Kidney International

The eye, the kidney & cardiovascular disease:

old concepts, better tools & new horizons

Supplementary appendix

Tariq E Farrah BSc MRCP^{1,2} Baljean Dhillon FRCS FRCPE FRCOphth^{3,4} Pearse A Keane MSc FRCOphth MRCSI⁵ David J Webb DSc FRCP¹ Neeraj Dhaun PhD FRCP^{1,2}

¹University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.

²Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK

³Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK

⁴Princess Alexandra Eye Pavilion, Edinburgh, UK

⁵NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital, London, UK

Correspondence to: Dr Neeraj Dhaun Centre for Cardiovascular Science The Queen's Medical Research Institute 47 Little France Crescent, Edinburgh. E-mail: <u>bean.dhaun@ed.ac.uk</u>

Short title: Retinal imaging & the kidney

Contents

- 1. Supplementary table 1. Retinal vascular metrics to predict incident hypertension
- 2. Supplementary table 2. *Retinal vascular metrics to predict incident diabetes mellitus*
- **3. Supplementary table 3.** *Retinal vascular metrics to predict cardiovascular disease*
- 4. Supplementary figure legends
- 5. Supplementary figure 1. *Alport syndrome-associated retinopathy*
- 6. Supplementary figure 2. *Retinal photography and fundus retinal calibre assessment*
- 7. Supplementary figure 3. *Retinal optical coherence tomography*
- 8. Supplementary figure 4. *Retinal layer segmentation by OCT*
- 9. Supplementary figure 5. *OCT angiography*
- 10. Supplementary video legends
- 11. References

1.	Supplementary	table 1. Retin	al vascular	r metrics to	o predict	incident i	hypertension
----	---------------	----------------	-------------	--------------	-----------	------------	--------------

Study	Country	n	Population Mean age	Retinal metric	Clinical outcome	Mean BP	Diabetes	Follow up	Results
Wong ^{S1} 2004 Prospective, Population - based cohort	US	5,628	Normotensive, white and African-American adults 59 years	AVR	Incident hypertension: BP ≥140/90mmHg or use of anti- hypertensives	115/68 mmHg	8%	3 years	14% developed hypertension Smallest AVR quintile predicts incident hypertension Adjusted OR 1.6 (1.2-2.2) vs. widest quintile
Wong ^{S2} 2004 Prospective, Population - based cohort	US	2,451	Normotensive, white adults 60 years	AVR CRAE CRVE	Incident hypertension: BP ≥140/90mmHg or use of anti- hypertensives	125/75 mmHg	6%	10 years	29% developed hypertension Smallest AVR quartile predicted incident hypertension:adjusted OR 1.8 (1.4-2.4) vs. widest Similar association for CRAE No association for CRVE
Smith ^{S3} 2004 Prospective, Population - based cohort	Australia	1,319	Adults with BP ≤159/ 99 mmHg 64 years	AVR CRAE CRVE	Incident severe hypertension: BP ≥160/100 mmHg or use of anti- hypertensives	136/80 mmHg	6%	5 years	30% developed severe hypertension Smallest AVR and narrowest CRAE quintile predicted incident hypertension <i>vs.</i> widest AVR: adjusted OR 2.0 (1.3-3) CRAE: adjusted OR 2.1 (1.4-3.3) No association for CRVE
Ikram ^{S4} 2006 Prospective, Population - based cohort	Netherlands	1,900	Normotensive adults 64 years	AVR CRAE CRVE	Incident hypertension: BP≥140/90mmHg or use of anti- hypertensives	122/69 mmHg	4%	7 years	42% developed hypertension Smallest quartile of AVR, narrowest CRAE and CRVE associated with incident hypertension AVR: Adjusted OR 1.7 (1.3-2.4) CRAE: Adjusted OR 2.2 (1.6-2.9) CRVE: Adjusted OR 1.4 (1.01-3)
Kawasaki ^{S5} 2009 Prospective,	US	2,583	Multi-ethnic normotensive adults 60 years	CRAE CRVE	Incident hypertension: BP ≥140/90mmHg or use of anti- hypertensives	114/69 mmHg	6%	3 years	17% developed hypertension Narrower CRAE predicted incident hypertension: adjusted OR 1.5 (1.01-2.14) Persisted only in white subjects

Population - based cohort									Wider CRVE associated with incident hypertension: adjusted OR 1.7 (1.13-2.53)
Tanabe ^{s6} 2010	Japan	310	Normotensive adults	CRAE CRVE	Incident hypertension: BP≥140/90mmHa	117/71 mmHg	Undefined	5 years	32% developed hypertension
Prospective,			57 years	(n=310)	or use of anti- hypertensives				Narrowest CRAE tertile predicted incident hypertension: adjusted OR 2.4 (1.1-5)
Population - based cohort									Lost significance when further adjusted for BP: adjusted OR 2.1 (0.9-4.7) <i>vs.</i> widest
									No association for CRVE

BP – blood pressure, AVR – arteriole-to-venule ratio, OR – odds ratio, CRAE – central retinal arteriolar equivalents, CRVE – central retinal

venular equivalents. All values are mean.

2. Supplementary table 2. Retinal vascular metrics to predict incident diabetes mellitus

Study	Country	n	Population Mean age	Retinal metric	Clinical outcome	Hypertension	Mean BP	Follow up	Results
Wong ^{S7} 2002 Prospective, Population - based cohort	US	7,993	Non-diabetic White and African- American adults 59 years	AVR	Incident diabetes: Fasting glucose ≥7 mmol/L, random glucose ≥11.1 mmol/L or use of anti-diabetic medicines	34%	122/72 mmHg	3.5 years	4% developed diabetes Smallest AVR quartile predicted incident diabetes: adjusted OR 1.7 (1.1-2.6) <i>vs.</i> largest quartile
Wong ^{S8} 2005 Prospective, Population - based cohort	US	3,251	Non-diabetic adults 60 years	AVR CRAE CRVE	Incident diabetes: random glucose ≥11.1 mmol/L	33%	127/78 mmHg	10 years	8% developed diabetes Smallest quintile AVR predicted incident diabetes: adjusted RR 1.5 (1.03-2.6) vs. largest quartile Narrowest CRAE quintile associated with incident diabetes but not when adjusting for other risk factors such as BP RR greatest in those with smallest AVR and known hypertension: adjusted RR 3.4 (1.7-4) vs. largest AVR and normotensive No association with CRVE
Ikram ^{S9} 2006 Prospective, Population - based cohort	Netherlands	2,309	Non-diabetic adults 65 years	AVR CRAE CRVE	Incident diabetes: Fasting glucose ≥7mmol/L Incident impaired fasting glucose (IFG): Fasting glucose 6.1- 7.0mmol/L	No data	134/74 mmHg	6.4 years	 13% developed IFG 5% developed diabetes Smaller AVR and wider CRVE associated with IFG Adjusted ORs for IFG AVR: 1.15 (0.99-1.3) (per SD decrease) CRVE: 1.14 (0.98-1.3) (per SD increase) Adjusted ORs for diabetes: AVR: 1.08 (0.86-1.4) (per SD decrease) CRVE: 1.09 (0.87-1.4) (SD increase) No association with CRAE
Nguyen ^{S10} 2008	Australia	803	Non-diabetic adults; adults with impaired glucose tolerance	CRAE CRVE	Incident diabetes: Fasting glucose ≥7.0 mmol/l, 2-hour plasma	45%	135/72 mmHg	5 years	13% developed diabetes

Prospective, Population - based cohort			and impaired fasting glucose		glucose ≥11.1 mmol/l or use of diabetic medications				Narrowest CRAE tertile predicted development of diabetes: adjusted OR 2.2(1.02-4.8) vs. widest tertile
			57 years						No assocation for CRVE
Kifley ^{S11} 2008	Australia	2,123	Non-diabetic adults	CRAE CRVE	Incident diabetes and IFG:	68%	144/83 mmHg	10 years	9% developed diabetes 6% developed IFG
Prospective, Population - based cohort			64 years		Incident diabetes: Fasting glucose ≥7mmol/L Incident impaired (IEG): Fasting dlucose				13% developed diabetes or IFG Wider CRVE predicted incident IFG only: adjusted OR 1.5 (1.1- 2.1) for each SD increase in venular calibre
					6.1-7.0mmol/L				No associations for CRAE

BP - blood pressure, AVR - arteriole-to-venule ratio, OR - odds ratio, CRAE - central retinal arteriolar equivalents, CRVE - central retinal

venular equivalents, RR - risk ratio, IFG - impaired fasting glucose. All values are mean.

3. Supplementary table **3.** *Retinal vascular metrics to predict cardiovascular disease outcomes*

Study	Country	n	Population Mean age	Retinal metric	Clinical outcome	Hypertension	Mean BP	Diabetes	СКД	Pre-existing CVD	Follow up	Results
Coronary heart disease												
Wong ^{S12} 2002 Prospective, Population - based cohort	US	9648	White and African- American adults 60 years	AVR	Incident CHD: fatal/non-fatal myocardial infarction, revascularisation	40%	89 mmHg (mean arterial pressure)	17%	No data	No data	3.5 years	3% developed CHD Smallest 2 AVR quintiles associated with an increased risk of incident CHD in women only : lowest AVR quintiles adjusted RRs: Q1 2.2 (1- 4.6) and Q2 2.3(1-4.8) vs. largest. Relationship strongest in women without hypertension or diabetes and for myocardial events rather than revascularisation.
Wang ^{S13} 2006 Prospective, Population - based cohort	Australia	3340	White adults 65 years	AVR CRAE CRVE	CHD mortality: defined by national health database ICD coding	45%	146/84 mmHg	7%	No data	13%	9 years	6% died from CHD For women < 75 years old, smallest AVR quartiles associated with nearly 3-fold increased risk of CHD mortality vs. largest quartile Narrower CRAE and wider CRVE associated with greater risk of CHD mortality per SD change: Women <75 years CRAE adjusted HR 1.5 (1.1-2.2) CRVE adjusted HR 1.5 (1.1-2.2) Men <75 years CRAE adjusted HR 1.1 (0.8-1.4) CRVE adjusted HR 1.4 (1.1-1.8) No associations in >75 years olds regardless of gender.
Liew ^{S14} 2011 Prospective, Population - based cohort	Australia	3303	White adults 65 years	Df	CHD mortality: defined by national health database ICD coding	70%	146/84 mmHg	7%	No data	16%	14 years	14% died from CHD Highest and lowest quartiles of <i>Df</i> associated with increased risk of CHD mortality:

Lowest *Df* adjusted HR 1.5 (1.2-1.9) Highest *Df* adjusted HR 1.6 (1.2-2.1)

In those <70 years suboptimal *Df* associated with nearly 2-fold greater risk of CHD mortality

Stroke												
Wong ^{S15} 2001 Prospective, Population - pased cohort	US	10358	White and African- American adults 54 years	AVR	Incident stroke: defined by subject recall, health records and ICD coding of hospital admissions and discharges	33%	120/77 mmHg	10%	No data	4% (coronary disease)	3.5 years	1% had an ischaemic stroke Smallest AVR quintile associated with greatest risk of any incident stroke and ischaemic stroke: unadjusted RR 2.35 and 2.3; age, gender and race adjusted RR 1.98 and 1.91, vs. widest respectively. No association when adjusted for BP, diabetes, hypertension, smoking and lipids
Vitchell ^{S16} 2005 Prospective, Population - pased cohort	Australia	3583	White adults 68 years	AVR	Incident stroke and stroke death defined by subject recall, health records and ICD hospital admission and discharge codes	49%	147/84 mmHg	6%	No data	No data	5 years	3% of patients had a stroke or died from a stroke AVR not associated with incident stroke events in adjusted analyses.
kram ^{S17} 2006 Prospective, Population - pased cohort	Netherlands	5540	White adults with no prior stroke 67 years	AVR CRAE CRVE	Incident stroke: from health records and neuroimaging; Subdivided into infarction or haemorrhage	No data	138/73 mmHg	9%	No data	No data	8.5 years	7% had a stroke, nearly 2/3 of these were infarcts. Wider CRVE and smaller AVR as quartiles and continuous variables were associated with increased risk of stroke, particularly infarction CRVE age, sex adjusted HR: 1.3 (1.03-1.6) AVR age, sex adjusted HR: 1.5 (1.2-1.9) CRVE association remained when adjusted for CVD risk factors No associations with CRAE

Yatsuya ^{S18} 2010 Prospective, Population - based cohort	US	10496	White and African- American adults 59 years	CRAE CRVE	Incident ischaemic stroke: defined from health records, ICD admission and neuroimaging; Strokes subclassified into lacunar, non- lacunar, cardioembolic	29%	121 mmHg (systolic BP)	14%	No data	No data	11 years	3% suffered an ischaemic stroke, of which 20% were lacunar. Narrower CRAE associated with increased risk lacunar stroke both as narrowest quintile vs. widest (adjusted HR 5.2(1.9-14.1)) and as continuous variable per SD decrease (HR 1.7(1.2-2.3)) Wider CRVE associated with increased risk of lacunar stroke as continuous variable, adjusted HR 1.4 (1.1-1.9) No association with non-lacunar or cardioembolic events
Wieberdink ^{S19} 2010 Prospective, Population - based cohort	Netherlands	5518	White adults with no prior stroke 67 years	CRAE CRVE	Incident stroke: from health records and neuroimaging; Subdivided into infarction or haemorrhage	55%	138/73 mmHg	10%	No data	3%	11.5	 11% had a first stroke, 58% infarction, 10% haemorrhage, remainder undefined Wider CRVE as a continuous variable or quartiles was associated with increased risk of any stroke, infarcts and haemorrhagic strokes: Stroke adjusted HR 1.2 (1.1-1.3) Infarction adjusted HR 1.3 (1.1-1.5) Haemorrhage adjusted HR 1.5 (1-2) (all per SD increase) Narrower CRAE had borderline associations with stroke risk, except for anticoagulation-associated intracerebral haemorrhage
Cheung ^{S20} 2013 Prospective, Population - based cohort	Singapore	2644	Malay adults without prior stroke 57 years	CRAE CRVE Tortuosity <i>Df</i> Branching angles	Incident stroke: from health records	66%	145/80 mmHg	22%	91umol/L	No data	4.4 years	2% had a stroke, 85% ischaemic Wider CRVE was associated with increased risk of stroke, both as widest quartile vs. narrowest (adjusted HR 3.3, 1.3-8.6) and as continuous increasing variable (1.3, 1-1.6) No other vascular metrics associated with risk of stroke.

												Addition of retinal metrics to clinical tools improved stroke risk stratification by ~9%
Coronary hea	rt disease and	d stroke										
Wong ^{S21} 2003 Population- based, nested case- control	US	413 CVD deaths 1198 controls	White adults Age not reported	AVR	Cardiovascular mortality: ICD coding of fatal myocardial infarction or stroke	70% in those with CVD death 60% in controls	140/74 mmHg 136/75 mmHg	24% 9%	No data	43% 22%	10 years	Lowest AVR quintile associated with increased risk of CVD mortality: Adjusted RR 1.5 (1.1-2.1) mainly in younger subjects (43-74 years)
Wong ^{S22} 2006 Prospective, Population - based cohort	US	1992	Predominantly white adults >65 years with no prior CVD 78 years	CRAE CRVE	Incident CVD: Incident CHD: fatal/ non-fatal myocardial infarction, other CHD death; Incident stroke: fatal/ non-fatal stroke	58%	130/67 mmHg	15%	No data	0%	5 years	CHD events 6% Stroke events 6% Narrowest CRAE and widest CRVE quartile associated with increased risk of CHD events vs. widest/narrowest respectively: CRAE adjusted HR: 2 (1.1-3.8) CRVE adjusted HR: 3 (1.6-5.8) Stronger associations for CRVE in those>80, diabetics and hypertensive Widest CRVE quartile only associated with increased risk of stroke: adjusted HR 2.2 (1-4.3)
Wang 2006 ^{S23} Prospective, Population - based cohorts	US and Australia	7494	Predominantly white adults >90% 63 years	CRAE CRVE	Incident CVD mortality: death from stroke or CHD	58%	No data	8%	No data	22%	11 years	CHD deaths 9% Stroke deaths 4% Narrowest CRAE and widest CRVE quintile associated with increased risk of death from coronary heart disease vs. other quintiles: CRAE adjusted HR: 1.3 (1.1-1.6) CRVE adjusted HR: 1.2 (1.0-1.5) Associations strongest in the US cohort and those <70 years No associations between CRVE or any continuous retinal vascular metric and incident stroke mortality in adjusted analyses

Siedelmann ^{S2} 4 2016 Prospective, Population - based cohort	US	10470	White and African- American adults without prior CVD or heart failure 59 years	CRAE CRVE AVR	Incident CVD events and death: myocardial infarction, revascularisation, stroke, heart failure	30%	125 mmHg (systolic BP)	14%	No data	0%	16 years	1778 coronary events 548 stroke events 1395 heart failure events 26% mortality Narrower CRAE associated with increased risk of death (adjusted HR 1.14) and stroke (adjusted HR 1.06) in all subjects; Wider CRVE showed stronger associations for both stroke and death. Narrower CRAE/wider CRVE associated with increased CHD in women only Addition of retinal metrics to clinical tools improved CVD event risk stratification by 11%
Yip ^{S25} 2017 Prospective, Population - based cohort	Singapore	3496	Malay adults without prior CVD 58 years	CRAE CRVE	Incident CVD events defined as: myocardial infarction, stroke and cardiovascular death certificate coding	58%	140/82	38%	77mls/min	0	5.8 years	 4% developed overt CVD Wider CRVE as a continuous variable or quartiles was associated with increased risk of CVD events: Adjusted HR 2.1(1.2-3.7) vs narrowest quartile. No relationship between CRAE and CVD events. Association of venular widening with microalbuminuria was associated with greater risk of incident CVD than either measure alone

BP – blood pressure, AVR – arteriole-to-venule ratio, OR – odds ratio, CRAE – central retinal arteriolar equivalents, CRVE – central retinal venular equivalents, RR – risk ratio, IFG – impaired fasting glucose, HR – hazard ratio, eGFR – estimated glomerular filtration rate, CKD – chronic kidney disease. *Df* - fractal dimension, CVD – cardiovascular disease, CHD – coronary heart disease, ICD – International Classification of Diseases. All values are mean.

4. Supplementary figure legends

Supplementary figure 1. Alport syndrome-associated retinopathy.

Ultra-wide field scanning laser ophthalmoscope photograph of left eye from a male patient with end-stage renal disease secondary to X-linked Alport syndrome. The characteristic dotand-fleck retinopathy is evident as green peri-macular deposits in the centre of the image. There is also associated loss of foveal reflex due to macular thinning. The presence of Alportassociated retinopathy can help diagnosis, suggest inheritance patterns, identify those at risk of progressive CKD and differentiate from mimics such as thin GBM disease which has no associated retinal features.^{\$26, 27}

Supplementary figure 2. Retinal photography and fundus retinal calibre assessment

A. Right eye digital retinal photograph using Canon CR-1 fundus camera with a field of view of 45°.

B. Right eye scanning laser ophthalmoscope image centred over optic disc using the Heidelberg SPECTRALIS[®] Spectral-Domain OCT machine (SD-OCT, Heidelberg Engineering, Heidelberg, Germany). The centre of the optic disc is manually determined. A standard set of concentric circular measurement zones commonly used in the analysis of fundus camera images is mapped from this point as shown. Zone 'A' is the area 0.5 to 1 optic disc diameters away from the centre as bounded by the white dotted lines. The vessel analysis software VAMPIRE[®] (University of Dundee, United Kingdom) selects the six widest arterioles (red) and venules (blue) crossing zone A to calculate CRAE, CRVE and AVR.

Supplementary figure 3. *Retinal optical coherence tomography.*

Blue lines represent fibre paths. *Red lines* represent optical paths. *Green lines* represent signal paths. Low coherence light (typically ~800 nm wavelength) is split into a sample beam and

reference beam. The sample beam is shone onto the retina and reflected back as 'light echoes'. The reference beam is directed to a mirror positioned at a known distance from the light source. A range of 'sample' light echoes each return at different times depending on the distance of the reflecting tissue from the light source. Returning 'sample' and 'reference' light echoes are re-united and directed to a photodetector. An interference signal is detected when the time delays between the 'sample' and 'reference' light echoes is small, *i.e.* the distance of reference mirror matches the distance of the reflecting tissue. Moving the reference mirror (positions A to C) alters the distance the reference beam/echo must travel and thus changes the time delay between reference and sample echoes. At each new reference mirror distance, the reference echo time delay will closely match a different sample echo time delay, generating a new interference signal corresponding to a deeper/shallower reflecting tissue layer. Sequential movement of reference mirror allows the construction of a single interference depth profile: the A-scan. A-scans obtain depth profiles along the z-axis. The lateral scanning mirror is rotated through positions 1 to 4 along the x-axis to obtain sequential adjacent A-scans which are used to generate a single horizontal B-scan. The vertical scanning mirror is elevated/lowered along the y-axis to obtain horizontal B-scans at multiple levels. B-scans can then be stacked to create a volume scan (Supplementary videos 1 and 2).

Supplementary figure 4. *Retinal layer segmentation by OCT.* Close up of horizontal line OCT scan through the macula of the right eye using the Heidelberg SPECTRALIS[®] SD-OCT (Heidelberg Engineering, Heidelberg, Germany) with automated segmentation of individual retinal layers. RNFL – retinal nerve fibre layer, GCL – ganglion cell layer, IPL – inner plexiform layer, INL – inner nuclear layer, OPL – outer plexiform layer, ONL – outer nuclear layer, PR – photoreceptor layer, RPE – retinal pigment epithelium, BM – Bruch's membrane, CH – choroid.

Supplementary figure 5. OCT angiography

Right eye 3 x 3mm OCT angiograms *en face* (left panels) and in cross-section (right panels), centred on the macula, using the AngioVue[®] Imaging System (Optovue, Inc., Freemont, California).

A. *Left panel:* The peri-macular superficial capillary plexus and the foveal avascular zone. *Right panel:* OCT image showing the level and boundaries of retinal layer segmentation the corresponds to *en face* angiogram. Red and green lines define the upper and lower limits respectively, of the segmentation band.

B. *Left panel:* The peri-macular deep capillary plexus and the foveal avascular zone. *Right panel:* OCT image showing the level and boundaries of deeper retinal layer segmentation the corresponds to *en face* angiogram. Red and green lines define the upper and lower limits respectively, of the segmentation band.

C. *Left panel:* The outer (deepest) retinal layers are relatively avascular as shown and is thus dependent on passive oxygenation from the deeper choroidal circulation. *Right panel:* OCT image showing the level and boundaries of outer retinal layer segmentation the corresponds to *en face* angiogram. Red lines define the upper and lower limits of the segmentation band.

D. *Left panel:* The subfoveal choriocapillaris is a dense mesh of capillaries underneath the pigment epithelium. Despite advances in OCT-A, imaging discrete vessels here remains challenging. *Right panel:* OCT image showing the level and boundaries of choriocapillaris segmentation the corresponds to *en face* angiogram. Red and green lines define the upper and lower limits respectively, of the segmentation band.

Supplementary figure 1 Alport syndrome-associated retinopathy

Supplementary figure 5 OCT angiography

10. Supplementary video legends

Supplementary video 1. OCT in health

Video of a 3-dimensional rendered macular volume OCT scan of right eye from a healthy volunteer.

Supplementary video 2. OCT in CKD

Video of a 3-dimensional rendered macular volume OCT scan of right eye from an age- and sex-matched subject with CKD. Note marked thinning of choroidal vascular lying underneath the retina.

Supplementary video 3. OCT angiography of macula in health

Video of sequential 'layer by layer' OCT angiograms centred on macula of right eye from a healthy volunteer. The track bar on the left-hand side relates colour-coded anatomic localisation of retinal regions that correspond to the angiograms shown in main panel.

Supplementary video 4. OCT angiography of optic disc in health

Video of sequential 'layer by layer' OCT angiograms centred on fundus of right eye from a healthy volunteer. The track bar on the left-hand side relates colour-coded anatomic localisation of retinal regions that correspond to the angiograms shown in main panel.

Supplementary information is available on Kidney International's web site

11. References

S1. Wong TY, Klein R, Sharrett AR, *et al.*: Retinal arteriolar diameter and risk for hypertension. *Ann Intern Med*, 140: 248-255, 2004.

S2. Wong TY, Shankar A, Klein R, *et al.*: Prospective cohort study of retinal vessel diameters and risk of hypertension. *BMJ*, 329: 79, 2004.

S3. Smith W, Wang JJ, Wong TY, *et al.*: Retinal arteriolar narrowing is associated with 5-year incident severe hypertension: the Blue Mountains Eye Study. *Hypertension*, 44: 442-447, 2004.

S4. Ikram MK, Witteman JC, Vingerling JR, *et al.*: Retinal vessel diameters and risk of hypertension: the Rotterdam Study. *Hypertension*, 47: 189-194, 2006.

S5. Kawasaki R, Cheung N, Wang JJ, *et al.*: Retinal vessel diameters and risk of hypertension: the Multiethnic Study of Atherosclerosis. *J Hypertens*, 27: 2386-2393, 2009.

S6. Tanabe Y, Kawasaki R, Wang JJ, *et al.*: Retinal arteriolar narrowing predicts 5-year risk of hypertension in Japanese people: the Funagata study. *Microcirculation*, 17: 94-102, 2010.

S7. Wong TY, Klein R, Sharrett AR, *et al.*: Retinal arteriolar narrowing and risk of diabetes mellitus in middle-aged persons. *JAMA*, 287: 2528-2533, 2002.

S8. Wong TY, Shankar A, Klein R, *et al.*: Retinal arteriolar narrowing, hypertension, and subsequent risk of diabetes mellitus. *Arch Intern Med*, 165: 1060-1065, 2005.

S9. Ikram MK, Janssen JA, Roos AM, *et al.*: Retinal vessel diameters and risk of impaired fasting glucose or diabetes: the Rotterdam study. *Diabetes*, 55: 506-510, 2006.

S10. Nguyen TT, Wang JJ, Islam FM, *et al.*: Retinal arteriolar narrowing predicts incidence of diabetes: the Australian Diabetes, Obesity and Lifestyle (AusDiab) Study. *Diabetes*, 57: 536-539, 2008.

S11. Kifley A, Wang JJ, Cugati S, *et al.*: Retinal vascular caliber and the long-term risk of diabetes and impaired fasting glucose: the Blue Mountains Eye Study. *Microcirculation*, 15: 373-377, 2008.

S12. Wong TY, Klein R, Sharrett AR, *et al.*: Retinal arteriolar narrowing and risk of coronary heart disease in men and women. The Atherosclerosis Risk in Communities Study. *JAMA*, 287: 1153-1159, 2002.

S13. Wang JJ, Liew G, Wong TY, *et al.*: Retinal vascular calibre and the risk of coronary heart disease-related death. *Heart*, 92: 1583-1587, 2006.

S14. Liew G, Mitchell P, Rochtchina E, *et al*.: Fractal analysis of retinal microvasculature and coronary heart disease mortality. *Eur Heart J*, 32: 422-429, 2011.

S15. Wong TY, Klein R, Couper DJ, *et al.*: Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities Study. *Lancet*, 358: 1134-1140, 2001.

S16. Mitchell P, Wang JJ, Wong TY, *et al.*: Retinal microvascular signs and risk of stroke and stroke mortality. *Neurology*, 65: 1005-1009, 2005.

S17. Ikram MK, de Jong FJ, Bos MJ, *et al.*: Retinal vessel diameters and risk of stroke: the Rotterdam Study. *Neurology*, 66: 1339-1343, 2006.

S18. Yatsuya H, Folsom AR, Wong TY, *et al.*: Retinal microvascular abnormalities and risk of lacunar stroke: Atherosclerosis Risk in Communities Study. *Stroke*, 41: 1349-1355, 2010.

S19. Wieberdink RG, Ikram MK, Koudstaal PJ, *et al.*: Retinal vascular calibers and the risk of intracerebral hemorrhage and cerebral infarction: the Rotterdam Study. *Stroke*, 41: 2757-2761, 2010.

S20. Cheung CY, Tay WT, Ikram MK, *et al.*: Retinal microvascular changes and risk of stroke: the Singapore Malay Eye Study. *Stroke*, 44: 2402-2408, 2013.

S21. Wong TY, Klein R, Nieto FJ, *et al.*: Retinal microvascular abnormalities and 10-year cardiovascular mortality: a population-based case-control study. *Ophthalmology*, 110: 933-940, 2003.

S22. Wong TY, Islam FM, Klein R, *et al.*: Retinal vascular caliber, cardiovascular risk factors, and inflammation: the Multi-Ethnic Study of Atherosclerosis (MESA). *Invest Ophthalmol Vis Sci*, 47: 2341-2350, 2006.

S23. Wang JJ, Liew G, Klein R, *et al.*: Retinal vessel diameter and cardiovascular mortality: pooled data analysis from two older populations. *Eur Heart J*, 28: 1984-1992, 2007.

S24. Seidelmann SB, Claggett B, Bravo PE, *et al.*: Retinal vessel calibers in predicting longterm cardiovascular outcomes: the Atherosclerosis Risk In Communities study. *Circulation*, 134: 1328-1338, 2016.

S25. Yip W, Sabanayagam C, Ong PG, *et al.*: Joint effect of early microvascular damage in the eye & kidney on risk of cardiovascular events. *Sci Rep,* 6: 27442, 2016.

S26. Savige J, Sheth S, Leys A, *et al.*: Ocular features in Alport's syndrome: pathogenesis and clinical significance. *Clin J Am Soc Nephrol*, 10: 703-709, 2015.

S27. Colville D, Savige J, Branley P, Wilson D: Ocular abnormalities in thin basement membrane disease. *Br J Ophthalmol*, 81: 373-377, 1997.