considered system of PDEs. Note that
the described workflows have already been established in the field of parameter estimation of PDE
models (Stapor et al. 2018; Tarantola 2005; Hross and Hasenauer 2016).

There is no closed-form parameter estimate available for the pseudodynamics model. There-
fore, parameter estimation has to be done iteratively. Parameter estimation for PDEs requires four
core components:

The first component is a method to simulate the PDE for a proposed parameterization ✓ (SN1
Figure 5) (see Sec. ).

The second component is a likelihood that evaluates the goodness-of-fit of the simulation to
the measurements (SN1 Figure 5). The likelihood might include regularization terms if necessary.

The third component is a method to propose a better parameter set (update) given a current set
in the iteration (SN1 Figure 5). Such parameter update methods are usually based on derivatives
of the likelihood with respect to the parameters and thereby yield parameter updates that optimize
the likelihood. We chose the Matlab optimizer fmincon with either the interior point or the trust
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SN1 Figure 6: Method to evaluate convergence of estimation to global optimum of the regularized
likelihood and to quantify uncertainty in the parameter estimates at the global optimum. Yellow
stars: parameter estimates at global optimum of regularized likelihood. Black stars: parameter
estimate at local optima of regularized likelihood. Red (green) lines in contour plot: Projection of
confidence interval of parameter 1 (parameter 2) onto corresponding axis. Refer to SN1 Figure 5
for the details on the individual optimization runs in the green box.

region algorithm implemented in fmincon. The choice of algorithm by application is recorded in
the respective application sections in Sec. SN3.2 and SN2.2. To ensure the identification of the
global optimum we performed multi-start local optimization.

The fourth component is a method to evaluate the confidence in the parameter estimates (SN1
Figure 6). Here, we computed likelihood profiles or local approximations of the likelihood at the
best parameter estimates to quantify the uncertainty of the parameter estimates.

We give a detailed description of each of these steps in this section.

SN1.5.2 Likelihood function

We used a likelihood function to evaluate the fit of our model to the data. To construct an appro-
priate likelihood we considered three contributes. The first describes the fit of the simulated cell
densities to the measured cell densities. The second describes the fit of the population size. The
fraction of cells on the individual branches is included in the third part. For numerical reasons we
minimized the negative log-likelihood. As we assumed independence of the contributing measure-
ment types, the log-likelihood consists of a sum of the three terms. We describe in the following
sections how to compute these individual terms. The combined log-likelihood function is given
by

logL(✓) =

✓X

b2B

X

t2T cdf

logL
�
ecdfSb,t(s)|✓

�◆
+

✓ X

t2TN

logL
�
N̄t|✓,�N

t

�◆

+

✓ X

b2B\bmax

X

t2T cdf

logL
�
wb,t|✓,�w

b,t

�◆ (SN1.12)

where B is the set of branches modeled, wb,t is the mean observed proportion of cells on branch
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SN1 Figure 7: Likelihood for the fit of the simulated population density across cell state to the
observed densities. (a) The parameters of the normal likelihood at a given time point, mean and
variance of the area between the curves, are estimated based on the area between the empiri-
cal cumulative density functions (ecdf) of the samples and the ecdf of the union of all samples
(dotted green line) on a single branch b. The case corresponding to two replicates is illustrated.
The ecdfs of two samples, ecdfS1

b
and ecdfS2

b
and the ecdf of the union of the samples, ecdfSb ,

are indicated. The area between the ecdf of sample i and the ecdf of the union is denoted by
Ari = A(ecdfSi

b
, ecdfSb). The mean and variance of values, Ar1 and Ar2 (shaded areas). (b)

The population density fit terms of the likelihood of a parameter set of the pseudodynamics model
given a sample is evaluated as the probability of observing an area between the simulated cdf and
the ecdf of the union of all samples (dotted green line) given the parameterization of the normal
likelihood inferred in (a).

b compared to the total population size, �w
b,t is the standard error of the mean of the proportion

of cells in branch b at time t, T cdf is the set of time points at which the population density was
observed, Sb,t =

S
r2R

S
r
b,t is the vector of cell state observations at time point t in branch b (note that

Sb,t is the union of the sets of each replicate r 2 R of the cell state observations) and ecdfSb,t(s)

its empirical cumulative density function, TN is the sets of time points at which the population
size was observed, N̄t = 1

|Z|
P

z2Z N
z
t is the mean observed population size at time point t

(across replicates Z of the population size observations) and ✓ is the set of parameters of the
pseudodynamics model and �

N
t is the standard error of the mean of the observed population size

at time t. Note that the likelihood term on the fraction of cells per branch was evaluated on all
branches except one as the proportions across all branches sum up to one.

SN1.5.2.1 Population distribution across cell state terms of the likelihood

In the numerical implementation using finite volumes, the average concentration in a grid inter-
val, 1

si+1�si

R si+1

si
u(s, t)ds, is simulated rather than the concentration itself. Therefore, it is not

possible to assess the probability of finding a cell at that cell state, p(s, t), directly, but only the
probability of finding a cell in the considered interval [si, si+1). Hence, we formulated the log-
likelihood function based on the cumulative density function (cdf). This log-likelihood also incor-
porates replicates. Firstly, all replicates were pooled and the area between the pooled cdf and the
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cdf of individual replicates was computed (SN1 Figure 7a). One can now determine the mean and
the standard deviation of the area between the curves. We assumed that the area between the cdf
of the pooled sample and the simulated distribution (SN1 Figure 7b) is normally distributed with
the computed mean and standard error of mean. The following likelihood was computed for each
branch separately. The deviation of the simulated density from the observed density is quantified
by the area between the cumulative density function of the simulated density (cdfub(s, t)):

cdfub(s, t) =

R s
0 ub(s̄, t)ds̄R smax

0 ub(s̄, t)ds̄
(SN1.13)

and the empirical cumulative density function of the union of all samples Sb,t on branch b at time
point t (ecdfSb,t(s)) (SN1 Figure 7b):

ecdfSb,t(s) =
1

|Sb,t|
X

s02Sb,t

s0s (SN1.14)

We assumed that the area between the curves (A(cdf1(s), cdf2(s)) =
R smax

0 |cdf1(s)�cdf2(s)|ds,
the L1-norm of the two cdfs) is normally distributed with mean (µA(t)) and standard deviation
(�A(t)) computed based on the area between the ecdf of the replicate r of a given time point t
(ecdfSr

b,t
) and the ecdf of the union of all samples at that time point (ecdfSb,t) (SN1 Figure 7a).

logL(ecdfSb,t |✓) = N
✓

1

|Rt|
X

r2Rt

A
⇣
ecdfSr

b,t
(s), ecdfSb,t(s)

⌘ ���µ = µ
A
b (t),�

2 = (�A
b (t))

2

◆

(SN1.15)

µ
A
b (t) = A

�
cdfub(s, t), ecdfSb,t(s)

�

=

Z smax

0

��cdfub(s̄, t)� ecdfSb,t(s̄)
�� ds̄

(SN1.16)

(�A
b (t))

2 =
1

|Rt|
X

r2Rt

✓
A
⇣
ecdfSr

b,t
(s), ecdfSb,t(s)

⌘
� 1

|Rt|
X

r2Rt

A
⇣
ecdfSr

b,t
(s), ecdfSb,t(s)

⌘◆2

(SN1.17)
where Rt is the set of replicates at time point t.

However, in Sec. SN3.2.3 we used a log-likelihood (SN1.15) by estimating the standard de-
viation across measurement time points together with the other parameters as there was only one
replicate per time point. The estimate for the variance is independent of time and given by,

(�A
b )

2 =
1

|T cdf |
X

t2T cdf

A
✓
ecdfSb,t(s), cdfub(s, t)

◆2

. (SN1.18)

If no replicates were measured, we employed a least-squares objective function instead of eq .
(SN1.15),

logL(ecdfSb,t |✓) = A
✓
ecdfSb,t(s), cdfub(s, t)

◆2

. (SN1.19)
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SN1.5.2.2 Population size terms of the likelihood

Firstly, note that the population size measurements and the population density in cell state esti-
mates derive from independent samples in our experimental set up. Also note that the population
size observations are not linked to branches as we only observe the total number of cells across all
branches.

We assumed normally distributed measurement noise in the population size samples with stan-
dard deviation �

N
t and mean zero. We approximated �

N
t with the standard error of the mean of

the observations at time point t:

�
N
t = �

N,obs
t /

q
n
N
t (SN1.20)

where �N,obs
t is the observed standard deviation of the samples at time point t and n

N
t the number

of population size samples at time point t. Hence, the likelihood of the population size observa-
tions given the model is given by

logL(N̄t|✓,�N
t ) = N

⇣
N̄t

���N (t, ✓) ,�2 =
�
�
N
t

�2⌘ (SN1.21)

and N(t, ✓) is the population size predicted by the model for the parameters ✓ at time point t across
all branches:

N(t, ✓) =
X

b2B

Z smax

0
ub(s, t)ds (SN1.22)

SN1.5.2.3 Branch weight terms of the likelihood

We calculated the relative number of cells wb,t at each time point t on each branch b using the
cell state distribution observations. To include this proportionality information in the estimation,
we assumed normally distributed measurement noise on the proportion observations with stan-
dard deviation �

w
b,t and mean zero. �w

b,t is approximated by the standard error of the mean of the
observations at time point t,

�
w
b,t = �

w,obs
b,t /

p
Rt (SN1.23)

where �w,obs
b,t is the observed standard deviation of the samples at time point t and Rt the number of

replicates of cell state distribution observations at time point t and branch b. Hence, the likelihood
of the proportion of cells on branch 1 given the model is given by

logL(wb,t|✓,�w
b,t) = N

✓
wt,r

���µ = µ
w
b (t, ✓),�

2 = (�w
b,t)

2)

◆
(SN1.24)

µ
w
b (t, ✓) is the proportion predicted by the model for the parameters ✓ at time point t on branch b:

µ
w
b (t, ✓) =

R smax

0 ub(s, t)dsP
b̄2B

R smax

0 ub̄(s, t)ds
(SN1.25)

The above calculations were performed for all branches b 2 B \ bmax. If we consider a non-
branching developmental process SN1.1 this part is obviously not considered in the likelihood.

SN1.5.2.4 Notes regarding the likelihood functions

Error model for the fraction of cells on each branch If the number of cells is binomial dis-
tributed between the two branches, the resulting fraction on a branch is approximately normally
distributed. This follows from the central limit theorem (e.g. from the central limit theorem for
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Bernoulli-sequencesGeorgii 2009, p. 138). In general for each replicate the fraction of cells on
a branch would be a sample from a normal distribution with the true success probability as ex-
pectation. Depending of the sample size, the standard deviation would vary. Here, we decided to
estimate the effective standard deviation from the data. This ensures consistency with the other
parts of the likelihood and allow us to capture other sources of measurement error than the sam-
pling error modeled by the binomial distribution. In the case of more than two branches it remains
to be investigated what likelihood is preferable.

Error model for the distribution of cells We used error models that are based on a normally
distributed area between an observed ecdf and a predicted cdf (Sec. SN1.5.2.1). One could also
model the distance between two distributions as the Kolmogorov-Smirnov (K-S) distance. Here,
we discuss usage of the K-S distance as an error model for the population distribution.

K-S tests on the samples of the T-cell development data suggest the replicates do not all come
from the same distribution (Figure SN1 Figure 8). More precisely, we tested all replicates from
the same time point using a two sample K-S test. Of the eleven combinations, seven tests rejected
the hypothesis that the replicates follow the same distribution at a significance level of ↵ = 0.05.
However, the K-S test is too sensitive in many cases: In the context of immunofluorescence his-
togram comparison the K-S test was shown to be overly sensitive (Lampariello 2000). To confirm
that a likelihood based on the K-S distance can not capture the true variability in the data, we gen-
erated a distribution of K-S distances that would be expected if the measured data was generated
by sampling from the same underlying distribution. To this end we generated a subsample from
the distribution of the pooled data corresponding to a day and evaluated the K-S distance and the
area between the sampled and the pooled cdf for 1000 subsamples. As the number of measured
single cells varied between replicates, we tried to recreate this in the generated data by sampling
the sizes of the 1000 subsamples from a distribution with the same first two moments as the mea-
sured samples. For the days one to eight, we sampled from a normal distribution with the same
mean and variance as the single cell sample sizes. For day zero, the subsample size was sampled
from a log-normal distribution with the same mean and variance as the single cell sample sizes.
We compared a the distance of the measured samples to the pooled sample with b) the distance of
the subsamples and to the pooled sample. We found that the distances of the measured samples
are outliers with respect to the distribution of distances generated by subsampling in several cases.
This indicates, that the measurements are probably not samples from the pooled distribution and
that there is additional confounding variation in the samples. Hence, the K-S distance or the area
between curves do not capture the full variability between replicates (SN1 Figure 9). Thus, we de-
cided to use a normal assumption, as more fitting statistics are not yet available for the distribution
of single cells a long the cell state trajectory. This error model does not stem from an generative
statistical model. The underlying statistics might need to be studied more in further experiments
to develop such a generative model.

SN1.5.3 Regularization

In addition to the likelihood terms, we used a quadratic regularization on the difference between
two neighboring spline sampling points (nodes), e.g. (↵D)1� (↵D)2. This results in the objective
function:

J⇢(✓) =� log(L(✓)) + ⇢

✓ BX

b=1

 nD
b �1X

i=1

((~↵Db)i+1 � (~↵Db)i)
2 +

nv
b�1X

i=1

((~↵vb)i+1 � (~↵vb)i)
2

+

ng
b�1X

i=1

((~↵gb,s)i+1 � (~↵gb,s)i)
2 +

ng
t�1X

i=1

((~↵g,t)i+1 � (~↵g,t)i)
2

�◆

(SN1.26)
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SN1 Figure 8: For each day the replicates of the T-cell development data were compared in
pairs using a two sample two-sided Kolmogorv-Smirnov test. The resulting p-values are presented
together with the significance level ↵ = 0.05. Of the eleven possible combinations of the data used
for parameter estimation (i.e. all time points without day 0), seven combinations were judged by
the K-S test to come from different distributions at a significance level of ↵ = 0.05.

SN1 Figure 9: For each measurement day the distribution of distances (L1 top and L1 bottom)
between n = 1000 subsamples and the pooled cdf is depicted as dots and violin plots with the
25%, 50% and 75% quantiles as horizontal lines. The distances between the measured and the
pooled cdf are plotted in yellow. For several days these distances lie clearly outside the subsample-
distribution.
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where ⇢ is the regularization hyper-parameter, and n
D
b , nv

b and n
g
b are the number of spline sam-

pling points (nodes) on branch b out of B branches for the splines Db(s), vb(s) and g
b
s(s) on each

branch, respectively, and n
t
g is the number of spline sampling points (nodes) for the spline gt(t)

which is a function of time. Note that we did not use time-dependent birth-death rates in all of our
models so that gt(t) and its associated term in eq. SN1.26 were not always included.

This regularization can also be interpreted as a prior in a Bayesian sense,

p(✓) = ⇢

✓ BY

b=1

 nD
b �1Y

i=1

((~↵Db)i+1 � (~↵Db)i)
2

nv
b�1Y

i=1

((~↵vb)i+1 � (~↵vb)i)
2

ng
b�1Y

i=1

((~↵gb,s)i+1 � (~↵gb,s)i)
2 +

ng
t�1Y

i=1

((~↵g,t)i+1 � (~↵g,t)i)
2

�◆
.

(SN1.27)

The normalization is included in ⇢. Hence, the log-likelihood with regularization can be inter-
preted as a log-posterior, J⇢(✓) = log(p(✓|D)), with p(✓|D) = L(✓)p(✓).

SN1.5.3.1 Selection of the regularization hyper-parameter for spline smoothness

We performed leave-one-out cross-validation on a time point basis to select the regularization
hyper-parameter for the mouse embryonic stem cell differentiation data (Sec. SN3.2.2) and the
T-cell development data (Sec. SN3.2.2). In short, we removed the data corresponding to one time
point and fitted the model on the reduced data set and evaluated the unregularized likelihood on
the withheld time point. We performed this leave-one-out fitting for each time point and added the
unregularized log-likelihood value for each withheld time point to receive a score based on which
the hyper-parameter can be selected as the maximum likelihood estimator.

SN1.5.4 Uncertainty analysis

We performed multi-start optimization and chose the parameter estimate with the optimal regu-
larized likelihood value as the final parameter estimate ✓

⇤. To assess uncertainty, often a local
approximation of the likelihood around ✓

⇤ using the Hessian H of the negative log-likelihood is
used to calculate approximate confidence intervals:

CI↵,i,approx = (✓⇤i |9✓ : (✓ � ✓
⇤)TH(✓ � ✓

⇤) < �↵). (SN1.28)

Confidence intervals for the individual parameters can also be computed from profile likeli-
hoods (SN1 Figure 6) (Raue et al. 2009). We computed the likelihood profile PLi(c) for the i-th
parameter, ✓i, by re-optimizing the regularized likelihood for a fixed value ✓i = c, over all other
parameters ✓j 6=i. The re-optimization is performed for a range of values c in an interval around the
optimal value ✓

⇤
i .

PLi(c) = max✓j 6=i,✓i=cL(✓) (SN1.29)

Analogously, we consider posterior profiles (Hug et al. 2013) for the likelihood with regularization
in the sense that we interpret the regularization as a prior and the likelihood with regularization as
a posterior,

PPi(c) = max✓j 6=i,✓i=c exp(J⇢(✓)). (SN1.30)

The confidence intervals for individual parameters are then given by

CI↵,i =

⇢
c
��PLi(c)

L(✓⇤)
� exp

✓
��↵

2

◆�
(SN1.31)
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and
CI↵,i =

⇢
c
�� PPi(c)

exp(J⇢(✓⇤))
� exp

✓
��↵

2

◆�
(SN1.32)

where �↵ is the ↵th-percentile of the �
2 distribution with one degree of freedom.

SN1.5.5 Implementation

The numerical implementation is based on the method of lines. The model is discretized in space
using finite volumes. We used 300 equally spaced grid points for the cell state linearly scaled
into the interval [0, 1]. This yields 299 finite volume centers on the main branch at which the
mean number density is simulated. The cell state observations in side branches, such as the non-
conventional lymphoid cell side branch in the T-cell maturation system, were scaled into the in-
terval [sa, 1] (SN1 Figure 3) and were discretized at the same resolution in cell state as the main
branch. Here, sa is the earliest cell state observed on the side branch. Accordingly, the number of
volume centers on the side branch is (1� sa)⇥ 299.

For the solution of the resulting system of ODEs we employ the Sundials CVODE suite and
AMICI (Fröhlich et al. 2017) as Matlab interface. We used a multi-start approach (with gradient
information) for the optimization and profile likelihood computation which are implemented in
the PESTO-Toolbox (Stapor et al. 2018).

Initial parameters for multi-start local optimization were sampled using latin-hypercube sam-
pling. The initial distribution of cells over cell state was obtained from the first sampling point by
kernel density estimation using the Matlab function ksdensity.m.

SN1.6 Mapping a developmental check-point on a trajectory with
mutant data and pseudodynamics: Mapping beta-selection in
T-cell maturation using Rag1 and Rag2 knock-out mice

SN1.6.1 Estimation of the checkpoint location

To predict the point of beta-selection across the transcriptomic state coordinate s, we trained the
pseudodynamics model on the wild type data subset of the combined wild type and knockout
pseudotime data. Note, that we did not use the model parameters obtained from fitting the pseu-
dodynamics model to the diffusion pseudotime coordinates of the wild-type only data because
the scaling of the diffusion pseudotime values and the local structure of the overall ordering may
slightly change as the neighborhood graph (the diffusion map) changes after the addition of the
mutant cells to the wild-type data. We adjusted this model for a developmental arrest at some
cell state s

0. We then estimated the point of beta-selection as a transcriptomic coordinate as the
least-squares estimator s⇤ of s0 on the mutant data (SN1.33).

To imitate the beta-selection process in the forward simulation, we set the drift term to zero
for s > s

0, i.e. cells do not differentiate beyond that point. However, the diffusion rate is not
changed, as stochasticity of gene expression still effects the cell state. As cells that did not pass
the beta selection will undergo apoptosis if they progress in cell state, we decreased birth-death
parameter after the assumed check-point to �3, a lower bound of the previously estimated birth-
death parameter.

We computed the value of the least-squares function for s0 between the smallest cell state grid
point not observed at the initial time point and the highest cell state observed on the T-cell lineage.
In a best case scenario, one would also have measurements of the mutant population at the initial
time point and choose the maximal cell state observation in this initial mutant sample as the start
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of the interval on which the likelihood profile is estimated.

s
⇤ = argmin

s0
log Jmut(ecdfSmut

b,t
|vmut(s|s0), DWT (s), gmut(s|s0)) (SN1.33)

vmut(s|s0) =
(
vWT (s), if s  s

0

0, otherwise
(SN1.34)

gmut(s|s0) =
(
gWT (s), if s  s

0

�3, otherwise .
(SN1.35)

As we only have two replicates of the Rag2 knock-out measurement time points at E16.5
(Smut,1

b,t=16.5, Smut,2
b,t=16.5) and one Rag1 knock-out sample of E14.5 (Smut

b,t=14.5), we used a least-squares
objective function of the area between the measured ecdfs and computed cdfs (SN1.19). To in-
corporate the two replicates for the second time point (E16.5), we evaluated the ecdfs for the two
replicates on the grid that was used for simulation and compared the simulated distribution to the
mean distribution on this grid,

Jmut(ecdfSmut
b,t

|✓mut) = A
⇣
ecdfSmut

b,t=14.5
(s), cdfub(s, t = 14.5|✓mut)

⌘2

+A
⇣
mean

⇣
ecdfSmut,1

b,t=16.5
(s), ecdfSmut,2

b,t=16.5
(s)

⌘
, cdfub(s, t = 16.5|✓mut)

⌘2 (SN1.36)

with ✓mut = (vmut(s|s0), DWT (s), gmut(s|s0)).

SN1.6.2 Incorporation of mutant data into a pseudotemporal ordering of wild type
data

It is necessary to have a common coordinate system of wild-type and knock-out development to
integrate both in the pseudodynamics analysis.

There are multiple ways to include mutant data into a pseudotemporal ordering. Firstly, one
could attempt a mapping if the cells in the mutant samples do not fall into the developmental mani-
fold defined on the wild-type samples. We used a second approach and computed the developmen-
tal manifold directly on the union of wild-type and knock-out samples, which is only possible if
the resulting manifold is not dominated by genotype effects: The pseudotemporal ordering of the
combined wild-type and Rag1/2 knock-out samples was not dominated by the difference between
wild type and knock-out and we could therefore directly use the diffusion pseudotime coordinates
for model training and beta-selection point prediction (Supp. Fig. 13). We validated the diffusion
map model for the combined wild-type and mutant data by comparing it to the wild-type only
model:

Firstly, we checked that the mutant cells fall into the wild-type manifold in the diffusion map.
We observed the distribution of mutant and wild-type cells in 2D cross-sections of the diffusion
map in the first few diffusion components. In each projection, the mutant cells were within the
manifold cross-section defined by the mutant cells (Supp. Fig. 13-c).

Secondly, we checked that the overall structure of the developmental manifold in transcriptome
space is not changed. We plotted the diffusion pseudotime coordinates of the wild-type cells of
the wild-type-only and the combined wild-type and knock-out data set against each other (Supp.
Fig. 13d). The comparison of these two sets of pseudotime coordinates is not a comparison of
scalar values but one of orderings as the diffusion pseudotime coordinates change if mutant cells
are added to the graph.

We compared these two orderings with a rank-based correlation metric: Kendell’s tau coeffi-
cient (Kendell’s rank correlation coefficient). Kendell’s tau coefficient was 0.967 on the progenitor
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and T-cell subset of wild-type cells and 0.916 on the progenitor and non-conventional lymphocyte
subset suggesting that the overall structure of the neighborhood graph was not changed by the
addition of the mutant cells.
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Supplementary Note 2: Pseudodynamics simulation studies
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SN2.1 Introduction to this Supplementary Note

This document details the set-up and results of the simulation studies which we used to characterise
the performance of pseudodynamics.

Cross-references to elements of the other Supplementary Notes are labels with "SNX" for
Supplementary Note X.
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SN2.2 Simulation studies

We performed forward simulations of the pseudodynamics model with given parameter values and
subsequently sampled population density and size observations from the the simulated densities
at various time points. We then fit the pseudodynamics model to these simulated observations to
show identifiability of the model in different scenarios. We show that the model parameters are
practically identifiable, in the sense of structural identifiability, given sufficient data and that one
can distinguish a drift- and a birth-death rate induced steady state based on the model fits.

SN2.2.1 Identifiability

SN2.2.1.1 Aim

We show that the parameters of the pseudodynamics model are practically identifiable based on
population density and population size observations for two sets of simulated data.

SN2.2.1.2 Data Generation

To generate the data, we simulated the model (eq. (SN1.1)) for the time points t = (1, 2, 3, 4, 5)
for two different parameter sets. A log-normal distribution with parameters µ = �2.7 and � = 0.8
multiplied by N0 = 1.5 ⇥ 104 was chosen as initial distribution. From the simulated cell density
over cell state we computed the total number of cells and the probability distribution of the cell
states. Using the pdf, we drew three samples of cell state measurements for 10000 cells each.
We further generated a sample of twenty population sizes for each simulated time point using
the simulated population size as mean of a normal distribution with variance for each time point
given by �N = (1 ⇥ 106, 2 ⇥ 106, 3 ⇥ 106, 4 ⇥ 106, 5 ⇥ 106, 6 ⇥ 106) for the first example and
�N = (1⇥ 107, 5⇥ 107, 2⇥ 108, 2⇥ 109, 2⇥ 1010, 2⇥ 1011) for the second example.

SN2.2.1.3 Implementation

The diffusion and drift parameters, D(s) and v(s), were parametrized using cubic splines in log
space and with nine equally spaced sampling points in s. The rates D(s) and v(s) were com-
puted as the exponential of the spline. The birth-death parameter, g(s), was parametrized using
cubic splines in linear space with nine equally spaced sampling points in s. This left the values
D1, . . . , D9, v1, . . . , v9 and g1, . . . , g9 for estimation, which are the nodes of the splines in log
space.

The drift rate is decreased to zero in the interval [0.9, 1] of cell states by using a hermite
c-spline. We performed 80 multi-starts using an interior point method. We investigated the regu-
larizations ⇢ = {0, 1}. The confidence intervals were computed for ⇢ = 0 using likelihood profiles
eq. (SN1.29).

SN2.2.1.4 Results

For the first example, the density (SN2 Figure 1 a) and population size (SN2 Figure 1 b) fits agree
well with the data to which the model was fitted to. The parameter splines used for the generation
of the simulated data lie mostly in or close to the 99% confidence intervals of the the estimated
parameters (SN2 Figure 1 c-d). Also in the second example, the density (SN2 Figure 2 a) and
population size (SN2 Figure 2 b) fits agree well with the simulated data. The parameter splines
used for the generation of the simulated data lie mostly in or close to the 99% confidence intervals
of the estimated parameters (SN2 Figure 2 c-d). The diffusion rate in this case has a comparably
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high uncertainty. Also confidence intervals get broader in the region with fewer samples and
parameters become unidentifiable in this region.

We conclude that our parameter estimation can recover a pseudodynamics model parameteri-
zation that still allows for qualitative and quantitative statements about the underlying biology.

SN2.2.2 Distinguishing a drift- and a birth-death rate-induced steady state

SN2.2.2.1 Aim

Cell populations that develop according to the pseudodynamics model can generate similar nor-
malized density samples in cell state space in subsequent time points (steady state).

Such steady state observations can correspond to a local minimum (attractor) on the underly-
ing developmental potential which corresponds to zero drift at the minimum (as the drift can be
thought of as the derivative of this developmental potential). A drift close to zero at and after the
attractor in cell state space corresponds to a lack of directed development leading away from this
attractor.

However, such steady state observations can also be a result of a non-uniform birth-death
rate around the steady-state if source-sink-like effects are present: The normalized density may be
stationary if the birth death rate is positive before the observed steady-state and negative after. Note
that such a steady-state does not correspond to a local minimum on the developmental potential
(quasi-steady state).

We show that one can distinguish a drift- and a birth-death rate-induced steady state based on
the pseudodynamics fits and that the model parameters are practically identifiable.

SN2.2.2.2 Data Generation

To generate the data, we simulated the model eq. (SN1.1) for the time points t = (1, 2, 3, 4, 5). A
log-normal distribution with parameters µ = �2.7 and � = 0.8 multiplied by N0 = 1.5⇥104 was
chosen as initial distribution. From the simulated cell density over cell state we computed the total
number of cells and the probability distribution of the cell states. Using the pdf, we drew three
samples of cell state measurement for 104 cells each. We further generated a sample of twenty
population sizes for each simulated time point using the simulated population size as mean of a
normal distribution with variance for each time point given by �N = (1⇥107, 5⇥107, 2⇥108, 2⇥
109, 2⇥ 1010, 2⇥ 1011).

Using the setting described above, we simulated data for two test cases. In the first case, we
assume that the system is governed by an attractor, i.e. at a certain cell state the drift decreases and
cells are not differentiating further. In the second case we consider a quasi steady state behavior.
Cells are still differentiating however the cell death increases at a certain cell state.

SN2.2.2.3 Implementation

For this analysis, we employed the numerical implementation described in Sec. SN2.2.1.3.

SN2.2.2.4 Results

Firstly, we showed that an attractor and a quasi-steady state pseudodynamics parameterization can
induce steady-state like observations in cell state space (SN2 Figure 3 a,b). The density (SN2
Figure 3 a,b) and population size (SN2 Figure 3 c) fits agree well with the simulated data for
the respective case. The parameters of both models are not fully identifiable for s > 0.75 (SN2
Figure 3 d-f, right of the vertical lines) in the cell state space in which 1% of the observed cells
lie. However, the parameter used for the data generation lie within the 99% confidence interval
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SN2 Figure 1: The pseudodynamics model parameters are practically identifiable on simulated
data (I). (a) Population density fits and raw densities to which the model is fit to (true). (b) Popu-
lation size fits and raw sizes to which the model is fit to (true) with one standard deviation around
the mean as error bars with n = 20 samples at each time point. (c-e) Birth-death rate (c), drift (d)
and diffusion parameter (e) fits and true values (used for simulation). The shaded area represents
the approximate 99% confidence interval (CI) which was approximated as a spline through the
99% confidence interval upper and lower bounds on the spline nodes. The confidence intervals on
the spline nodes were calculated using profile likelihoods eq. (SN1.29). The rectangular shaded
areas represent the cell state interval at which the cumulative density of the set of all cells from all
time points used for model fitting is above 99%. Accordingly, only 1% of the simulated cells fall
into this interval.
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SN2 Figure 2: The pseudodynamics model parameters are practically dentifiable on simulated
data (II). (a) Population density fits and raw densities to which the model is fit to (true). (b)
Population size fits and raw sizes to which the model is fit to (true) with one standard deviation
around the mean as error bars with n = 20 samples at each time point. (c-e) Birth-death rate
(c), drift (d) and diffusion parameter (e) fits and true values (used for simulation). The shaded
area represents the approximate 99% confidence interval (CI) which was approximated as a spline
through the 99% confidence interval upper and lower bounds on the spline nodes. The confidence
intervals on the spline nodes were were calculated using profile likelihoods eq. (SN1.29). The
rectangular shaded areas represent the cell state interval at which the cumulative density of the set
of all cells from all time points used for model fitting is above 99%. Accordingly, only 1% of the
simulated cells fall into this interval.
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of the estimated parameters. The attractor is characterized by a drop of the drift parameter to
zero around the observed steady state. The quasi-steady state is characterized by a transition of
a positive to a negative birth-death rate around the observed steady state. For the considered
scenario, the statistical inference using the pseudodynamics framework allows a clear distinction
of both scenarios based on birth-death rate and drift parameter (SN2 Figure 3 d,e) even when
accounting for parameter uncertainties. One does not need model selection in this scenario but
one can simply identify the steady-state generating mechanism based on the parameter values.

SN2.2.3 Investigation of Influence of Single Cell Sampling Bias

SN2.2.3.1 Aim

There is evidence of sampling bias on the single cell level (Segerstolpe et al. 2016) (Haber et al.
2017). In this section we want to investigate how a bias affects parameter estimation and how it
can be included in parameter estimation using the likelihood. We simulated data for an unbiased
and biased case and performed parameter estimation using the likelihood (eq. (SN1.12)) on both
data sets. Additionally, we included a bias correction in the likelihood and repeated the parameter
estimation on the biased data set.

SN2.2.3.2 Measuring sampling bias

Conceptually, sampling bias could be assessed by acquiring unbiased population distribution mea-
surements independently from single-cell RNA-seq, for example by measuring the distribution of
a population across surface marker-gated sub-populations in flow-cytometry or in stained tissue
sections. One could then map cell states between the unbiased surface-marker-based measure-
ments and single-cell RNA-seq, e.g. clusters in single-cell RNA-seq that correspond to cell types
that can be identified via surface markers. A linear sampling bias in single-cell RNA-seq could
then be identified as a shift in the population distribution between both measurements.

SN2.2.3.3 Data Generation

To generate the data, we simulated the model (eq. (SN1.1)) for the time points t = (1, 2, 3, 4, 5).
A log-normal distribution with parameters µ = �2.7 and � = 0.8 multiplied by N0 = 1.5⇥ 104

was chosen as initial distribution. From the simulated cell density over cell state we computed the
total number of cells and the probability distribution of the cell states. For the unbiased data set,
we drew three samples of cell state measurement for 10000 cells each from the simulated pdf. For
the biased case, we assumed a linear scaling of the pdf towards later time points, bias = as + b.
From the simulation only the probability to find a cell in an interval [si, si+1),

pi(t) :=
1

R 1
0 u(s, t)ds

Z si+1

si

u(s, t)ds =
1

N(t)

Z si+1

si

u(s, t)ds for i = 1, . . . , nv,

can be computed. We computed the biased probability to sample a cell in this interval as

pbiasi (t) = pi(t)

✓
a
si + si+1

2
+ b

◆
1

Pnv
i=1 pi(t)

⇣
a si+si+1

2 + b
⌘ . (SN2.1)

We created a biased cell state sample, by sampling 10000 cells from pbiasi . This was repeated to
create three replicates. We further generated a sample of twenty population size measurements
for each simulated time point using the simulated population size as mean of a normal distribution
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SN2 Figure 3: Pseudodynamics fits on simulated steady-state data. All plots shown are fits with
a regularization parameter of zero. (a,b) Population density fits and raw densities to which the
model is fit to (true) for the attractor (a) and the quasi-steady state (b) model. (c,d) Population
size fits and raw sizes to which the model is fit to (true) for the attractor (c) and the quasi-steady
(d) state model with one standard deviation around the mean as error bars with n = 20 samples
at each time point. (e-g) Birth-death rate (e), drift (f) and diffusion parameter (g) fits and true
values (used for simulation) for both the attractor and the quasi-steady state (QSS) model. The
shaded area represents the approximate 99% confidence interval (CI) which was approximated as
a spline through the 99% confidence interval upper and lower bounds on the spline nodes. The
confidence intervals on the spline nodes were calculated using profile likelihoods eq. (SN1.29).
The rectangular shaded area represent the cell state interval at which the cumulative density of the
set of all cells from all time points used for model fitting is above 99%. Accordingly, only 1% of
the simulated cells fall into this interval.
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with variance for each time point given by �N = (3⇥106, 7⇥106, 1⇥107, 7⇥106, 7⇥106, 5⇥106)
for both, the biased and the unbiased data set. The population size is not affected by the sampling
bias.

SN2.2.3.4 Implementation

For this analysis, we employed the numerical implementation described in Sec. SN2.2.1.3.

Bias correction To correct for the bias in the statistical inference, firstly the PDE is simulated
and the unbiased pdf, pi(t), is calculated. Secondly, the simulated pdf is biased according to the
bias in the measurement, i.e., in our case eq. (SN2.1). The cdf in eq. (SN1.12) is computed from
the biased pdf. In this simulation example, we assume that the bias was experimentally measured
correctly and supply the likelihood with the correct scaling parameters, a and b. However, the
effect of the bias can alternatively also be parametrized and fitted.

SN2.2.3.5 Results

The parameter estimation on the unbiased data provided a good fit to the simulated data (SN2
Figure 4 a)-f)) and recovered the true parameters. Using the biased data and the standard likeli-
hood a good fit to the biased data was achieved (SN2 Figure 4 a)-f)). However, biased parameter
estimates were recovered (SN2 Figure 4 g)-i)). Fitting to the biased data using the likelihood with
bias correction yielded a good fit to the unbiased data (SN2 Figure 4 a)-f)) and the true parameter
lay in the 99% CI of the estimated parameter (SN2 Figure 4 g)-i)).

SN2.2.4 Simulated data for a branching model

SN2.2.4.1 Aim

We consider parameter estimation for a model with branching eq. (SN1.8) and show that parame-
ters are identifiable based on the considered data.

SN2.2.4.2 Data Generation

We simulated model eq. (SN1.8) for the time points t = (0, 1, 2, 3, 4, 5), with branching region
[sa, sb] = [69/299, 130/299]. A log-normal distribution with parameters µ = �2.7 and � = 0.8
multiplied by N0 = 1.5 ⇥ 104 was chosen as initial distribution on branch 1 and a log-normal
distribution with parameters µ = �2.4 and � = 0.9 multiplied by N0 = 2 ⇥ 103 was chosen
as initial distribution on branch 2. We drew the number of single cells measured on each branch
at each time point from a binomial distribution with success probability given as the simulated
proportion on branch 1 and number of trials given by the (preset) total number of samples of
10000. This was repeated three times to generate replicates. Using the sampled numbers of cells
on each branch, we sampled from the pdf of the simulated cell state distribution on each branch
for each measurement time point. We also replicated the cell state samples three times. From the
simulated total number of cells, we generated 20 samples of normally distributed population sizes
with variance for each time point given by �N = (1⇥107, 5⇥107, 2⇥108, 2⇥109, 2⇥1010, 2⇥
1011) for each time point.

SN2.2.4.3 Implementation

The diffusion and drift parameters, Db(s) and vb(s), were parametrized using cubic splines in log
space and with nine equally spaced sampling points in s for branch 1 and three equally spaced
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SN2 Figure 4: The figure caption is on the next page.
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SN2 Figure 4: The pseudodynamics model parameters are practically identifiable on simulated
data with biased sampling. true_wbias: biased population density measurements which are the
input to model fits, true_wobias: latent unbiased population density measurements which we hope
to recover in model fits, wB: model fit based on biased data without bias correction, wBCorr:
model fit based on biased data with bias correction, woB: model fit based on unbiased data (and
without bias correction). (a-f) Population density fits and measured densities by time point. data
biased: density after biased subsampling, data unbiased: density before biased subsampling. (g-l)
Birth-death rate (g,j), drift (h,k) and diffusion parameter (i,l) fits with bias correction (wBCorr)
and true parameter values which were used for simulation (true: unbiased). (g-i) includes the
parameter fits without bias correction (wB) as reference, (j-l) includes the fits to unbiased data
(woB) as reference. The shaded area represents the approximate 99% confidence interval (CI)
which was approximated as a spline through the 99% confidence interval upper and lower bounds
on the spline nodes. The confidence intervals on the spline nodes were calculated using profile
likelihoods eq. (SN1.29). The rectangular shaded areas represent the cell state interval at which
the cumulative density of the set of all cells from all time points used for model fitting is above
99%. Accordingly, only 1% of the simulated cells fall into this interval.

sampling points in s for branch 2. The rates Db(s) and vb(s) were computed as the exponential
of the spline. The birth-death parameter, gb(s), was parametrized using cubic splines in linear
space with nine equally spaced sampling points in s for branch 1 and three equally spaced sam-
pling points in s for branch 2. This left the values D1,1, . . . , D1,9,D2,1, . . . , D2,3, v1,1, . . . , v1,9,
v2,1, . . . , v2,3, g1,1, . . . , g1,9, g2,1, . . . , g2,3 and the propensities for switching the branch �1,2 and
�2,1 for estimation. The drift rates on are decreased to 0 in the interval s 2 [0.9, 1] of cell states by
using a hermite c-spline on both branches. We performed 120 multi-starts using an interior point
method and investigated the regularizations ⇢ = {0, 1}. The confidence intervals were computed
for ⇢ = 0 using profile likelihoods eq. (SN1.29).

SN2.2.4.4 Results

The parameter estimation on the branching data provided a good fit for both branches and the total
population (SN2 Figure 5 a)-c)). The parameter splines used for the generation of the simulated
data lie mostly in or close to the 99% confidence intervals of the estimated parameters (SN2 Figure
5 d)-i)).

We conclude that the parameter estimation can recover a pseudodynamics model parameteri-
zation that still allows for qualitative and quantitative statements about the underlying biology also
for the branching model.
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SN2 Figure 5: The pseudodynamics model parameters are practically identifiable on simulated
data of a branching process (II). (a,b) Population density fits and raw densities to which the model
is fit to (true) by branch: main branch (a) and side (b). (c) Population size fits and raw sizes to
which the model is fit to (true) with one standard deviation around the mean as error bars with n =
20 replicates per time point. (d-i) Birth-death rate (d,g), drift (e,h) and diffusion parameter (f,i) fits
and true values (used for simulation) by branch. Parameters on branch 1 in (d-f) and parameters
on branch 2 in (g-i). The shaded area represents the approximate 99% confidence interval (CI)
which was approximated as a spline through the 99% confidence interval upper and lower bounds
on the spline nodes. The confidence intervals on the spline nodes were calculated using profile
likelihoods eq. (SN1.29). The rectangular shaded areas represent the cell state interval at which
the cumulative density of the set of all cells on this branch from all time points used for model
fitting is above 99%. Accordingly, only 1% of the simulated cells on this branch fall into this
interval.
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SN3.1 Introduction to this Supplementary Note

This document contains detailed descriptions of the processing of and the results on the data sets
presented in the main text.

Cross-references to elements of the other Supplementary Notes are labels with "SNX" for
Supplementary Note X.

SN3.2 Application of the pseudodynamics model to data

SN3.2.1 Mouse embryonic stem cell differentiation in vitro

SN3.2.1.1 Aim

We used pseudodynamics on this previously published data set to show the ability of our frame-
work to generalize to other data sets and to demonstrate the core idea/concept of the framework:
resolving the dynamics (time-dependency) of a distribution of cells in cell state space during de-
velopment. The analysis of this data set does not include population growth dynamics.

SN3.2.1.2 Model

We chose the non-branching pseudodynamics model for this system (Sec. SN1.3.1): The linear
trajectory corresponds to the trajectory from embryonic stem cell to a differentiated state to which
the cells move after the removal of differentiation inhibitor in vitro.

SN3.2.1.3 Implementation

The diffusion and drift parameters, D(s) and v(s), were parametrized using natural cubic splines
based on nine equally spaced sampling points in s.

Accordingly, only the values D1, . . . , D9 and v1, . . . , v9 had to be estimated. Population size
estimates are difficult to interpret and were not available for this in vitro experiment. Therefore,
the population growth parameter g(s) was set to zero. For numerical reasons we employed a log-
transformation of the parameters. We computed the exponential of the spline to ensure that D(s)
and v(s) are positive. The drift rate is decreased to 0 in the interval [0.9, 1] of cell states by using
a hermite c-spline. We performed 40 multi-starts using an interior point algorithm for each of the
cross-validation folds and investigated the regularizations ⇢ = {0, 1, 10}.

SN3.2.1.4 Raw data

The data consists of one Drop-seq sample of each of the four time points (0d, 2d, 4d, 7d) after LIF
removal (Klein et al. 2015). We based our analysis on the processed data set nmeth.3971-S2.mat
(Haghverdi et al. 2016) on which a diffusion map and diffusion pseudotime have already been
successfully fit before (Haghverdi et al. 2016).

SN3.2.1.5 Data processing

The steps described in this section are also explained with code and plots in the jupyter notebooks
that were used to perform this analysis (Supp. data 1.1). We fitted a diffusion map to all cells
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(scanpy: k=20, knn=False)(Wolf, Angerer, and Theis 2018). We fitted diffusion pseudotime to
this data set with the extremal cell in diffusion component 1 on the side of the manifold dominated
by the time point 0d sample as a root cell.

SN3.2.1.6 Results

The results of this analysis are presented in the main text in section "Pseudodynamics interpolates
time series samples from stem cell differentiation". Here, we also discuss the fit quality:

This data set presents three challenges for inference: a) few sampled time points, b) no repli-
cates and c) no total population size estimators available. Accordingly, one risks over-fitting if
one includes weak penalties for model complexity and non-identifiability if one include non-zero
birth-death rates. The fits in the main text in Fig. 1e are the fits of a conservative model that is not
likely to over-fit: A model that was fit without birth-death rate parameters (all set to zero) and with
a model complexity penalty. Accordingly, this parameterization performs well in cross-validation.
We added less constrained fits with no model complexity penalty to convince the readers that the
under-fitting is not a model flexibility issue (main text Fig. 1f): The fits to the data improve but
the model over-fits, which we show via cross-validation.

SN3.2.2 T-cell development in the embryonic thymus

SN3.2.2.1 Aim

We used pseudodynamics on this data set to elucidate the dynamics of T-cell maturation includ-
ing population growth phenomenons which link to selection as described in the main text. This
analysis makes use of the full capabilities of pseudodynamics, including branching processes,
integration of replicates, integration of knock-outs and population growth dynamics.

SN3.2.2.2 Model

We chose the branching pseudodynamics model with two branches for this system (Sec. SN1.3.2)
for the diffusion pseudotime-based analysis: The main branch corresponds to the trajectory from
progenitor to mature ↵�-T-cells and the side branch to the non-conventional lymphocyte lineage.
We chose the non-branching pseudodynamics model (Sec. SN1.3.1) for the monocle2-based anal-
ysis: The branch corresponds to the trajectory from progenitor to mature ↵�-T-cells.

SN3.2.2.3 Implementation

The diffusion, drift and population growth parameters (D(s), v(s) and g(s)) were parametrized
with natural cubic splines based on nine equally spaced sampling points in s on the main branch
and with three sampling points on the side branch. This left the values D1, . . . , D12, v1, . . . , v12
and g1, . . . , g12 and the transition propensities �1,2 and �2,1 for estimation. For numerical reasons
we employed a log-transformation of the parameters, except for g1, . . . , g12. To ensure positivity
of D(s) and v(s) we computed the exponential of the spline. The drift rate is decreased to zero
in the cell state interval, [0.9, 1], by using a hermite c-spline. We performed up to 120 multi-starts
using an interior point algorithm. If a plateau of 6 starts was achieved at 40 or 80 multi-starts
we did not perform the full 120 starts. Even though convergence was not achieved for all cross-
validation folds, the results seem to be robust in the evaluated interval of regularization parameters
and we investigated the regularizations ⇢ = {0, 1, 10, 30, 100, 300, 1000}.

To choose the regularization we performed leave-one-out cross validation. For each regular-
ization parameter, we also estimated the parameter on the data excluding all data corresponding
to one time point. This was repeated for all time points. Using the parameter estimates from the
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reduced data sets, the log-likelihood on the data from the left out time point can be computed. We
compared the prediction error, i.e. the sum of the log-likelihood at all withheld time points (Supp.
Fig. 9a), and chose the regularization with the smallest prediction error (in this case ⇢ = 10).

The confidence intervals were computed using profile posteriors (SN1.30) for ⇢ = 10. The
confidence interval of the spline node at cell state s = 0 of the drift parameter estimate along the
T-cell lineage was not upper-bounded by the bound on the parameter in log space (0) and was
therefore set to this upper bound for the computation of the spline through the upper bounds of
the confidence intervals of the spline nodes of the drift parameter in Fig. 2d. For the fitting of the
data ordered by monocle2, the diffusion, drift and birth-death parameters, D(s), v(s) and g(s),
were parameterized with natural cubic splines based on nine equally spaced sampling points in s.
This left the values D1, . . . , D9, v1, . . . , v9 and g1, . . . , g9 for estimation. For numerical reasons
we employed a log-transformation of the parameters Di and vi, i = 1, . . . , 9. We computed the
exponential of the spline to ensure that D(s) and v(s) are positive. The drift rate is decreased to
0 in the interval [0.9, 1] of cell states by using a hermite c-spline. We performed 80 multi-starts
using an interior point method. We investigated the regularizations ⇢ = {10, 30, 100}.

SN3.2.2.4 Raw data

The Drop-seq samples were whole thymus extracts from the following days of embryonic develop-
ment (number of replicates in brackets): wild-type E12.5 (3), wild-type E13.5 (3), wild-type E14.5
(2), wild-type E15.5 (2), wild-type E16.5 (3), wild-type E17.5 (2), wild-type E18.5 (2), wild-type
P0 (2), Rag2 knock-out E14.5 (1), Rag1 knock-out E16.5 (2). Here, replicates are thymus sam-
ples from separate animals. STAR aligner (v2.4.2), Picard tools (v1.96) and Drop-seq tools (v1.0)
were used to convert raw FASTQ files into digital gene expression matrices. The commands and
parameters that were used are listed in table SN3 Table 1.

The population size was measured at each time point that was also sampled in the Drop-
seq experiment in wild-type mice. Note that population size determination and Drop-seq were
performed on separate data sets. We used previously published population size observations at
E12.5-E17.5 (Cook 2010). We obtained population size estimates of mice at the time points E18.5
and P0. At E18.5, we counted 4.9 million and 5.8 million cells per thymus lobe in lobes from
separate animals. At P0, we counted 16.26 million and 15.0 million cells cells per thymus lobe in
two lobes from the same animal, which were processed separately.

SN3.2.2.5 Data procession

The steps described in this section are also explained with code and plots in the jupyter notebooks
that were used to perform this analysis (Supp. data 1.2, 4.3). We extracted thymic hematopoi-
etic cells in silico from the whole thymus single-cell RNA-seq samples as described in the online
methods. We performed the remainder of the workflow separately for the wild-type-only and the
combined wild-type and Rag1/Rag2 knock-out data sets. We fit a diffusion map to all thymic
hematopoietic cells (scanpy: k=100, knn=False)(Wolf, Angerer, and Theis 2018). We fit diffusion
pseudotime with the tip of the progenitor branch as a root cell with one branching event. The
resulting grouping has a group of putative myeloid and dendritic cells which we identified based
on various markers (Supp. Fig. 2,3). We discarded this group to receive a subset of cells that could
be allocated to the T-cell or the non-conventional lymphocyte lineages. We fit a new diffusion map
and diffusion pseudotime on this "gated" data set and observed that the overall structure was not
drastically changed (Supp. Fig. 6a,b), as would be expected after the removal of a small branch.
Next, we adjusted the branch allocation: We kept the assignments of cells to the progenitor group
(Supp. Fig. 6b,c). We split the remaining cells into T-cells and non-conventional lymphocytes
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Purpose Software
Package

Command name Free Parameters

Convert to
SAM

Picard
tools

FastqToSam.jar –

Tag cell bar-
code

DropSeq
tools

TagBamWithReadSequence
Extended

BASE_QUALITY=10,
BARCODED_READ=1,
NUM_BASES_BELOW_QUALITY=1,
DISCARD_READ=False

Tag molecu-
lar barcode

DropSeq
tools

TagBamWithReadSequence
Extended

BASE_QUALITY=10,
BARCODED_READ=1,
NUM_BASES_BELOW_QUALITY=1,
DISCARD_READ=True

Remove
low-quality
barcodes

DropSeq
tools

FilterBAM –

Remove
polyA tail

DropSeq
tools

PolyATrimmer MISMATCHES=0, NUM_BASES=6

Convert to
FASTQ

Picard
tools

SamToFastq.jar –

Align reads
to exome

STAR – –

Sort BAM to
speed merg-
ing

Picard
tools

SortSam.jar –

Merge with
tagging and
alignment
info

Picard
tools

MergeBamAlignment.jar INCLUDE_SECONDARY_
�ALIGNMENTS=False

Label read
with exon

DropSeq
tools

TagReadWithGeneExon –

Screen for
bead errors

DropSeq
tools

DetectBeadSynthesisErrors NUM_BARCODES=2000

Form DGE
matrix

DropSeq
tools

DigitalExpression MIN_NUM_GENES_PER_CELL=
1000

SN3 Table 1: RNA-sequencing read alignment pipeline.
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(NCL) based on a linear partition in the diffusion component (DC) 1 - DC2 plane (Supp. Fig. 6c).
The resulting grouping contained progenitor cells, T-cells and non-conventional lymphocytes. We
chose the progenitor and T-cell sets as the main branch in the branching model and chose the non-
conventional lymphocytes as the side branch. Next, we had do define a branching region. Based
on the DC1-DC2 plane and the diffusion pseudotime values on the main branch, we allocated all
cells which were not in the progenitor group and which had a diffusion pseudotime value below
sbranchingmax (0.25 for wild-type-only data and or as 0.2 combined wild-type and mutant data) to the
branching region. Note that the different choice of sbranchingmax is just a result for the overall lower
diffusion pseudotime values in the combined wild-type and mutant data. Lastly, we scaled the
diffusion pseudotime coordinates so that both T-cell and NCL branches have the same maximum
coordinate value: We performed a linear scaling of the pseudotime values in the NCL group (which
lay in the interval [sbranchingmax ,max(s)]) into the interval [sbranchingmax ,max(sTC)] where sTC is the
set of pseudotime observations in the T-cell group and s is the set of all pseudotime observation
at this stage. Note that such a scaling does not change the ordering of cells on the side branch
and does not change the ordering of non-conventional lymphocytes with respect to the branching
region and the progenitor group. The scaling does therefore not change the developmental mean-
ing of the model. We called these scaled diffusion pseudotime values "cell state" and used them
throughout the manuscript. For numeric reasons, we linearly scaled the pseudotime values into
the interval [0, 0.9] for pseudodynamics model fitting.

We also used pseudodynamics on a linear trajectory based on a monocle2 pseudotemporal or-
dering. We first gated the diffusion pseudotime-based branches corresponding to non-conventional
lymphocytes and putative myeloid and dendritic cells out to receive a data set that mostly contains
the progenitor and T-cells (Supp. Fig. 6a). We then ran monocle2 on this data set.

SN3.2.2.6 Results

The results of this analysis are presented in the main text in section "Pseudodynamics extends pre-
vious models of T-cell maturation". We inferred the cell state space both with diffusion pseudotime
(dpt) and with monocle2. The cell state space inferred with monocle2 is roughly a monotonous
transform of the cell state space inferred with dpt, as shown in Supp. Fig. 12c. One can consider
this monotonous dependency a sanity check that both projections quantify progress along the same
transcriptional manifold. Here, we provide a detailed side-by-side comparison of the parameter
fits based on dpt (shown in Fig. 3c) and monocle2 (shown in Supp. Fig. 12d-f) cell state space. In
the main text, we discuss two major characteristics of the birth-rate functions which are population
expansion (large positive) after beta-selection and selection (negative) after population expansion.
Both are reflected in fits on dpt (Fig. 3c) and fits based on monocle2 (Supp. Fig. 12d). One
can approximate the position of beta-selection in monocle2 pseudotime cell state space based on
Rorc, Bcl-xL and Bcl2 expression (Supp. Fig. 11c): The resulting estimate around cell state 15
is consistent with the location of the proliferative burst identified by pseuodynamics (Supp. Fig.
12d, around cell state 15).

Both pseudodynamics fits also exhibit positive drift rates in the cell state range with negative
birth-death rates that we claim to correspond to selection, which is motivates our claim that there
is directed development in this region (Fig. 3c, Supp. Fig. 12b). We did not find the drift plateau
before beta-selection in the the monocle2-based fits. However, monocle2 did overall not capture
the details of this data set very well (Supp. Fig. 11d-k): The sequence of DN2a, Phase 2, Phase 3
and DP T-cells is not reflected in the 2D projection produced by monocle2 (Supp. Fig. 11d-k) and
some DN2a and Phase 2 cells receive very high pseudotime values (Supp. Fig. 11e,f). Therefore,
details such as the drift plateau may be lost in the pseudodynamics fits based on monocle2. For
this reason, we chose the diffusion pseudotime ordering as the main underlying cell state space in
the main text.
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SN3.2.2.7 Alluvial plots

Introduction We computed alluvial plots (main text Fig. 3a) for this data set to visualize the quan-
titative description of cellular transitions in development provided by pseudodynamics. Alluvial
plots show how the binned distribution of a population at a time point t+1 is related to the binned
distribution at time point t. In the case of pseudodynamics, the binning is done in the cell state
space. In particular, bin i at time point t is connected with bin j at time point t + 1 via a "flow"
which shows what fraction of cells in bin i at t excited bin i towards bin j and what the how much
this flux contributes to the total population at bin j at t+1. In the context of pseudodynamics, one
can visualize normalized or non-normalized flows between cell state bins (intervals).

Methods To compute the flux (flow) from bin i at time point t to all bins at time point t+1, we
simulated the PDE system forward from t to t+1 with initial condition, ut,i, that has as entries the
average number density of the solution at bin i in bin i, ūi(t) = 1

si+1�si

R si+1

si
u(s, t)ds and 0 for

all other bins. Here, the bins represent volumes in the finite volume approximation. As the finite
volume approximation results in a linear ODE (of the form ẋ = Ax with x the average number
density in the finite volume bins and some forward matrix A), the simulated distribution across
bins at t+ 1 starting from ut,i represents the flux from bin i. we repeated this forward simulation
across bins and across time points (bins x time points simulations) to compute all fluxes at all time
points

The binning has to have a large granularity for the finite volume approximation to hold but
such a high resolution in the cell state space is difficult to visualize in alluvial plots. Accordingly,
we pooled fluxes across sets of adjacent bins of the same size for visualization. We provided a
heat map visualization of the fluxes per time point in the cell state grid used for the finite volume
approximation in SN3 Figure 1.

Results We visualized the normalized flows (SN3 Figure 2a) and overall population size side
by side in Fig. 3a,b in the main to text to link the state-transition overview of an alluvial plot
with the pseudodynamics concept of non-normalized distributions that carry total population size
information. One could show a distribution across cell state bins which is scaled with the total
number of cells in this system so that the height of flows and bins can directly be interpreted
as a number of cells. We provided an animated visualization of such a linearly scaled alluvial
plot in Supp. data 3. The linear scaling only yields interpretable visualizations if the alluvial
plot is animated and the y-axis is re-scaled as a function of time as the population size grows
exponentially. Here, we provide an alternative visualization in which we scale the alluvial plot
with the log of the total number of cells (SN3 Figure 2b).

SN3 Figure 2a is an alluvial plot of the normalized distribution across bins. Note that here, a
reduction in the height of a bin over time does not necessarily imply an absolute reduction in the
number of cells in that bin, as the total growth in population size is not accounted for in this plot.
SN3 Figure 2b is simply the normalized distribution and set of flows scaled with the log of the
population size at that time point and mitigates this disadvantage of the normalized alluvial plot.

The heat maps in SN3 Figure 1 contain the same information as the alluvial plot, each heat
maps corresponds to the flows between one pair of adjacent time points. However, the heat maps
show the flows between the cell state bins in the discretization used for the finite volume approx-
imation of the PDE. Both the heat maps and the alluvial plots show that most of the population
distribution in the last three time points stems from bin 7 at the previous time point. Bin 7 contains
the proliferative burst after beta-selection which dominates the population distribution. Birth-
death rates become negative after the proliferative burst while the drift is non-zero (main text Fig.
3b). Bins which correspond to this interval of selection pressure can therefore only maintain their
normalized distribution mass if they have influx from earlier bins. The alluvial plot therefore sum-
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SN3 Figure 1: Heat map visualization of bin to bin flux by time point. The branches are color
coded: black ("TC") is the T-cell lineage main branch and gold ("NCL", non-conventional lym-
phoid cells) is the NCL side branch. Each row and each column represent a bin the the finite
volume approximation of this system, where there is one trajectory for each TC and NCL. Each
heat map represents the flux from time point tdays to t + 1days where t + 1 is indicated in the
panel title: (a): flux from E12.5 to E13.5, (a): flux from E13.5 to E14.5, (c): flux from E14.5 to
E15.5, (d): flux from E15.5 to E16.5, (e): flux from E16.5 to E17.5, (f): flux from E17.5 to E18.5,
(g): flux from E18.5 to P0 (19.5 days after E0).
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SN3 Figure 2: Alluvial plot of flows of cells between bins on the T-cell maturation lineage. This
figure is an alternative visualization of the alluvial plot presented in the main text in Fig. 3a. Each
bar plot corresponds to one time point and is partitioned linearly by the fraction of cells of all
cells at that time point in that bin. Accordingly, the composition of each bar plot represents the
normalized distribution of cells across bins at that time point. The T-cell trajectory was divided
into 15 equidistant bins in cell state (labeled 1-15), the non-conventional lymphoid cell branch was
summarized to one bin (labeled NCL). The resulting 16 bins and their outflows are color coded.
Outflow width represents the fraction of surviving cells transitioning into each bin at the old time
point. Inflow width represents the contribution of each flow to the population size in a bin at the
new time point. (a) The bar plots by time point were not scaled at all. The height of a bin in a
bar plot is therefore the fraction of the cells in that bin at that time point (normalized distribution).
(b) The height of the bar plots by time point were scaled to the log of simulated population size.
Each bar plot is still partitioned linearly according to the normalized distribution across bins. The
height of a bin in a bar plot is therefore the log of simulated overall population size multiplied with
the fraction of the cells in that bin at that time point (normalized distribution).
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marizes the observation of an apparent steady-state of the normalized distribution of cells across
cell state at time points E17.5, E18.5, P0 (main text Fig. 2d): This apparent steady-state is due to a
"source-sink"-like effect and is not due to an attractor cell state: The cell state interval around the
proliferative burst is the source and population size decay (cell death) as well as efflux to higher
bins create a sink phenomenon.

SN3.2.3 Proliferation rates of �-cells in the adult pancreas

SN3.2.3.1 Aim

We used pseudodynamics on this data set to compare a state- and a state- and time- dependent
proliferation model.

SN3.2.3.2 Model

We chose the non-branching pseudodynamics model for this system (Sec. SN1.3.1): The linear
trajectory corresponds to in vivo pancreatic �-cell maturation.

SN3.2.3.3 Implementation

The diffusion and drift parameters, D(s) and v(s), are parametrized with natural cubic splines
based on nine equally spaced sampling points in s. For the state-dependent growth rate, g(s), we
used nine equally spaced nodes in [0, 1]. The state and time-dependent growth rate was imple-
mented as a product of a state- and a time-dependent growth rate, g(s, t) = gs(s)gt(t), we chose
nine equally spaced sampling points in [0, 1] for gs(s) and three equally spaced sampling points
in [0, 60] for gt(t). For numerical reasons we employed a log-transformation of the parameters
Di and vi, i = 1, . . . , 9. To ensure positivity of D(s) and v(s) we computed the exponential of
the spline. The drift rate is decreased to 0 in the interval [0.9, 1] of cell states by using a hermite
c-spline. Since we had no replicates for the cell densities, we estimated the variance together
with the parameters (SN1.18) in the log-likelihood. We performed 100 multi-starts using the trust-
region method implemented in fmincon.m and investigated the regularizations ⇢ = {0, 0.1, 1}.
To compute a time-dependent growth rate from the estimated state-dependent growth rate, we
simulated the population distribution u on a grid in time with 300 grid points equally spaced in
[0, 61.5]. The mean growth rate at a time point t, gs(t), was then computed as

gs(t) =

Z smax

s=0
g(s)u(s, t)ds. (SN3.1)

SN3.2.3.4 Raw data

The single-cell RNA-seq data consists of one sample of each of the seven time points (E17.5, P0,
P3, P9, P15, P18, P60) (Qiu et al. 2017) (SN3 Figure 4a).

We collected total �-cell population estimates from immunostained pancreatic sections of em-
bryonic and neonatal mice from E17.5, P4, P9, P10 and P14 (SN3 Figure 4b) by extrapolating the
mean number of �-cells per section to the total number of cell per pancreas based on the section
volume and the total pancreas volume. We counted �-cells in 6 (E17.5), 4 (P4), 4 (P9) and �3
(P14) sections per animal in three animals each. We counted the following number of �-cells
per animal across all sections: 703, 284 and 644 in E17.5, 1119, 941 and 879 in P4, 1205, 797
and 1236 in P9 and 1100, 1134 and 1110 in P14. We scaled the these numbers of �-cells to the
expected number of �-cells per pancreas (see below). Secondly, we used previously published
measurements for P11 and P45 (Herbach et al. 2011).
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SN3 Figure 3: Merging pancreatic �-cell total population size data in neonatal mice from two
studies. (a) Total number of �-cells by age in mice. Shown are the mean total number of �-cell
per pancreas in mice from age E17.5 onwards at days E17.5 (n=3 replicates), P4 (n=3 replicates),
P9 (n=3 replicates), P10 (n=8 replicates), P14 (n=5 replicates) and P45 (n=3 replicates) with one
standard error around the mean as error bars. We collected data on E17.5, P4, P9, P10 and P14
within this study (lickert18). We used previous estimates(Herbach et al. 2011) (herbach11) for
days P10 and P45. Replicates were separately measured in one unique animal per replicate. The
lickert18 data are shown as raw data (scaled: FALSE) and scaled to the herbach11 data (scaled:
TRUE). (b) Total number of �-cells by age in mice and rats. Shown are mouse (as detailed in
panel a) and rat time course measurement of the total number of beta-cells per pancreas. The rat
measurements are based on n = 6 replicates per time point. The mean number of beta-cells is
shown with one standard error around the mean as error bars.
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We computed a scaling factor between a linear extrapolation of the log of the population size
mean at P10 of our data and our data and a previously published log of the population size mean
at P10(Herbach et al. 2011). This scaling factor was log µN,herbach11(t=P10)

log µN,lickert18(t=P10)
= 1.175. We scaled

all our measurements in log space with this scaling factor to receive one homogeneous data set
with observations at E17.5, P4, P9, P10, P14 and P45 (SN3 Figure 3a). We believe that our
measurements capture the correct relative number of �-cells per pancreas across time. However,
Herbach et al.(Herbach et al. 2011) performed more extensive cell counting so that we believe that
their measurements capture the correct absolute numbers and accordingly scaled our data to this
reference. The scaling in log space assumes that our �-cell measurement deviate from the data
measured by Herbach et al. by a linear scaling factor in log space.

We fit the population size observations in log space with pseudodynamics. To transform the
observed distribution to the log space, we computed the mean (Nobs

t ) and standard error (�N,obs
t )

of the untransformed data and computed the mean (LNt) and and standard deviation (�LN
t ) of a

log-normal distribution based on these statistics:

�LN
t =

vuutlog

 
1 +

(�N,obs
t )2

(Nobs
t )2

!

LNt = log

✓
Nobs

tr
1 + (�N,obs

t )2

(Nobs
t )2

◆ (SN3.2)

We note that the population size was estimated at different time points to the ones at which the
population density was observed with single-cell RNA-seq. Both measurements do however lie in
the same interval and can therefore be used in pseudodynamics.

We added �-cell counts per pancreas from an independent study in rats as a reference. Sven-
strup et al.(Svenstrup et al. 2002) estimated the total number �-cells in the pancreas of rats at
multiple developmental time points based on manual counting of �-cells in immunostained pan-
creatic sections (SN3 Figure 3b). The total number of �-cells per rat was estimated at day 1, 4,
8, 12, 16, 20, 24, 36, 150 and 300 after birth with six replicates each. Replicates were separately
measured in one unique animal per replicate. The �-cell population size measurements are pre-
sented in Fig. 1 E,F in(Svenstrup et al. 2002) but the raw data was not supplied. Accordingly,
we extracted the mean and standard error estimates of time points 1, 4, 8, 12, 16, 20, 24 and 36
directly from the plots in Fig. 1E in(Svenstrup et al. 2002). According to the Carnegie stage com-
parison(Carnegie Stage Comparison - Embryology n.d.), rats are 1.5 days delayed in development
compared to mice around birth. Therefore, we added 1.5 days to the time coordinate of all popula-
tion size estimators from rat to map them to the corresponding stage in mouse development. The
rat data presented in SN3 Figure 3b only serves as reference to validate the global population size
trend that we recorded in mice. We only use the mice data for model fitting.

SN3.2.3.5 Data processing

The steps described in this section are also explained with code and plots in the jupyter notebooks
that were used to perform this analysis (Supp. data 1.4). We fit a diffusion map to all cells
(scanpy: k=30, knn=False). We fit diffusion pseudotime to this data set with the cell extremal cell
in diffusion component 1 on the side of the manifold dominated by the E17.5 sample as a root cell.

Details on the preprocessing of the data can be found in the scripts associated with this analy-
sis.
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SN3 Figure 4: Experimental design: �-cell development. (a) Experimental design to measure cell
state distribution with single-cell RNA-seq. (b) Experimental design to estimate population size,
maturation status, apoptosis rates and proliferation rates from stained pancreatic tissue sections.

SN3.2.3.6 Results

The results of this analysis are presented in the main text in section "Pseudodynamics identifies
time-dependent proliferation of pancreatic �-cells as a state dependent effect".

SN3.2.4 A two-compartment model for proliferation rates of �-cells in the adult
pancreas

SN3.2.4.1 Aim

We used pseudodynamics on this data set to compare a time- and state-dependent and an only
state-dependent proliferation model based on a ordinary differential equation model with only two
compartments. Here, state-dependence means that the parameters are compartment specific.

SN3.2.4.2 Model

The two-compartments represent immature and mature pancreatic �-cells, defined based on the
presence of Ucn3 in immunostainings of tissue sections. The number of cells in the immature
compartment is modeled by m1 and the number of cells in the mature compartment by m2,

ṁ1 = �d1(t)m1 + d2(t)m2 + g1(t)m1

ṁ2 = d1(t)m1 � d2(t)m2 + g2(t)m2,
(SN3.3)

with transition rate from m1 to m2, d1(t), transition rate from m2 to m1, d2(t), and growth rate
gi(t) for compartment i. We compared three different parameterizations.

P1 Constant rates (woTime): d1(t) = d1,const, d2(t) = d2,const, g1(t) = g1,const and g2(t) =
g2,const;

P2 Constant transition and time-dependent growth rates parameterized using natural cubic splines
(wTime1): d1(t) = d1,const, d2(t) = d2,const, g1(t) = ncs (t|~↵g,1) and g2(t) = ncs (t|~↵g,2)
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P3 Time dependent growth and transition rates parameterized using natural cubic splines (wTime2):
d1(t) = ncs (t|~↵d,1), d2(t) = ncs (t|~↵d,2), g1(t) = ncs (t|~↵g,1) and g2(t) = ncs (t|~↵g,2).

All parameters are state-dependent in all three parameterizations as we allow one parameter per
compartment.

We allowed a parameter for backwards motion of cells from the mature to the progenitor com-
partment in the discrete model. We did so for two reasons:

Firstly, diffusion in a continuous model corresponds to backwards and forwards rates in a chain
discretization of the continuous coordinate (such as in finite volumes or finite differences). Ac-
cordingly, one could not account for diffusion in a discrete model if one did not allow backwards
rates.

Secondly, there is conflicting evidence from lineage tracing experiments about the existence
of a developmental transition from mature �-cells (Ins+Ucn3+) to immature �-cells (Ins+Ucn3-):

Van der Meulen et al. studied �-cell maturation based on the marker Ucn3 via lineage tracing
in vivo in mice(Meulen et al. 2017). In particular, they found that there are small fluxes of trans-
differentiation of ↵-cells via "virgin" �-cells (Ins+Ucn3-) to mature �-cells (Ins+Ucn3+). The
number of �-cells with ↵-cell lineage label is less than 0.5% of the total �-cell number at two
days and four month after the lineage labeling in mice at two months of age (van der Meulen et
al.(Meulen et al. 2017), Fig. 6F). Therefore, we argue that the transdifferentiation flux of ↵-cells
to �-cells can be neglected without great loss of accuracy for the population size model. Van der
Meulen et al. also traced mature �-cells and did not observe mature (Ins+Ucn3+) lineage-labeled
"virgin" �-cells (Ins+Ucn3-) (van der Meulen et al.(Meulen et al. 2017), Fig. 1K): They did not
find evidence for a transition from Ins+Ucn3+ to Ins+Ucn3- cells.

Talchai et al. studied �-cell dedifferentiation in mice subjected to physiological stress(Talchai
et al. 2012). Talchai et al. reported evidence which suggests that mature �-cells can dedifferentiate
to progenitor �-cells (Ins-Ngn3+) and other cell types present in the pancreas. These Ins-Ngn3+

progenitor �-cells are thought to be progenitors of Ins+Ucn3- immature �-cell(Qiu et al. 2017)(Pe-
tersen et al. 2017). Accordingly, the results from Talchai et al. suggest that �-cell dedifferentiation
might cause a transition of mature �-cells (Ins+Ucn3+) to immature �-cells (Ins+Ucn3-).

The backward rate parameter has the interpretation of diffusion in the limit of many com-
partments and cannot be clearly rejected based on evidence from lineage tracing experiments.
Therefore, we included this parameter in the model. We would like to note that the addition of a
dedifferentiation rate parameter to the discrete compartment model does not force a dedifferentia-
tion flux in the model, it gives the model the freedom to fit such a flux during parameter estimation
if this helps explaining the data.

SN3.2.4.3 Implementation

The likelihood consists of two parts, a part describing the fit to the overall log population size and
a part describing the fit to the distribution of cells between the two states,

logL(✓) =

✓ X

t2TN

logL
⇣
LNt|✓,�LN)

t

⌘◆
+

✓ X

t2TN

logL (p2,t|✓,�p
t )

◆
. (SN3.4)

The likelihood for the overall log population size is a normal distribution

L(log(Nt)|✓,�LN
t ) = N

⇣
LNt

���µ = µLN (t, ✓) ,�2 =
�
�LN
t

�2⌘ (SN3.5)
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with LNt and �LN
t as described in eq. SN3.2 and

µLN (t, ✓) = log(m1(t) +m2(t)) (SN3.6)

where µLN (t, ✓) is the logarithm of the overall population size predicted by the model for the
parameters ✓ at time point t.

For the fit to the distribution of cells, we consider the fraction of cells in the mature compart-
ment, p2,t. Similar to the fraction of cells on each branch above, we assume a normally distributed
measurement noise and the likelihood

L(p2,t|✓,�p
t ) = N

✓
p2,t
���µ = µp(t, ✓),�2 = (�p

t )
2

◆
(SN3.7)

with
�p
t = �p,obs

t /
p

Rt (SN3.8)

where �p,obs
t is the observed standard deviation of the fraction of mature cells at time point t and

Rt the number of replicates of the fraction measurements at time point t and

µp(t, ✓) =
m2(t)

m1(t) +m2(t)
=

m2(t)

N(t)
(SN3.9)

where µp(t, ✓) the fraction of mature cells predicted by the model for the parameters ✓ at time
point t.

We performed 100 multi-starts using the interior point algorithm implemented in fmincon.m
and investigated the regularizations ⇢ = {0, 1, 10}. The confidence intervals were computed using
likelihood profiles (SN1.29).

SN3.2.4.4 Raw data

The single-cell data are number of Ins+Ucn3- and Ins+Ucn3+ cells in tissue section at days P0,
P4, P9 and P14. We defined the set of Ins+ cells as pancreatic �-cells and grouped these into
two compartments: Immature �-cells (Ins+Ucn3-) and mature �-cells (Ins+Ucn3+) (main text
Fig. 5a,b). Based on the total number of these cells across multiple sections per animal, we
computed the fraction of mature and immature �-cells by time point. We performed this procedure
in three animals per time point, counting a total of 1917 cells, 2674 cells, 2198 cells and 3638
cells respectively for the time points P0, P4, P14 and P14. We computed the mean and standard
deviation of the fraction of mature �-cell per compartment by time point across animals.

We used the same population size data as described for the continuous model (Sec. SN3.2.3.4).
The first population size measurement (E17.5) and the first single cell maturation quantifica-

tion (P0) were recorded at 1.5 days apart. We made the simplifying assumption that the single cell
maturation is the same at E17.5 as at P0 so that we did not have to co-estimate the initial condition
during pseudodynamic model fitting: We set the initial condition at E17.5 to the measurement at
P0 and removed the measurement at P0 from the set of measurements on which the likelihood is
evaluated.

SN3.2.4.5 Results

We compared the three models presented in sec. SN3.2.4.2 with likelihood ratio tests and by qual-
itatively evaluating their fits to the data. The constant model without time dependence (woTime)
fits the population size and the population distribution data much worse than both other models
with time-dependent parameters even if it is completely unconstrained with a regularization pa-
rameter of 0 (SN3 Figure 5a,b). The model woTime is nested in both wTime1 and wTime2. We
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SN3 Figure 5: A two-compartment ordinary differential equation model for �-cell maturation re-
quires time-dependent parameters to fit the measurements. The model acronyms woTime, wTime1
and wTime2 are introduced in sec. SN3.2.4.2. The model fits shown are based on a regularization
parameter of 1 for wTime1 and wTime2, and based on a regularization parameter of 0 for woTime,
to allow woTime to be unconstrained. (a) Population size fits by model. The observed proliferation
rates are shown in black with one standard deviation around the mean as error bars. (b) Population
distribution fits by model, presented is the fraction of mature cells in the two-compartment model.
The observations are shown as boxplots with n = 3 (t = 1.5), n = 3 (t = 5.5), n = 3 (t = 10.5)
and n = 3 (t = 15.5) replicates. Replicates were separately measured in one unique animal per
replicate. The centre of each boxplots is the sample median, the whiskers extend from the upper
(lower) hinge to the largest (smallest) data point no further than 1.5 times the interquantile range
from the upper (lower) hinge. (c) Birth-death rate fits by model and compartment. (d) Average
birth-death rate per time point by model and observed proliferation rates by time point with one
standard deviation around the mean as error bars. The birth-death rates at a given time point are
computed as the convolution of the simulated population distribution at that time point with the
parameter fit, both functions of cell state.
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performed model selection with a likelihood-ratio test between woTime and wTime1 and between
woTime and wTime2. In both cases, the difference in likelihood between the model without
time-dependent parameters (woTime) and the model with time-dependent parameters (wTime1,
wTime2) is significant, which is in line with the bad fits of the model without time-dependence
(SN3 Figure 5a,b). These results suggest that it is necessary to include time-dependent parameters
in the model to fit �-cell maturation if a discrete two-compartment model is used to describe the
biological process.

Both models with time-dependent parameters are very similar in terms of their fits (SN3 Figure
5a,b). The more complex model wTime2 is indeed not significantly better than the model wTime1
when compared with a likelihood ratio test. This result suggests that time-dependent transition
rates are not necessary to fit �-cell maturation data if the birth-death rates are allowed to vary with
time.

As also presented in the main text in Fig. 6c for the continuous model, we can also compare
the computed average proliferation rates per time point with the observed rates. The observed and
predicted rates are globally similar (SN3 Figure 5a,b) suggesting that this two-compartment model
can indeed explain the global behavior of the system.

SN3.2.4.6 Discussion

We showed here that it is necessary to assume time-dependent birth-death rates in a two-compartment
ordinary differential equation model for �-cell maturation to fit the data presented here. We
showed in the main text in sec. "Pseudodynamics identifies time-dependent proliferation of pan-
creatic �-cells as a state dependent effect" that it is not necessary to assume time-dependent
birth-death rates in a continuous PDE model for �-cell maturation. These two results highlight
our conclusion that the necessity to assume time-dependent parameters to explain the observed
time-dependence of proliferation rates in �-cell maturation depends on the description of the un-
derlying cell state: The time-dependent birth-death was that was found to be necessary in the
two-state maturation system was not necessary in the continuous system which suggests that the
time-dependence that was found here might be a discretization artifact. This artefact results from
the information content reduction inherent in the discretization of the continuous distribution in
cell state space. The discretization lies in the usage two-stage surface marker-based discretiza-
tion of a continuous 1D pseudotime reconstruction. Accordingly, one has to be careful to assume
biological regulation mechanisms that support time-dependent parameters if the developmental
system can be described as a continuous trajectory.
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