

Figure S1: Characterisation of *Mcl1*^{ΔIEC} mice. (A) Tissue specific PCR illustrating *Mcl1* 1 deletion is specific to the intestine of McI1^{fl/fl} Vil1-cre^{tg/wt} (McI1^{ΔIEC}) mice and not McI1^{fl/fl} Vil1-2 cre^{wt/wt} (wild type) mice. (B) Real time PCR from whole colon tissue homogenates 3 demonstrates that levels of calprotectin were inversely correlated to levels of Mcl1 expression 4 within 2-month-old $McI1^{\Delta IEC}$ mice (n=15). (C) Representative images from the small intestine 5 of 2-month-old wild type control mice compared with *Mcl1*^{ΔIEC} littermate mice showing impaired 6 7 intestinal architecture (H&E), increased IEC apoptosis (cl. casp. 3), and hyperproliferation (Ki-67) (scale bars: $100\mu m$, $25\mu m$ for inserts). (D) Blinded histological scoring showing increased 8 histological score in the small intestine of 2-month-old *Mcl1*^{ΔIEC} mice compared with wild type 9 control mice (n=5). (E) Representative images of western blot analysis from IEC isolated from 10 2-month-old wild type and *Mcl1*^{ΔIEC} mice and analysed for markers of proliferation, apoptosis, 11 as well as other BCL2 family members. (F) Representative images from western blot analysis 12 13 showing no evidence of increased expression of the necroptosis markers MLKL or pMLKL in IEC isolated from 2-month-old McI1^{ΔIEC} mice suggesting that IEC death observed in McI1^{ΔIEC} 14 mice is mediated through apoptosis rather than necroptosis. Tubulin was used as a loading 15 control. Data presented as either bar charts or scatter plot graph show mean values ± s.e.m. 16 17 Statistical analysis was conducted by Mann-Whitney test (D) where * $p \le 0.05$.

- 18
- 19
- 20
- 21
- 22
- 23
- 24

colon

THEORY

Α

В

26	Figure S2: <i>Mcl1</i> ^{fl/wt} cre ^{tg/wt} mice morphologically resemble wild type control mice. (A)
27	Representative images from the colon of 2-month-old Mcl1 ^{fl/wt} cre ^{tg/wt} control mice compared
28	with wild type control and $Mcl1^{\Delta IEC}$ ($Mcl1^{fl/fl}$ cre ^{tg/wt}) littermates showing normal intestinal
29	architecture (H&E), no basal IEC apoptosis (cl. casp. 3), and normal levels of proliferation (Ki-
30	67) (scale bars: 100 μ m, 25 μ m for inserts). (B) Representative images from the small intestine
31	of 2-month-old $McI1^{fl/wt}$ cre ^{tg/wt} control mice compared with wild type control and $McI1^{\Delta IEC}$ ($McI1^{fl/fl}$
32	cre ^{tg/wt}) littermates showing normal intestinal architecture (H&E), no basal IEC apoptosis (cl.
33	casp. 3), and normal levels of proliferation (Ki-67) (scale bars: $100\mu m$, $25\mu m$ for inserts).
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	

DAPI Universal 16s rRNA

49	Figure S3: Characterisation of <i>McI1</i> ^{ΔIEC} mice. (A) Representative images from FISH analysis
50	illustrating Universal Bacterial 16S rRNA staining (red) in colon of 2-month-old wild type and
51	<i>Mcl1</i> ^{ΔIEC} mice. Dashed lines illustrate the sterile mucosal barrier (intact in wild type mice)
52	preventing bacteria from entering the mucosa. This protective mucosal layer is lost in Mcl1 ^{ΔIEC}
53	mice. White arrowheads illustrate bacteria that have translocated from the lumen to the
54	mucosal layer via the impaired epithelial barrier in $\textit{Mcl1}^{\Delta IEC}$ mice (scale bars: 100µm scale for
55	top images, $25\mu m$ scale for bottom images).
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	

wild type

Α

Mcl1

Figure S4: Characterisation of *Mcl1*^{ΔIEC} mice. (A) Immunohistochemical characterisation of lymphocyte infiltrates in the colon of 2-month-old wild type control mice compared with Mcl1^{ΔIEC} littermates showing increased B cells (B220), T cells (CD3) and macrophages (F4/80) in *Mcl1*^{ΔIEC} mice. High magnification images show infiltrating immune cells within the lamina propria or lymphoid follicles that were present throughout the small intestine and colon of *Mcl1*^{Δ IEC} mice (scale bars: 100µm for lower magnification, 50µm for higher magnification) images). (B) Ex vivo colon cultures established from 2-month-old mice and analysed for IL-10, IL-6, IL-21, IL-33, IFN-γ and CD40L expression using multiplex analysis (minimum n=10 per group). Data presented as scatter plot graphs show individual data points ± s.e.m. Statistical analysis was conducted by one-way ANOVA with Bonferroni correction (B) where ** $p \le 0.01$.

В

Figure S5: Inflammation in *Mcl1*^{$\Delta IEC} mice is independent of T and B cells. (A)</sup>$ Representative images from the small intestine from 2-month-old Rag1^{-/-} control mice compared with age-matched *Mcl1*^{ΔIEC}*Rag1*^{-/-} mice illustrating impaired intestinal architecture (H&E), increased IEC apoptosis (cl. casp. 3) and hyperproliferation (Ki-67) (scale bars: 100µm, 25µm for inserts). (B) Blinded histological score of small intestine samples from 2-month-old $McI1^{\Delta IEC}Rag1^{-/-}$ mice compared with age-matched $Rag1^{-/-}$ control mice show significantly increased pathology in $Mcl1^{\Delta IEC}Rag1^{-/-}$ mice (n=5). (C) 2-month-old $Rag1^{-/-}$ control mice and age-matched McI1^{ΔIEC}Rag1^{-/-} mice were stained for B cell (B220), T cell (CD3) and macrophage (F4/80) expression using IHC to confirm the lack of mature T and B cells (scale bar: 100µm). (D) Ex vivo colon cultures were established from 2-month-old mice and analysed for IL-10, IL-6, IL-21, IL-33, IFN-γ and CD40L expression using multiplex analysis (minimum n=9 per group). Data presented as either bar charts or scatter plot graph show mean values \pm s.e.m. Statistical analyses were conducted by Mann-Whitney test (B) or one-way ANOVA with Bonferroni correction (*D*) where * $p \le 0.05$, ** $p \le 0.01$.

Α

Mcl1^{∆IEC} *Rag1*-/- mice

Figure S6: ILC depletion eliminates pro-inflammatory cytokine production. (A) 2-month-old $McI1^{\Delta IEC}Rag1^{-/-}$ mice were treated with either isotype control or α -Thy1.2 depleting antibody for 4 weeks. Immunohistochemistry shows CD90 (Thy1) positive cells in the 3-month-old isotype control treated mice, which are not present in the mice that received α-Thy1.2 depleting antibody, thus indicating efficient depletion of ILC (scale bars: 100µm (left images), 25µm (right images)). (B) Ex vivo colon cultures established from 3-month-old mice and analysed for IL-10, IL-6, IL-21, IL-33, IFN-γ and CD40L expression using multiplex analysis (minimum n=8 per group). Data presented as scatter plot graph show mean values ± s.e.m. Statistical analysis was conducted by one-way ANOVA with Bonferroni correction (B).

В

Α

141 Figure S7: *Mcl1*^{ΔIEC} raised under germ-free conditions are completely void of commensal

bacteria. (A) PCR analysis showing the presence of bacterial 16s DNA isolated from the faeces of wild type and *Mcl1*^{ΔIEC} mice raised under SPF conditions. Samples isolated from the faeces of wild type and *Mcl1*^{ΔIEC} mice raised under germ-free conditions showed no bacterial 16s. E. coli was used as a positive control. NTC: no-template control. (B) Representative images from FISH analysis illustrating Universal Bacterial 16S rRNA staining (red) in colon of a 2-month-old wild type control mouse raised under SPF conditions. No positive FISH signal was recorded in either wild type control mice or Mcl1^{ΔIEC} mice raised under germ-free conditions (scale bars: 200µm top images, 50µm for bottom images).

Figure S8. Healy*, Boege*, Hodder* et al.

Figure S8: Increased apoptosis, hyperproliferation and impaired differentiation are a direct consequence of MCL1 deficiency. (A) Representative images taken from colons of 2-month-old wild type and McI1^{ΔIEC} mice following ABX treatment illustrating retained IEC apoptosis (cl. casp 3) and hyperproliferation (Ki-67) (scale bars 100µm, 25µm for inserts). (B) Representative images from the small intestine from 2-month-old germ-free wild type control mice compared with germ-free $McI1^{\Delta IEC}$ mice illustrating that increased apoptosis (cl. casp. 3) and hyperproliferation (Ki-67) caused by MCL1 deficiency are also observed under germ-free conditions (scale bars: 100µm, 25µm for inserts). (C) Blinded histological scoring illustrating significantly reduced histological score in the small intestine of ABX treated 2-month-old $McI1^{\Delta IEC}$ mice and 2-month-old germ-free $McI1^{\Delta IEC}$ mice compared with age-matched $McI1^{\Delta IEC}$ mice housed under SPF conditions (n=5). (D) Representative images illustrating the defective intestinal epithelial barrier in *Mcl1*^{ΔIEC} mice, irrespective of whether these mice were housed under SPF or germ-free conditions (scale bars: 100µm for top images, 25µm for bottom). Data presented as scatter plot graph show mean values ± s.e.m. Statistical analyses were evaluated by Mann-Whitney test (C) where * $p \le 0.05$.

Α

CD3

germ-free

B220

F4/80

Figure S9: Mcl1 deletion does not result in intestinal inflammation under germ-free conditions. (A) Immunohistochemical characterisation of lymphocytes in the colon of 2-month-old germ-free wild type control mice compared with Mcl1^{ΔIEC} littermates showing no increase in infiltrating T cells (CD3), B cells (B220) or macrophages (F4/80) in germ-free $McI1^{\Delta IEC}$ mice (scale bar: 100µm). (B) Quantification of infiltrating T cells, B cells and macrophages in germ-free *Mcl1*^{ΔIEC} mice compared with littermate controls. Data presented as scatter plot graph show mean values ± s.e.m. Statistical analyses were evaluated by Mann-Whitney test (B).

211	Figure S10: Chronic inflammation observed in <i>Mcl1</i> ^{ΔIEC} mice is an immune response
212	against disseminating commensal bacteria. (A) Ex vivo colon cultures were established
213	from 2-month-old mice and analysed for TNF- α , IL-22, IL-23A, IL17A, IL-17F, IL-1 β , IL-10, IL-
214	6, IL-21, IL-33, IFN- γ and CD40L expression using multiplex analysis (minimum n=12 per
215	group). Data presented as scatter plot graph show mean values \pm s.e.m. Statistical analyses
216	were evaluated by one-way ANOVA with Bonferroni correction (A) where * $p \le 0.05$, ** $p \le 0.01$,
217	*** <i>p</i> ≤ 0.001.
218	
219	
220	
221	
222	
223	
224	
225	
226	
227	
228	
229	
230	
231	
232	
233	

В

small intestine

McI1^{ΔIEC}

234	Figure S11: MCL1 is essential for ISC differentiation to secondary secretory lineages
235	and protection from DNA damage. (A) Representative images taken from colons of 2-month-
236	old wild type and McI1 ^{ΔIEC} mice illustrating the impaired ISC differentiation to goblet cells
237	(AB/PAS) (scale bar: 100 μ m). (B) Representative images from the small intestine from 2-
238	month-old germ-free wild type control mice compared with $Mcl1^{\Delta IEC}$ littermate mice illustrating
239	expansion of the Lgr5+ ISC compartment by in situ hybridization (scale bar: 50μ m).
240	
241	
242	
243	
244	
245	
246	
247	
248	
249	
250	
251	
252	
253	
254	
255	

Atoh1

Mcl1∆IEC

McI1^{deficient IEC}

Figure S12. Healy*, Boege*, Hodder* et al.

В

Figure S12: *Mcl1* deficiency correlates with a marked reduction of *Atoh1* expression in intestinal crypts. (A) Corresponding single colour control images from Figure 4D. Atoh1 expression levels in Mcl1-positive versus Mcl1-deficient IEC visualized using smFISH. White dots represents single molecules of Atoh1. Green boxes mark the areas shown in higher magnification in the image directly below (scale bars: 25µm for top images, 10µm for bottom images). (B) Corresponding single colour control images from Figure 4D. Mcl1 expression levels in Mcl1-positive versus Mcl1-deficient IEC visualized using smFISH. White dots represents single molecules of Mcl1. Green boxes mark the areas shown in higher magnification in the image directly below (scale bars 25µm for top images, 10µm for bottom images).

SPF

Α

germ-free

280	Figure S13: Mcl1 protects IEC from the accumulation of DNA damage. (A) IHC comparing
281	γ H2AX positivity in 2-month-old <i>Mcl1</i> ^{ΔIEC} mice with littermate controls (scale bar: 50 μ m). (<i>B</i>)
282	Western blot analysis corroborating the marked increase in γ H2AX levels in <i>Mcl1</i> ^{ΔIEC} mice
283	compared to littermate controls.
284	
285	
286	
287	
288	
289	
290	
291	
292	
293	
294	
295	
296	
297	
298	
299	
300	

С

i-*Mcl1*∆IEC

	WNT target genes up-regulated in CRC											
8	, 'n	clas	^k C	4ii	014							
						TEAD4						
						SRM						
						ETV4						
						SLC39A10						
						CTPS						
						SLC7A5						
						NLE1						
						CLDN2						
						CD44						
_						GNL3						
_		_	-			GINS I						
_		_			-	NOBI						
						DKC1						
						MYC						
						PPAN						
						PHLDA1						
						CIRH1A						
						TRIM27						
						WDR12						
						SLC29A2						
						CDK4						
						DCUN1D5						
						METTL1						
						NXT1						
_						DDX21						
						CRIAP						
-						CAD						
						CDT1						
						ODC1						
						SOX9						
						POLR1C						
						MYBBP1A						
						EXOSC4						
						WDR3						
_						GEMIN5						
_			-			POLRIB						
_			-									
-						AURKB						
						DDX56						
						HEATR1						
						POLR1D						
						SLC19A1						
_						NOC3L						
_												
						CDCA7						
						MRPL36						
						EIF5A2						
						FAM60A						
						RABEPK						
						RHEB						
_						SF3AZ						
						FOXO1						
						MRPS30						
						TRMT1						
						HES6						
						PDCD2L						
						CDKN3						
					_	PDCD11						
						IKEX2						
						SOX4						
						YAP1						
						XPOT						
						NUDCD3						
						ETS2						
						COG8						
						FAM89B						
						ENC1						
						EXOSCO						
						METTI 1						
						TSPAN5						
						SORD						
						SLC3A2						

	WNT target genes up-									
regulated in i-Apc ^{AIEC} mice										
use we										
i-MCI will										
	PSAT1 KRT18									
	ETV4 TNERSE124									
	MT4									
	CTP2									
	ASCL2 HUNK									
	KRT23 CD44									
	EMP2 IGEBPA									
	CCDC86 PAICS									
	WDR75									
	SNHG6									
	DYRK3 SKP2									
	FOXA3 DTYMK									
	TGFBR2 MCM3									
	TCF7									
	EIF2S2									
	TCOF1									
	HS3ST1 GNB1L									
	MCM2 CCDC101									
	BCAS2 MSI1									
	TNNI1 SOX9									
	MCM7									
	ABCC5									
	RPL14 RPP14									
	ERGIC1 ADAT1									
	UBE2T DTL									
	CD320 SOX17									
	TRIB1									
	MCM6									
	EPHB3									
	CPN1									
	IMPA2									
	MYL7 EPHB2									
	SLC40A1 ECT2									
	CDC37									
	GLUL									
	GGH MEG3									
	PASK AQP4 TNFRSF19 GTF3C4									
	WDFY1 AXIN2 MAD1L1 SNAPC2									
	QSER1 CNOT2									
	MSX1 PRDX2									
	ZBTB16 ANG									
	LRIG1 CHRNB4									
	CYBRD1									
	TXNRD3 SLC39A14									

Figure S14. Healy*, Boege*, Hodder* et al.

Figure S14: IEC MCL1 deficiency results in activation of WNT signalling pathways. (A) 301 Representative images from the colon of wild type control and i-*Mcl1*^{ΔIEC} mice showing crypt 302 303 hyperplasia (H&E), increased apoptosis (cl. casp. 3) and hyper-proliferation (BrdU) in i- $McI1^{\Delta IEC}$ mice sampled 4 days post induction, mirroring results observed in the $McI1^{\Delta IEC}$ mice 304 (scale bars: 100µm, 25µm for insert). (B) Serum analysis indicating increased FITC-dextran i-305 *Mcl1*^{ΔIEC} mice compared with age-matched wild type controls 4 hours after oral administration 306 (2 days after induction, n=4). (C) Immunohistochemical characterisation of lymphocyte 307 infiltrates in the colon of wild type control mice compared with i-McI1^{ΔIEC} littermates showing 308 309 increased lymphocytes (CD45), T cells (CD3) and macrophages (F4/80) in the lamina propria of i-*Mcl1*^{Δ IEC} mice (2 days after induction) (scale bars: 100µm). (*D*) Expression of genes as 310 analysed by RNA sequencing of small intestine tissue from i-McI1^{ΔIEC} mice compared with wild 311 type control mice illustrated in heat maps and captured in the GSEA signatures. WNT target 312 genes commonly upregulated in human CRC (left), and genes enriched in i-Apc^{ΔIEC} mice 313 (right). Red boxes represent high expression while blue boxes represent low expression. Data 314 315 presented as scatter plot graph represents mean values ± s.e.m. Statistical analysis was conducted by Mann-Whitney test (*B*) where *** $p \le 0.001$. 316

- 317
- 318
- 319
- 320
- 321
- 322
- 323

Genes up-regulated during DNA damage response upon detection of DNA damage

Α

325	Figure S15: IEC MCL1 deficiency results in up-regulation of DNA damage associated
326	genes. (A) GSEA plots derived from G0 term gene sets by RNA sequencing analysis of small
327	intestine tissue from i-McI1 ^{ΔIEC} mice (samples 3 days after induction) compared with wild type
328	control mice and corresponding heat maps illustrating increased expression of DNA damage
329	response associated gene sets in i- $Mcl1^{\Delta IEC}$ mice. Red boxes represent increased expression
330	while blue boxes represent reduced expression (gene expression values are presented as log2
331	ratios).
332	
333	
334	
335	
336	
337	
338	
339	
340	
341	
342	
343	
344	
345	
346	
347	

i-*Mcl1*∆IEC

McI1

Α

348	Figure S16: i- <i>McI1^{ΔIEC}</i> mice show complete recombination of <i>McI1</i> throughout the entire
349	intestinal tract. (A) Representative images illustrating Mcl1 expression in the colon (red stain)
350	of non-recombined wild type control mice (top panel) compared to i- <i>Mcl1</i> ^{ΔIEC} mice (lower panel)
351	as demonstrated using in situ hybridization (scale bars: 250µm for low magnification image,
352	50 μ m for high magnification images).
353	
354	
355	
050	
356	
357	
358	
359	
360	
361	
362	
002	
363	
364	
365	
366	
367	
368	
369	
000	

Figure S17: MCL1 deficiency-induced hyperproliferation is dependent on WNT signaling. (A) BrdU staining from the colon of wild type, i-Ctnnb1^{ΔIEC/+}, i-McI1^{ΔIEC} and i-*Mcl1*^{ΔIEC}*Ctnnb1*^{ΔIEC/+} mice, sampled 4 days after induction, indicating increased epithelial cell proliferation following *Mcl1* deletion is partially rescued in i-*Mcl1*^{ΔIEC}*Ctnnb1*^{ΔIEC/+} mice (scale bars: 100µm). Quantitative analysis of BrdU positive cells/half crypt is shown below (n=3 or 4 per group). (B) BrdU staining from the colons of vehicle treated wild type and i- $Mcl1^{\Delta IEC}$ mice compared with WNT974 treated wild type and i-*Mcl1*^{ΔIEC} mice, sampled 3 days post induction, (scale bars: 100µm) as well as quantitative analysis of BrdU positive cells/half crypt illustrating inhibition of epithelial cell proliferation following WNT974 treatment (n=3 per group) (below). Data presented as scatter plot graph represents mean values ± s.e.m. Statistical analysis was conducted by Mann-Whitney test (*A-B*) where * $p \le 0.05$.

Figure S18: MCL1-deficiency induced hyperproliferation is dependent on WNT signaling. (A) Representative images from the small intestine of wild type control and i-*Mcl1*^{ΔIEC} mice following treatment with WNT974 or vehicle control, 3 days post induction. Images show the effect of WNT974 on ISC differentiation (AB/PAS, Lysozyme), apoptosis (cl. caps. 3), ISC populations (*Olfm4*, SOX9) and DNA damage (γ H2AX) (scale bars: 100 μ m). (*B*) Representative images from the colon of wild type control and i-Mcl1^{ΔIEC} mice following treatment with WNT974 or vehicle control, 3 days post induction. Images show the effect of WNT974 on ISC differentiation (AB/PAS), apoptosis (cl. caps. 3), ISC populations (SOX9) and DNA damage (γ H2AX) (scale bars: 100 μ m).

Wnt2b

Mcl1△IEC

McI1^{deficient IEC}

Figure S19. Healy*, Boege*, Hodder* et al.

Figure S19: Increased Wnt2b expression is not directly linked to Mcl1 deficiency. (A) Corresponding single colour control images from Figure 5G. Wnt2b expression levels in Mcl1-positive versus Mcl1-deficient IEC visualized using smFISH. White dots represents single molecules of Atoh1. Green boxes mark the areas shown in higher magnification in the image directly below (scale bars: 25µm for top images, 10µm for bottom images). (B) Corresponding single colour control images from Figure 5G. Mcl1 expression levels in Mcl1-positive versus Mcl1-deficient IEC visualized using smFISH. White dots represents single molecules of Mcl1. Green boxes mark the areas shown in higher magnification in the image directly below (scale bars: 25µm for top images, 10µm for bottom images).

Figure S20. Healy*, Boege*, Hodder* et. al

D

440	Figure S20: MCL1 is an essential regulator of IEC proliferation. Normalised expression
441	levels of E2f1 (A), Ccnd1 (B) and cMyc (C) compared between non-recombined wild type
442	controls and i- <i>Mcl1</i> ^{ΔIEC} mice as well as i- <i>Apc</i> ^{ΔIEC} compared to i- <i>Apc</i> ^{ΔIEC} <i>Mcl1</i> ^{ΔIEC} mice as
443	analysed by RNAseq (n=3 per group). (D) Representative H&E images showing apoptotic
444	bodies (upper panel) and cleaved caspsase 3 staining (lower panel) of i-Apc^{\Delta IEC} mice
445	compared to age-matched i- $Apc^{\Delta IEC}McI1^{\Delta IEC}$ mice. Results from the quantification of apoptotic
446	bodies (top graph) in i- $Apc^{\Delta IEC}$ mice (n=7) versus i- $Apc^{\Delta IEC}McI1^{\Delta IEC}$ mice (n=9) as well as
447	cleaved caspase 3 positive IEC (bottom graph) in i- $Apc^{\Delta IEC}$ mice (n=3) versus i- $Apc^{\Delta IEC}McI1^{\Delta IEC}$
448	mice (n=4) are also shown (scale bars: $100\mu m$). Statistical analysis was conducted by Mann-
449	Whitney test (A-D) where * $p \le 0.05$.
450	
451	
452	
453	
454	
455	
456	
457	
458	
459	
400	
460	
461	
462	

Α

i-Apc^{ΔIEC}Mcl1^{ΔIEC}

463	Figure S21	: Carcin	oma developn	nent	in <i>McI1</i> ^{∆IEC} mic	ce follow	s the	e Vog	elstein m	odel of
464	colorectal	cancer	development.	(A)	Representative	images	ofs	small	intestine	derived
465	organoids f	rom i- <i>Ap</i> o	c ^{∆IEC} mice or i-A	pc∆lE	^c Mcl1 ^{∆IEC} mice ((40x) in vi	tro (≥	≥5 pas	sages).	
466										
467										
468										
469										
470										
471										
472										
473										
474										
475										
476										
477										
478										
479										
480										
481										
482										
483										

В

McI1^{∆IEC} Confetti^{tg/+} mice

Axin2

Figure S22: Carcinoma development in *Mcl1*^{ΔIEC} mice follows the Vogelstein model of colorectal cancer development. (A) Examples of MCL1 deficient tumor qualities used to determine tumor classification in 12-month-old *Mcl1*^{ΔIEC} mice (Fig. 7B). Image 1 illustrates hyperplasia within intestinal crypt cells (scale bar: 100µm), 2 illustrates representative low grade adenoma (LGA) (scale bar: 250µm), 3 illustrates representative high grade adenoma (HGA) (scale bar: 250µm) while images 4 and 5 illustrate representative carcinoma under low (scale bar: 1mm) and high (scale bar: 100µm) magnification. (B) Tumor heterogeneity illustrated by representative images of tumors observed in 12-month-old Mcl1^{ΔIEC} Confetti^{tg/wt} mouse (scale bars: 100µm-left, 250µm-centre and 100µm-right). (C) Heterogeneous differentiation within carcinoma showing CD44, CDX2, synaptophysin and Ki-67 (scale bars 250µm for upper panel images, 50µm for lower panel images). (D) Strong Axin2 expression in tumors isolated from 12-month-old McI1^{ΔIEC} mouse irrespective of whether mice were housed under spf or germ-free conditions determined using *in situ* hybridization (scale bars: 250µm-left, 500µm-right). Areas marked with black boxes represent the areas shown under higher magnification in Figure 7E.

Gene	Chr:Pos	REF	ALT	Codon variant	Functional	Mucosa,	Hyperplasia/	Hyperplasia/	Carcinoma 1	Carcinoma 2	Carcinoma 3	Carcinom a 4	Carcinom a 5
Apc	chr18:34312747	С	Т	c.2695C>T	p.Gln899*	./.	J.	J.	./.	С/Т (38,41)	зрі].	./.	./.
Apc	chr18:34316309	Α	G	c.6257A>G	p.Asp2086Gly	A/G (50,52)	A/G (32,20)	A/G (27,23)	./.	.1.	A/G (37,32)	.1.	A/G (22,18)
Lrp5	chr19:3659357	С	Т	c.372G>A	p.Thr124Thr	./.	C/T (19,21)	J.	.1.	.1.	C/T (29,14)	.1.	./.
Fbxw7	chr3:84903756	А	G	c.187A>G	p.Asn63Asp	.1.	І.	G/G (1,19)	.1.	./.	J.	Л.	Л.
Fbxw7	chr3:84903911	A	G	c.342A>G	p.Glu114Glu	./.	J.	І.	.1.	G/G (1,22)	Ι.	G/G (1,33)	.1.
Fbxw7	chr3:84954904	А	G	c.540A>G	p.Glu180Glu	.1.	1.	1.	.1.	./.	J.	G/G (2,75)	./.
Pole	c hr5:110299343	А	С	c.2081A>C	p.Lys694Thr	.1.	J.	J.	A/C (18,10)	Л.	J.	.1.	./.
Arid1a	c hr4:133689170	ATATAC	А	c.3289_3293delTATAC	p.GIn1096fs	.1.	J.	J.	./.	Л.	ATATAC/A (62/24)	.І.	Л.
Ctnnb1	c hr9:120950606	С	Α	c.98C>A	p.Ser33Tyr	.1.	J.	J.	.1.	Л.	C/A (23,5)	Л.	Л.
Ctnnb1	c hr9:120950630	С	Т	c.122C>T	p.Thr41lle	./.	J.	C/T (23,14)	C/T (12,6)	.1.	<i>I.</i>	.1.	./.
Ctnnb1	c hr9:120950642	С	Т	c.134C>T	p.Ser45Phe	./.	J.	J.	.1.	./.	J.	.1.	С/Т (11,6)

pathogenic potentially pathogenic functionally irrelevant wild type

Figure S23: MCL1-deficiency associated carcinoma show a number of pathogenic 508 mutations in key WNT signalling regulating genes. (A) Selected mutations detected by 509 510 whole-exome sequencing and variant filtration. Missense mutations in the genes of interest are displayed by allelic state. The coverage of the position for each allele is given in 511 brackets."./." is the wild type sequence. Exome data were aligned to the Mus musculus 512 reference genome (GRCm38/mm10) and codon variants are displayed according to the 513 514 following transcript references: Apc ENSMUST0000079362, Lrp5 ENSMUST00000176867, Fbxw7 - ENSMUST00000107678, Pole - ENSMUST0000007296, 515 Arid1a - ENSMUST00000105897, Ctnnb1 - ENSMUST00000145093. Abbreviations: Chr:Pos 516 = Position in reference genome; REF = reference allele; ALT = alternative allele; LGD = low 517 grade dysplasia. The color code illustrates the clinical significance of the homolog mutation in 518 humans (see Supplementary Tables S7 – S12 for more information). 519

- 520
- 521
- 522
- 523
- 524

525

526

527

528

529

530

532 **Supplemental Information:**

533 **Mice**

Housing and experimental procedures of all animals were performed in accordance with the Cantonal Veterinary Office (Zurich, Switzerland) under the license numbers ZH217/12 and ZH166/15 or the UK Home Office regulations (licence 70/8646) as well adhering to ARRIVE guidelines. Animals were maintained under specific pathogen free (SPF) conditions at the University of Zurich, Switzerland, or at the CRUK Beatson Institute, Glasgow, Scotland. Germfree housing of mice was performed within the Clean Mouse Facility of the University of Bern via embryo transfer ¹.

Mice with an IEC specific deletion of Mcl1, Mcl1^{flx/flx} mice^{2,3} were crossed with mice expressing 541 542 Cre-recombinase under the enterocyte-specific villin promoter, to generate IEC-specific Mcl1 knockout mice (*Mcl1*^{flox/flox} *Vil1*cre^{tg/+}) (*Mcl1*^{ΔIEC} mice). *Mcl1*^{ΔIEC} mice were backcrossed onto the 543 Rag1^{-/-} background (Jackson Laboratories, mouse strain 002216) to generate Mcl1^{ΔIEC}Rag1^{-/-} 544 mice. Confetti^{tg/+} mice (Jackson Laboratories, mouse strain 017492 were intercrossed to 545 $McI1^{\Delta IEC}$ mice to generate $McI1^{\Delta IEC}$ Confetti^{tg/+} mice. These mouse lines were generated at the 546 547 University of Zurich. Both male and female mice were used for each experiment. Age-matched 548 and littermate mice that did not carry the Villin-Cre transgene were used as wild type control 549 mice.

550 Mice with an IEC-specific inducible deletion of *Mcl1* (i-*Mcl1* $^{\Delta IEC}$ mice), *Ctnnb1* (i-*Ctnnb1* $^{\Delta IEC}$ 551 mice), *Apc* (i-*Apc* $^{\Delta IEC}$ mice) as well as double knockout mice (i-*Ctnnb1* $^{\Delta IEC}$ *Mcl1* $^{\Delta IEC}$ mice and i-552 *Apc* $^{\Delta IEC}$ *Mcl1* $^{\Delta IEC}$ mice) were generated at the CRUK Beatson Institute, Glasgow. Genetic 553 depletion in these mice was typically induced between 6 and 12 weeks of age when weighing 554 over 20g. Genetic alleles used were: *Vil-Cre-ER*⁷² ⁴, *Mcl1*^{fl} ⁵, *Ctnnb1*^f ^{k6} and *Apc*⁷. 555 Recombination was induced using a single intra-peritoneal (IP) injection of 2mg tamoxifen for 556 two consecutive days. A brief overview of each mouse line can be found in Table S1.

Table S1. Description of mouse strains

Mouse strain	Genotype	Housing Location	Description
		University of Zurich	Both Mcl1 alleles are floxed
wild type	McI1 ^{fl/fl} Vil1-cre ^{wt/wt}	Notisting LocationBoth Mcl 1University of ZurichBoth Mcl 1University of Bernbut mice are recombin(Germ Free)One floxed AUniversity of ZurichIntestinal Eg specific of (Germ Free)University of ZurichIntestinal Eg specific of conventionUniversity of ZurichImmune conventionUniversity of ZurichImmune conventionUniversity of ZurichImmune conventionUniversity of ZurichImmune conventionUniversity of ZurichConvention specific of conventionUniversity of ZurichTamoxife specific of conventionUniversity of ZurichTamoxife specific of on conventionCRUK BeatsonTamoxife specific of on and one of specific of and one of specific of<	but mice are Cre negative. No
		(Germ Free)	recombination of Mcl1.
			One floxed <i>Mcl1</i> allele and one
<i>Mcl1</i> ^{fl/wt} cre ^{Tg/+}	Mcl1 ^{fl/} wt Vil1-cretg/wt	University of Zurich	wild type allele. Mice retain
			one wild type copy of <i>Mcl1</i> .
		University of Zurich	Intestinal Epithelial Cell (IEC)
McI1 ^{∆IEC}	McI1 ^{fl/fl} Vil1-cre ^{tg/wt}	University of Bern	specific deletion of Mcl1
		(Germ Free)	specific deletion of <i>Merr</i>
Rag1 ^{-/-}	Rag1 ^{-/-}	University of Zurich	Immune deficient (lack
			conventional B and T cells)
	McI1 ^{fl/fl} Vil1-cre ^{tg/wt}		Immune deficient (lack
McI1 ^{∆IEC} Rag1 ^{-/-}	Rag1 ^{-/-}	University of Zurich	conventional B and T cells)
	nag i		IEC specific deletion of Mcl1
i- <i>McI1</i> ∆IEC	Mc/1 ^{fl/fl} Vi/1-cre-ER ^{T2}	CRUK Beatson	Tamoxifen inducible IEC
		Institute	specific deletion of <i>Mcl1</i>
i- Apc ^{AJEC}	Apc ^{fl/fl} Vill-cro-ER ^{T2}	CRUK Beatson	Tamoxifen inducible IEC
i-ημο		Institute	specific deletion of Apc
		CRUK Beatson	Tamoxifen inducible IEC
i- <i>Ctnnb1</i> ^{∆IEC/wt}	Ctnnb1 ^{fl/wt} Vil1-Cre-ER ^{T2}	Institute	specific deletion of one copy
		mentate	Ctnnb1
	Ctnnb1 ^{fl/wt} Vil1-Cre-ER ^{T2}	CRUK Beatson	Tamoxifen inducible IEC
i- <i>Ctnnb1</i> ^{ΔIEC/wt} <i>Mcl1</i> ^{ΔIEC}	<i>Mcl1</i> ^{fl/fl} <i>Vil1</i> -Cre-ER ^{⊤2}	Institute	specific co-deletion of <i>Mcl1</i>
			and one copy of Ctnnb1
	Apc ^{fl/fl} Vil1-Cre-ER ^{T2}	CRUK Beatson	Tamoxifen inducible IEC
i- <i>Apc</i> ∆IEC <i>McI1</i> ∆IEC	$M_{\rm C}/1^{\rm fl/fl}$ Vil1-Cre-ER ^{T2}	Institute	specific co-deletion of Mcl1
		institute	and <i>Apc</i>
	McI1 ^{fl/fl} Vil1-cre ^{tg/wt}		Genetic IEC specific co-
McI1 ^{∆IEC} Confetti ^{tg/+}	Confetti Cre ^{tg/wt}	University of Zurich	deletion of <i>Mcl1</i> and
			expression of Confetti

560 In situ Hybridization

RNA ISH was performed on FFPE tissues according to the manufacturer's protocol using five 561 commercially available probes. 1) A probe designated Mm-Mcl1 (by Advanced Cell 562 Diagnostics (ACD); ACD catalog number #317241), and targeting nucleotides 495-1678 of 563 murine Mcl1 gene. 2) A probe designated Mm-Lgr5 (by Advanced Cell Diagnostics (ACD); 564 ACD catalog number #312171), and targeting nucleotides 2165-3082 of murine Lgr5 gene. 3) 565 A probe designated Mm-Olfm4 (by Advanced Cell Diagnostics (ACD); ACD catalog number 566 567 #311838), and targeting nucleotides 25-1043 of murine Olfm4 gene. 4) A probe designated Hs-MCL1 (by Advanced Cell Diagnostics (ACD); ACD catalog number #588851), and targeting 568 nucleotides 1514-3532 of human Mcl1 gene. 5) A probe designated Hs-OLFM4 (by Advanced 569 Cell Diagnostics (ACD); ACD catalog number #311048) targeting nucleotides 1111-2222 of 570 571 human OLFM4 gene.

572

573 Bacterial DNA isolation

574 Bacterial DNA was isolated from stool samples that were previously stored at -80°C. DNA was 575 isolated using the PureLink Microbiome DNA purification kit (Invitrogen, A29789) according to 576 the manufacturer's protocols.

577

578 PCR for bacterial DNA

The 16S PCR was performed as described previously⁸ with some modifications. Reactions were performed in a final volume of 50 μl containing 10 ng of fecal DNA template⁹, 200 nM dNTP, 200 nM of each primer, 1 U HotStarTaq polymerase (Qiagen), and 1-fold CoralLoad PCR Buffer (Qiagen). "Universal" primers were used to amplify the genes encoding 16S rRNA from all bacterial groups: Forward primer (5'- ACTCCTACGGGAGGCAGCAGT -3') and reverse primer, (5'- ATTACCGCGGCTGCTGGC -3')⁸, resulting in an 197 bp amplikon. PCR assays were performed in a C1000 Touch Thermal Cycler (Biorad) using the following 586 program: 95°C for 5 min, then 25 cycles of 94°C for 60 sec, 55°C for 90 sec and 72°C for 60 587 sec. These cycles were followed by 72°C for 10 minutes, and storage at 4°C. Amplified 588 products were separated on a 2% (m/v) agarose (Invitrogen) gel in Tris/acetate/EDTA buffer 589 (National diagnostics) containing 1-fold GelRed Nucleic Acid Gel Stain (Biotium).

590

591 FISH for Bacterial 16s rRNA

5µm tissue sections of paraffin-fixed colon samples were deparaffinated in xylol to ethanol 592 baths in decreasing ratios. Tissue sections were permeabilized in hybridization buffer 593 containing PBS 0.9M NaCl, 20mM Tris-HCl, and 0.1% sodium dodecyl sulfate for 10 mins at 594 50°C. Hybridization was performed with an Alexafluor-647 labeled universal 16s rRNA 595 bacterial probe (5'-[AF 647] GCTGCCTCCCGTAGGAGT-3'; Eurofin genomics, 10nM per 596 section) diluted in hybridization buffer for 4 hours at 50°C, followed by two washing steps using 597 the PBS 0.9M NaCl and 20mM Tris-HCl. DAPI was applied diluted in the washing buffer for 5 598 599 mins at RT, followed by one washing step. Samples were mounted with Vectashield (Vector laboratories) and stored in the dark at 4°C. Images were recorded with an LCI laser scanning 600 confocal microscope (Zeiss) or a pannoramic 250 flash II scanner (3DHISTECH). 601

602

603 Western blot

Colon tissue was isolated from 2-month-old mice immediately after euthanasia and placed in 604 605 ice-cold PBS containing phosphatase inhibitor cocktail tablets (PhosStop, Roche #04906837001) and protease inhibitor cocktail tablets (cOmplete EDTA-free tabs, Roche 606 #11873580001). Intestinal tissue was opened longitudinally and the epithelial layer was 607 scraped directly into 200µl of ice-cold complete RIPA lysis buffer. All antibodies used for 608 western blot analysis can be found in Table S2. Samples were run on 4-20% Mini-PROTEAN® 609 610 TGX Stain-Free™ gels (Bio-Rad Laboratories, #456-8093) and were developed using a ChemiDoc[™] XRS+ imaging machine (Bio-Rad Laboratories) with Image Lab[™] software. 611

612 Organoid Isolation and Culturing

In brief, small intestinal tissue was dissected, flushed with PBS and opened longitudinally, with villi and mucous layers then removed mechanically by scraping. The resulting intestinal samples were washed with PBS, incubated with 2mM EDTA at 4°C for 30 minutes followed by further washing and filtration through a 70µm mesh in order to isolate intestinal crypts. These isolated crypts were suspended in growth factor reduced Matrigel® (Corning), plated in 10-20µl droplets, and incubated at 37°C in 5% CO2. i- $Apc^{\Delta IEC}$ or i- $Apc^{\Delta IEC}McI1^{\Delta IEC}$ organoids were maintained in Advanced DMEM/F12 growth media (Thermo), supplemented with 2mM L-glutamine, 10mM HEPES, 12.5% (w/v) BSA, 100ng/ml murine NOGGIN, 50ng/ml murine EGF, and 1 x proprietary B27 and N2 supplements (Thermo). Wild type control or i-Mcl1^{ΔIEC} organoids were maintained in the same media, supplemented with 0.5µg/ml murine R-SPONDIN1.

- -

636 Table S2. Table of antibodies

Antibody Name	Company	Catalogue Nmber
Anti-CD90 / Thy1 antibody (IBL-6/23)	Abcam	Cat# ab3105; RRID: AB_2287350
Anti-MLKL (phospho S345) antibody	Abcam	Cat# ab196436; RRID: AB_2687465
CDX2 antibody (EPR2764Y) (IHC)	Abcam	Cat# ab76541; RRID: AB_1523334
Synaptophysin antibody (YE269) (IHC)	Abcam	Cat# ab32127; RRID: AB_2286949
BrdU antibody (IHC)	BD Biosciences	Cat# 347580; RRID: AB_400326
CD45R/B220 antibody (IHC)	Becton Dickinson	Cat# 553084; RRID: AB_394614
Rat Anti-Mouse F4 / 80 (Macrophages) Monoclonal Antibody (IHC)	BMA Biomedicals	Cat# T-2006; RRID: AB_1227368
BAK Antibody	Cell Signaling Technology	Cat# 3814S; RRID: AB_2290287
BAX Antibody	Cell Signaling Technology	Cat# 2772S; RRID: AB_10695870
BCL2 Antibody	Cell Signaling Technology	Cat# 2876S; RRID: AB_2064177
BCL-xL Antibody	Cell Signaling Technology	Cat# 2762S; RRID: AB_329920
BID Antibody (Mouse Specific)	Cell Signaling Technology	Cat# 2003S; RRID: AB_10694562
BIM (C34C5) Rabbit mAb	Cell Signaling Technology	Cat# 2933S; RRID: AB_1030947
Caspase-8 Antibody (Mouse Specific)	Cell Signaling Technology	Cat# 4927S; RRID: AB_10694563
Caspase-9 (C9) Mouse mAb	Cell Signaling Technology	Cat# 9508S; RRID: AB_2068620
Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb	Cell Signaling Technology	Cat# 9664P; RRID: AB_2070042
Cleaved Caspase-3 (Asp175) Antibody (IHC)	Cell Signaling Technology	Cat# 9661; RRID: AB_2341188
GAPDH (D16H11) XP Rabbit mAb antibody	Cell Signaling Technology	Cat# 5174S; RRID: AB_10622025
MCL1 (D35A5) Rabbit mAb	Cell Signaling Technology	Cat# 5453P; RRID: AB_10828726
Olfm4 (D6Y5A) Rabbit mAb (Mouse Specific) (IHC)	Cell Signaling Technology	Cat# 9718S; RRID: AB_2118009
Pan-Keratin (C11) Mouse mAb	Cell Signaling Technology	Cat# 4545S; RRID: AB_490860
PCNA (PC10) Mouse mAb	Cell Signaling Technology	Cat# 2586S; RRID: AB_2160343
Rabbit Anti-beta-Catenin Monoclonal Antibody (IHC)	Cell Signaling Technology	Cat# 9582S; RRID: AB 823447
Polyclonal Rabbit Anti-Cytokeratin (IHC)	DAKO	Cat# Z0622; RRID: AB_2650434
Polyclonal Rabbit Anti Human Lysozyme EC 3.2.1.17 antibody (IHC)	DAKO	Cat# A0099; RRID: AB_2341230
SOX9 (EP317) Rabbit Monoclonal Antibody	Epitomics	Cat# AC-0284RUO
Rabbit Anti-Human CD3 Monoclonal Antibody, Unconjugated, Clone SP7 (IHC)	Lab Vision	Cat# RM-9107-S; AB_149922
Rabbit Anti-Human Ki67 (Ki-67) Monoclonal Antibody, Unconjugated, Clone SP6 (IHC)	Lab Vision	Cat# RM-9106-S; RRID: AB_149707

Rabbit Anti-Gamma H2AX, phospho (Ser139) Polyclonal	Novus Biologicals	Cat# NB100-384;
Antibody (IHC)	_	RRID: AB_350295
Rabbit Anti-MCL1 Antibody	Rockland	Cat# 600-401-394;
		RRID: AB_2266446
CD44 (HCAM) (IM7) Antibody (IHC)	Santa Cruz	Cat# sc-18849;
	Biotechnology	RRID: AB_2074688
MLKL Antibody (Y-14)	Santa Cruz	Cat# sc-165025;
	Biotechnology	RRID: AB_10839183
Anti-α-Tubulin antibody, Mouse monoclonal	Sigma-Aldrich	Cat# T8203-25UL;
		RRID: AB_1841230
Mouse Anti-Actin, alpha-Smooth Muscle Monoclonal	Sigma-Aldrich	Cat# A2547; RRID:
Antibody (IHC)		AB_476701

654 Histological Scoring

Histological scoring was performed by a pathologist in a blinded fashion by analysing H&E stained slides from 2-month-old wild type control, *Mcl1*^{ΔIEC}, *Rag1*^{-/-} or *Mcl1*^{ΔIEC}*Rag1*^{-/-} mice. Histological scores were attributed independently to the small intestine and colon of each mouse. Histological scoring was based on architectural changes (crypt hyperplasia and villin/crypt ratio length), inflammatory changes (neutrophil and lymphoplasmocyte infiltration), epithelial damage (epithelial surface damage) and cell death (apoptosis) using a modified established scoring system ¹⁰ designed to discriminate between normal tissue (score = 0) and mild (score = 1), moderate (score = 2) or severe (score = 3) pathology. Detailed criteria for each category are provided in Table S3 and representative images of each scoring criteria are displayed as Supplementary Data 1. Histological score was determined using 5 mice per group.

Table S3. Histological scoring criteria

	Normal (score = 0)	Mild (score = 1)	Moderate (score = 2)	Severe (score = 3)
Architectural changes:				
Crypt hyperplasia	Parallel crypts separated with stroma	Increased amount, decreased diameter, elongation irregular shape of the crypts, enlarged epithelial cells	Increased amount, decreased diameter, elongation irregular shape of the crypts, crypts located "back to back", branched crypts, enlarged epithelial cells OR multi-layered epithelium in the crypts	Increased amount, decreased diameter, elongation irregular shape of the crypts, crypts located "back to back", branched crypts, enlarged epithelial cells AND multi-layered epithelium in the crypts
Villli/crypt length ratio (small intestine only)	Between 3:1 and 5:1	Approximately 2:1	Approximately 1:1	Blunted or flat villi
Inflammatory changes:				
Neutrophils	0-3 cells per high power field	5-10 cells per high power field	>10 cells per high power field	Abscess
Lymphoplasmocytes	1 lymphocyte per 4-5 epithelial cells within the crypt. discrete lympho- plasmocytes in lamina propria, isolated lymphoid follicles	Mildly increased amount of inflammatory cells in the epithelium or lamina propria,	Lamina propria expansion by a mixed inflammatory infiltrate, increased amount of lymphoid follicles	Lamina propria expansion by a mixed inflammatory infiltrate, AND multiple or large reactive lymphoid follicles
Epithelial damage				
Superficial damage	Normal epithelium	Changes in cytoplasm and nuclei (accumulation and vacuolization), goblet cells reduction	Changes in cytoplasm and nuclei (accumulation and vacuolization), goblet cells reduction AND isolated erosions	Changes in cytoplasm and nuclei (accumulation and vacuolization), goblet cells reduction AND multiple erosions or ulceration
Apoptosis	No apoptosis	Numerous apoptotic bodies in the crypt epithelium	Apoptotic bodies in the crypt's lumen	Dilated crypts with flattened epithelium (cystic dilated crypts)

679

Supplementary Data 1. Representative H&E images of small intestine which illustrate the criteria needed to be considered wild type (score = 0), mild (score = 1), moderate (score = 2) or severe (score = 3) in relation to crypt hyperplasia, neutrophil or lymphoplasmocyte infiltration, epithelial damage, villi-crypt length ratio and apoptosis during histological scoring (200µm scale bar).

685

686

687

689 Sanger Sequencing and Whole Exome Sequencing

Genomic DNA was isolated from FFPE tissue blocks using Machery & Nagel's NucleoSpin 690 691 FFPE Kit and analysed by either Sanger Sequencing or Whole Exome Sequencing. For both, regions of normal tissue, hyperplasia, low-grade hyperplasia, high-grade hyperplasia or 692 carcinoma were identified based on previously described criteria ¹¹. For Sanger Sequencing, 693 AmpliTaq Gold polymerase was used to amplify 296bp of the Ctnnb1 gene (exon 2) following 694 the manufacturer's recommendations (Primer sequences obtained from Huang et al. ¹² fwd: 695 5'- TACAGGTAGCATTTTCAGTTC AC -3'; rev: 5'- TAGCTTCCAAACACAAATGC -3'). PCR 696 products were sequenced at Microsynth, Balgach, Switzerland. Sequences were aligned 697 against the reference NC_000075.6 (chr9:120950522-120950749 Mus musculus strain 698 C57BL/6J). Codon changes were outlined according to transcript reference NM 000076.5. 699

For array Comparative Genomic Hybridization (aCGH) and Synteny analysis, regions of
 healthy tissue, hyperplasia or carcinoma were identified based on previously described criteria
 ¹¹. Genomic DNA was isolated from FFPE tissue blocks using Macherey & Nagel's NucleoSpin
 FFPE Kit before aCGH and Synteny analysis were performed as previously described ¹³.

Whole exome sequencing of tumor and non-tumor tissue was performed on genomic DNA 704 705 isolated from formalin-fixed paraffin-embedded (FFPE) samples at Ontogenetic Corporations, Atlanta (GA, USA). Samples were chosen according to previously published criteria ^{11, 14} to 706 distinguish between normal tissue, hyperplastic tissue, low grade adenoma, high grade 707 adenoma and carcinoma. Tissue samples matching these criteria were punched out of the 708 FFPE blocks and genomic DNA was extracted with the NucleoSpin FFPE kit (Macherey & 709 710 Nagel). Sequencing data have been deposited at the European Nucleotide Archive under the accession number PRJEB20295. 711

Enrichment of the whole exome (Agilent SureSelect Mouse All Exon kit) and subsequent
Illumina sequencing on a HighSeq2500 (125bp PE) was performed at Ontogenetic
Corporations, Atlanta (GA, USA). Ontogenetic Corporations processed the sequence reads on
the DNAnexus platform (Mountain View, CA, USA) using the advanced mouse exome analysis

pipeline. Quality filtered reads were aligned against the mouse reference genome
(GRCm38/mm10) using BWA¹⁵. After removing PCR duplicates (PicardTools: Mark duplicates
(Broad Institute)) GATK's Unified Genotyper was used to call variants after realignment and
base quality score recalibration ¹⁶.

720 Raw variants were filtered based on GATK's recommendations. Variants were divided into 721 SNPs and INDELs to apply different parameters during the filtration step. For retaining SNPs in the dataset the criteria were "QD > 2.0 & FS < 60.0 & MQ > 40.0 & MQRankSum > -12.5 & 722 723 ReadPosRankSum > -8.0". The selected INDELs have to fulfill "QD > 2.0 & FS < 200.0 & ReadPosRankSum > -20.0" to be selected. Afterwards the SNP and INDEL dataset per sample 724 was combined and variant filtration steps for depth and genotype quality can be applied 725 (DP>=10; QUAL>=30). Variants were annotated and functional effects were predicted with 726 727 SNPEff ¹⁷. The exome datasets were filtered for the WNT, TGF-β, PI3K, RTK-RAS and P53 signaling pathways. A full list of target genes can be found in Table S4 to S9. 728

An exome coverage of 38.93x – 124.87x was achieved containing ~ 9000 – 15000 filtered variants (see Table S7). This low level of variance in the whole exome was unsurprising, since the strain used in this mouse model is of a pure inbred background (C57BL/6), as was used to prepare the *Mus musculus* reference genome (for detailed information and discussion see Fairfield 2015) ¹⁸.

734

735	Table S4. Results after	SNP calling by GA	TK's Unified Genotyper.
-----	-------------------------	-------------------	-------------------------

Sample	coverage (exome)	Variants	n SNPs	n Insertions	n Deletions	n Complex
Carcinoma 1 spf	48.72x	20337	18100	526	1690	21
Carcinoma 2 spf	82.52x	25047	22023	629	2361	34
Carcinoma 4 gf	109.09x	28720	24509	1080	3053	78
Mucosa, wt	124.87x	18491	15245	600	2615	31
Hyperplasia/LGD 1 spf	66.87x	19465	16769	621	2045	30
Carcinoma 3 spf	78.45x	21328	18284	694	2321	29
Carcinoma 5 gf	38.93x	18920	16627	629	1647	17
Hyperplasia/LGD 2 gf	70.18x	24584	21150	842	2543	49

- 737 **Table S5.** Variant statistics after individual filtration of SNPs and INDELs (parameters are
- mentioned in the text).

	coverage					
Sample	(exome)	Variants	n SNPs	n Insertions	n Deletions	n Complex
Carcinoma 1 spf	48.72x	11034	9319	338	1359	18
Carcinoma 2 spf	82.52x	13334	10998	397	1913	26
Carcinoma 4 gf	109.09x	15429	12308	677	2382	62
Mucosa, wt	124.87x	11388	8679	454	2233	22
Hyperplasia/LGD 1 spf	66.87x	12576	10329	474	1746	27
Carcinoma 3 spf	78.45x	13730	11200	530	1975	25
Carcinoma 5 gf	38.93x	9189	7600	337	1238	14
Hyperplasia/LGD 2 gf	70.18x	12457	9966	506	1950	35

739

- 740 Table S6. Variants after applying the filters for depth and genotype quality (DP
- 741 >=10,QUAL>=30).

	coverage					
Sample	(exome)	Variants	n SNPs	n Insertions	n Deletions	n Complex
Carcinoma 1 spf	48.72x	9199	7532	323	1326	18
Carcinoma 2 spf	82.52x	11332	9047	380	1879	26
Carcinoma 4 gf	109.09x	13651	10578	667	2344	62
Mucosa, wt	124.87x	10136	7457	445	2212	22
Hyperplasia/LGD 1 spf	66.87x	10992	8800	458	1707	27
Carcinoma 3 spf	78.45x	12042	9554	515	1948	25
Carcinoma 5 gf	38.93x	7949	6406	323	1206	14
Hyperplasia/LGD 2 gf	70.18x	11057	8617	489	1916	35

743 **Table S7.** Genes of interest from the signaling pathways of WNT, TGF-beta, RTK-RAS and

744 p53.

Chr	Start	End	Gene	Length	Strand	Name						
				И	VNT sign	nalling pathway						
19	30545863	30549665	Dkk1	3802	-	dickkopf WNT signaling pathway inhibitor 1						
3	132085292	132180304	Dkk2	95012	-	dickkopf WNT signaling pathway inhibitor 2						
7	112116017	112159057	Dkk3	43040	-	dickkopf WNT signaling pathway inhibitor 3						
8	22624043	22627547	Dkk4	3504	+	dickkopf WNT signaling pathway inhibitor 4						
19	3584828	3686564	Lrp5	101736	-	low density lipoprotein receptor-related protein 5						
6	134446476	134566965	Lrp6	120489	-	low density lipoprotein receptor-related protein 6						
5	128600844	128604093	Fzd10	3249		frizzled class receptor 10						
Х	95420318	95444872	Amer1	24554	-	APC membrane recruitment 1 (Fam123b)						
11	108920349	108950783	Axin2	30434	+	axin 2						
18	34220924	34318608	Apc	97684	+	adenomatosis polyposis coli						
9	120929216	120960507	Ctnnb1	31291	+	catenin (cadherin associated protein), beta 1						
19	55741820	55933654	Tcf7l2	191834	+	transcription factor 7 like 2, T cell specific, HMG box						
3	84815268	84979198	Fbxw7	163930	+	F-box and WD-40 domain protein 7						
4	133679008	133756769	Arid1a	77761	-	AT-rich interactive domain-containing protein 1A						
11	52252371	52283014	Tcf	30643	-	transcription factor 7, T cell specific						
15	61985391	61990374	Мус	4983	+	myelocytomatosis oncogene						
3	131110471	131224356	Lef1	113885		lymphoid enhancer binding factor 1						
5	144767732	144859778	Trrap	92046	+	transformation/transcription domain-associated protein						
6	72626378	72789254	Tcf7l1	162876	-	transcription factor 7 like 1 (T cell specific, HMG box)						
					TGF-be	ata signalling						
4	47353222	47414931	Tqfbr1	61709	+	transforming growth factor, beta receptor I						
9	116087698	116175363	Tqfbr2	87665	-	transforming growth factor, beta receptor II						
2	48814109	48903269	Acvr2a	89160	+	activin receptor IIA						
15	101174067	101213679	Acvr1b	39612	+	activin A receptor, type 1B						
18	76241580	76305731	Smad2	64151	+	SMAD family member 2						
9	63646767	63757994	Smad3	111227	-	SMAD family member 3						
18	73639009	73703780	Smad4	64771	-	SMAD family member 4						
	PI3K signalling											
7	142650766	142666816	laf2	16050	+	insulin-like growth factor 2						
, 7	67952827	68233668	laf1r	280841	+	insulin-like growth factor L recentor						
8	10984681	11008458	Irs2	23777	-	insulin recentor substrate 2						
13	101680563	101768217	Pik 3r1	87654	-	phosphatidylinositol 3-kinase, regulatory subunit, polypeptide 1						
3	32397671	32466107	Pik3ca	68436	+	phosphatidylinositol 3-kinase, catalytic, alpha polypeptide						
- 19	32757497	32826160	Pten	68663	+	phosphatase and tensin homolog						
14	00440470	00407746	[rhh2	25246	RIK-RA	AS signalling						
11	98412470	98437716	Erbb2	25246	+	erb-b2 receptor tyrosine kinase 2						
10	128567523	128589652	EIDD3	22129	-	erb-b2 receptor tyrosine kinase 3						
0	145216699	145250239	Nias	33540	-							
3	103058285	103067914	Drof	9029	+	Dref transforming gene						
0 5	142494920	39723403	Diai Dodil	66250	-							
5	142404039	142551098	Nauli	00259	-							
P53 signalling												
11	69580359	69591873	Trp53	11514	+	transformation related protein 53						
9	53439149	53536740	Atm	97591	-	ataxia telangiectasia mutated						
additional genes of interest												
5	116439275	116591817	Srrm4	152542	-	serine/arginine repetitive matrix 4						
6	39592574	39603382	Ndufb2	10808	+	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 2						
6	64729125	64731245	Atoh1	2120	+	atonal bHLH transcription factor 1						
7	83642825	83745726	II16	102901	-	interleukin 16						
9	106892825	107231909	Dock3	339084	-	dedicator of cyto-kinesis 3						
15	81585351	81652077	Ep300	66726	+	E1A binding protein p300						
11	112782224	112787760	Sox9	5536	+	SRY (sex determining region Y)-box 9						
5	110286306	110337474	Pole	51168	+	polymerase (DNA directed), epsilon						
9	111228228	111271791	Mlh1	43563	-	mutL homolog 1						
12	85234529	85270591	Mlh3	36062	-	mutL homolog 3						
17	87672330	87723713	Msh2	51383	+	mutS homolog 2						
13	92211872	92355003	Msh3	143131	-	mutS homolog 3						
17	87975050	87990883	Msh6	15833	+	mutS homolog 6						
5	143909964	143933968	Pms2	24004	+	postmeiotic segregation increased 2 (S. cerevisiae)						

					Functional		Ensembl			Hyperplasia	Hyperplasia	Carcinoma	Carcinoma	Carcinoma	Carcinoma (Carcinoma
Gene	Chr:Pos	REF	ALT	Codon variant	Variant	Functional Consequence	Transcript	rsID	Mucosa, wt	/LGD 1 spf	/LGD 2 gf	1 spf	2 spf	3 spf	4 gf 5	i gf
Erbb3	chr10:12857084	46 T	υ	c.3192+90A>G		intron_variant(MODIFIER)			./.	./.	J.	0/1:7,3:10	./.	./.	J	Ι.
Erbb3	chr10:12857194	49 T	с С	c.2687-158A>G		intron_variant(MODIFIER)			.1.	J.	J.	.1.	0/1:13,4:17	. <i>1.</i>	<i>.</i>	<i>l</i> .
Erbb3	chr10:12857587	75 CAT	υ			intron_variant(MODIFIER)	ENSMUST00000082059	rs228017517	./.	0/1:35,13:49	0/1:18,11:30	0/1:3,10:15	0/1:0,10:58	0/1:26,14:41	0/1:0,11:89 0)/1:12,11:24
Erbb3	chr10:1285845(05 T	A	c.422-69A>T		intron_variant(MODIFIER)			.1.	.1.	·/	.1.	·/·	·/·	<i>.</i>)/1:9,4:13
Erbb3	chr10:1285845(07 C	A	c.422-71G>T		intron_variant(MODIFIER)			./.	.1.	1.	./.	Л.	./.	J)/1:10,4:14
Axin2	chr11:1089316	15 CG	υ	c.956+37deIG		intron_variant(MODIFIER)	ENSMUST0000052915		0/1:41,16:61	J.	J.	.1.	. <i>I.</i>	. <i>I.</i>	J	<i>I</i> .
Sox9	chr11:11278375	94 GC	Ċ	c.432-14deIC		intron_variant(MODIFIER	ENSMUST00000000579	rs252793042	0/1:9,6:20	.1.	J.	.1.	·/·	·/·	·/·	1.
Msh3	chr13:92306456	9 CT	υ			dow nstream_gene_variant(MODIFIER) I	ENSMUST00000190462	rs220719938	0/1:0,6:66	0/1:10,17:35	0/1:21,12:45	./.	.1.	0/1:18,12:41	0/1:29,28:77 0)/1:12,12:31
Ep300	chr15:81623550	3 AT	A	c.2134+29delT		intron_variant(MODIFIER)	ENGMI ISTODOOOB387	rs237317619	.1.	. <i>.</i> .	0/1:35,21:78	.1.	·/·	0/1:37,19:82	0/1:42,20:81	ι.
Ep300	chr15:81636274	4 CT	υ	c.3725+41delT		intron_variant(MODIFIER)		rs255017404	0/1:0,8:206	.1.	0/1:0,11:126	.1.	·/·	0/1:0,10:155	<i>.</i> /.)/1:39,12:54
Msh2	chr17:87679692	2 TA	⊢	c.367-107delA		intron_variant(MODIFIER)	ENSMUST00000024967		0/1:18,29:51	.1.	0/1:17,20:40	.1.	·/·	·/·	·/·	1.
Apc	chr18:34312747	7 C	F	c.2695C>T	p.GIn899*	stop_gained(HIGHINONSENSE	ENERAL ET0000070363		.1.	.1.	./.	.1.	0/1:38,41:79	·/·		1.
Apc	chr18:3431630	9 A	U	c.6257A>G	p.Asp2086Gly	missense_variant(MODERATE		rs47505115	0/1:50,52:102	0/1:32,20:52	0/1:27,23:50	.1.	·/·	0/1:37,32:69	<i>.</i>	0/1:22,18:40
Lrp5	chr19:3659357	U	F	c.372G>A	p. Thr124Thr	sy nonymous_variant(LOW SILENT)	ENSMUST00000176867		./.	0/1:19,21:40	·/	.1.	·/·	0/1:29,14:43		١.
Acvr2a	chr2:48893385	ст	υ	c.817-121delT		intron_variant(MODIFIER)	ENSMUST0000063886	rs233268672	0/1:14,17:42	.1.	7.	.1.	.1.	0/1:17,11:32	0/1:12,13:28	/.
Pik3ca	chr3:32440531	AGT	۷	c.1060-95 1060-94delGT		intron_variant(MODIFIER)		rs231243003	./.	.1.	0/1:4,6:10	1/1:2,13:15	./.	.1.	./.	١.
Pik 3ca	chr3:32440553	A	⊢	c.1060-74A>T		intron_variant(MODIFIER)	ENSMUST0000029201		./.	./.	<i>.</i>	./.	0/1:31,11:42	./.		
Pik3ca	chr3:32449854	с <u>т</u>	с U	c.1747-54delT		intron variant(MODIFIER)	•		./.	./.	0/1:22.9:32	./.	0/1:28,12:45	./.		
Fb xw7	chr3:84903756	A	G	c.187A>G	p.Asn63Asp	missense variant(MODERA TEMSSEN		rs3683473	./.	./.	1/1:1,19:20	./.	./.	./.		<i>\</i> .
Fhxw7	shr3-84903911	A	Ċ	c 342A>G	n Gliit 14Glii	synonymolis variant/LOWISI FND		rs3684554	/	/	1	/	1/1-1 22-23	/	1/1-1-33-34	
Fbxw7	chr3:84954904		0	c.540A>G	p.Glu180Glu	sv nonvmous variant(LOWISILENT)	ENSMUST00000107678	rs30008104				./.	./.	./.	1/1:2.75:77	
Eh vw7	-hr3-84067383	ΔT		r c 871_56deIT		intron variant/MODIFIED		rc221040048	0/1-42	0/1.32	0/2-30	0/2-16	/	,	0/2-28	1/2-15
Eh xw7	chr3-84977650	40	č c	C.011-20061		3 prime LTR variant(MODELR		rs238194117	7-110	20.1.0	1	/	./.	./. 1/1-2-22-33	0/2:20	/1-1 12-18
A local	100000000000000000000000000000000000000	j c	, <u> </u>	- 4F4 04 4F4 00: TT				F10000000			.,	,	.,.	0/4-00-40-40	0/4-00-45-50	
Nras	chr3: 10306330	ט ג ג		C.451-21_451-20INS II		intron_variant(MODIFIER)	ENSIMUS1 00000029445	rsz4z625067	./.	., ,	1.	./.	./.	0/1:26,16:46	0/1:29,15:58	
Let1	chr3:13118925	<u>و</u>	6,GT	I c.542-83dell		intron_variant(MODIFIER)	ENSIMUS I 00000098611		0/1:43	<i></i>	11:31	0/2:24	./.		0/1:28	
Arid1a	chr4:13368917(0 ATAT/	4CA	c.3289_3293deITATAC	p.GIn1096fs	frameshift_variant(HGH)	ENSMUST00000105897	./.	./.	0/1:62,24:88		./.	./.	./.	./.	ι.
Pole	chr5:110293954	4 A	U	c.801+159A>C		intron_variant(MODIFIER)	ENSMI ISTOOOOO7296	rs263341953	./.	./.	J.	./.	0/1:9,4:13	./.	. <i>.</i>	Ι.
Pole	chr5:110299340	3 A	υ	c.2081A>C	p.Lys694Thr	missense_variant(MODERATE MSSEN			./.	J.	J.	0/1:18,10:28	. <i>1.</i>	. <i>I.</i>		ι.
Srm4	chr5:116449334	4 TG	⊢	n.187+9899delG		intron_variant(MODIFIER)	ENEMI ET000001260E0	rs257407124	.1.	.1.	·/	.1.	·/·	0/1:4,6:13	·/·	
Srm4	chr5:116467875	5 GGA	ი	-		upstream_gene_variant(MODIFIER			.1.	.1.	0/1:8,14:52	.1.	·/·	·/·	·/·	۲.
Radil	chr5:142544859	9 CAG	υ	c.23+32_23+33delCT		intron_variant(MODIFIER)	ENSMUST00000085758		.1.	J.	J.	.1.	·/·	·/·	<i>.</i>)/1:4,7:11
Trrap	chr5:144780182	2 C	F	c.450+115C>T		intron_variant(MODIFIER)			.1.	.1.	J.	0/1:23,8:31	·/·	·/·	. <i></i>	۱.
Trrap	chr5:14478019t	e C	F	c.450+129C>T		intron_variant(MODIFIER)	ENSMUST0000038980		.1.	J.	J.	0/1:17,6:23	. <i>1.</i>	. <i>1.</i>	<i>.</i>	ι.
Trrap	chr5:14478021(0 0	⊢	c.450+143C>T		intron_variant(MODIFIER)			./.	J.	J.	0/1:12,5:18	. <i>1.</i>	. <i>I.</i>		ι.
Ndufb2	chr6: 39596677	AT	A	n.364+83delT		intron_variant(MODIFIER)		rs239777375	./.	./.	./.	./.	./.	./.	·/·	1/1:9,6:21
Ndufb2	chr6:39598377	GT	GTT,G	3 n.460+18_460+19insT		intron_variant(MODIFIER)	EINENIOS I 00000002430	rs249436801	./.	.1.	λ.	0/1:56	. <i>\.</i>	.1.	J. 0)/2:42
Braf	chr6:39648311	GAA	G,GA	c.1123+137_1123+138del1	L	intron_variant(MODIFIER)	T 0141 10T 00000 104 107	rs216953796	./.	./.	0/2:33	./.	./.	0/2:31	0/1:46	<i>\.</i>
Braf	chr6:39648327	ი	A	c.1123+123C>T		intron_variant(MODIFIER)	ENSINGS100000101481		0/1:80,20:100	0/1:27,5:32	0/1:33,8:41	.1.	. <i>\.</i>	·/·	0/1:51,15:66	۱.
Dock3	chr9:10692994	4 TCA	⊢	c.4107+74_4107+75deITG		intron_variant(MODIFIER)	ENSMUST00000044532	rs256120015	0/1:25,13:45	0/1:8,7:18	0/1:7,7:16	.1.	0/1:23,9:38	·/·	0/1:29,14:45 ()/1:6,6:17
MIh 1	chr9:111253010	3 CA	υ	n.694+2614delT		intron_variant(MODIFIER)	ENSMUST00000135218		0/1:59,25:110	0/1:39,19:74	J.	.1.	0/1:30,20:65	·/·	0/1:0,7:141	۲.
Ctnnb 1	chr9:12095060t	ပ ဖ	A	c.98C>A	p.Ser33Tyr	missense_variant(MODERA TE MSSEN			./.	.1.	J.	.1.	.1.	0/1:23,5:28	./.	ι.
Ctnnb 1	chr9:12095063(ပ ၀	⊢	c.122C>T	p. Thr41 lle	missense_variant(MODERA TE MSSEN	ENSMUST00000145093		./.	.1.	0/1:23,14:37	0/1:12,6:18	./.	.1.	./.	<i>l</i> .
Ctnnb 1	chr9:12095064	S S	⊢	c.134C>T	p.Ser45Phe	miss ense_variant(MODERA TE MSSEN			./.	./.	Л.	./.	./.	./.	./.	0/1:11,6:17

TableS8.Identified variantsper sample withinthe gene regions ofinterest.Variantswere filtered to adepth of 10 andgenotype quality of30.

The clinical significance of particular SNV was determined by searching several databases.
 After annotation we checked UniProt¹⁹ for functional consequences of an amino acid change.
 Additionally, we performed a protein BLAST to identify the homologous protein and position of
 the functional change in humans to check the clinical association in the COSMIC database ²⁰.

772

Gene	Chr:Pos	REF	ALT	Codon variant	Functional Variant	Functional Consequence	UniProt	BLAST human (homolog position)	COSMIC Annotation
Арс	chr18:34312747	С	т	c.2695C>T	p.Gln899*	stop_gained(HIGH NONSENSE)	-	Q901*	Pathogenic (sco 0.91)
Арс	chr18:34316309	А	G	c.6257A>G	p.Asp2086Gly	missense_variant(MODERATE)	no functional significance	D2087G	not annotated
Fbxw7	chr3:84903756	А	G	c.187A>G	p.Asn63Asp	missense_variant(MODERATE) MISSENSE)	no functional significance	without homology at this position	not annotated
Fbxw7	chr3:84903911	А	G	c.342A>G	p.Glu114Glu	synonymous_variant(LOW SILENT)	no functional significance	E114E	not annotated
Fbxw7	chr3:84954904	А	G	c.540A>G	p.Glu180Glu	synonymous_variant(LOW SILENT)	no functional significance	E180E	not annotated
Pole	chr5:110299343	A	с	c.2081A>C	p.Lys694Thr	missense_variant(MODERATE MISSENSE)	no record	K694T	not annotated

p.Gln1096fs

p.Ser33Tyr

p.Thr41lle

p.Ser45Phe

synonymous_variant(LOW| SILENT)

missense_variant(MODERATE)

MISSENSE)

missense_variant(MODERATE)

MISSENSE)

missense_variant(MODERATE| MISSENSE) Q1096fs

S33Y

T41I

S45F

not annotated

Pathogenic (score 0.97)

Pathogenic (score

0.98)

Pathogenic (score 0.98)

no record

target for HIPK2

phosphorylation/

proteasomal degradation

target for GSK3

phosphorylation

target for

secondary GSK3

phosphorylation

772	Table S0	Classification	of functional	concoquoncoc	of dotoctod	amina acid	changes
113	Table 59.	Classification	or runctional	consequences	or detected	amino aciu	changes.

774

775

Arid1a

Ctnnb 1

Ctnnb 1

chr4:133689170

chr9:120950606

chr9:120950630

Ctnnb1 chr9:120950642

ΑΤΑΤΑΟ Α

C A

с т

с т

.3289_3293delTATAC

c.98C>A

c.122C>T

c.134C>T

776 777 778

779

780

781

783 Single molecule FISH (smFISH)

Mice were sacrificed and the small intestine was removed and flushed with cold PBS. Small 784 785 intestine tissue was opened longitudinally and spread on whatman filter paper. Flat tissue was 786 then fixed in 4% paraformaldehyde (PFA, Santa Cruz Biotechnology, sc-281692) in PBS for 3 hours and subsequently incubated in a 30% sucrose, 4% PFA in PBS solution at 4°C overnight 787 with gentle agitation. Fixed tissues were then embedded in Tissue-Tek OCT Compund 788 (Sakura, 4583) and stored at -80°C. 7µm thick sections of fixed tissue were sectioned onto 789 poly L-lysine coated coverslips and used for smFISH staining. Probe libraries were designed 790 using the Stellaris FISH Probe Design Software (Biosearch Technologies), see Tables S10-791 S12 for complete list of smFISH probes. Probe libraries were coupled to Cy5 (Mcl1) or 792 Alexa594 (Atoh1 or Wnt2b). Tissue sections were hybridized with smFISH probe sets based 793 on a previously published protocol²¹. smFISH imaging was performed on a Leica THUNDER 794 Imager 3D Cell Imaging system using the following THUNDER Computational Clearing 795 Settings, Feature Scale (nm): 383, Strength (%): 97.75, Deconvolution settings: Auto and 796 Optimization: High. Objective: 100X/1.4. Quantification of smFISH was performed as 797 previously described using the TransQuant software²². Atoh1 smFISH quantification was 798 performed by selecting 7 Mcl1 expressing and 7 Mcl1 deficient crypts from the small intestines 799 of 3 different *Mcl1*^{ΔIEC} mice. Individual epithelial cells were identified within each crypt and 800 guantification was performed by determining the amount of single RNA molecules per epithelial 801 cell. 802

803

- 804
- 805

806

807

809 Table S10. *Mcl1* probes for smFISH

McI1	
mus_ <i>Mcl1</i> _1	caggccaaacatggtcggac
mus_Mcl1_2	tacaggttcaagccgatgac
mus_Mcl1_3	caagtagcgcgagatgatct
mus_Mcl1_4	atcgccttcgtttttaatgt
mus_Mcl1_5	agtttgttacgccatctttg
mus_Mcl1_6	attgcactcacaaggctatc
mus_Mcl1_7	tggctggagctttaagagtc
mus_Mcl1_8	cacatgttttcacagatgca
mus_ <i>Mcl1</i> _9	cagacagtgactcttccagg
mus_ <i>Mcl1</i> _10	cactctgagcagagtaatgg
mus_ <i>Mcl1</i> _11	ttctagtcatcgtttggtga
mus_ <i>Mcl1</i> _12	acagggctaaaagtcctgag
mus_ <i>Mcl1</i> _13	tcaagtactttttggccatc
mus_ <i>Mcl1</i> _14	aatcgaggctgttcagtttt
mus_ <i>Mcl1</i> _15	aggetetgeatatacaetag
mus_ <i>Mcl1</i> _16	ccctgcatagttataaatct
mus_ <i>Mcl1</i> _17	tcttacatctatctacctgt
mus_ <i>Mcl1</i> _18	tgtaagtcaacaggggatca
mus_ <i>Mcl1</i> _19	taagactctagcctgcttta
mus_ <i>Mcl1</i> _20	taaacccagtgaatagcacc
mus <i>Mcl1</i> _21	caccaggtataaacttgtgt
mus <i>Mcl1</i> _22	cttggcaatccttagtagac
mus <i>Mcl1</i> _23	acgccaacagtaaaggaagt
mus_ <i>Mcl1</i> _24	ataggggaactgggagcata
mus_ <i>Mcl1</i> _25	gggaggaagtgtagacgact
mus_ <i>McI1</i> _26	aaaatggccagtgaagagca
mus_ <i>Mcl1</i> _27	ggctcaaagagcaagtgttc
mus_ <i>McI1</i> _28	gtaacaatggaaagcatgcc
mus_ <i>McI1</i> _29	ggacctttgatgtttttctt
mus_ <i>McI1_</i> 30	ccaacctttgaaattcccaa
mus_ <i>IVICI1_31</i>	acacagtcatacttggagca
mus_ <i>IVICI1_32</i>	tttgttaaccgagtttagca
mus_IVICI1_33	aaladdildaglladdaglg
Mol1_34	gatteetgeetattttate
Mol1_35	acticitecetattacatte
mus_Mol1_30	
mus_Mol1_37	aagugeteegaagteegaag
mus_Mol1_20	
mus_Mol1_09	yaayucayyotoolagtaaa
mus Mol1 40	
mus Mol1 41	catchagtcaggactcagga
mus Mcl1 12	gatgettgaagactgcatgt
$\frac{1103}{1001} \frac{43}{43}$	tattcacccagatagaatat
mus $Mcl1 45$	aggtgctctaccagaatgaa
mus $Mcl1 46$	ctttcgggaacagctgttaa
mus Mcl1 47	taacttgcagttggtcaa
mus <i>Mcl1</i> 48	aggggaacatttacaaccca

Atoh1 mus_Atoh1_1 gattttttttccttcctcct mus Atoh1 2 ttcctagtctcttctgcaag mus Atoh1 3 cccgaacaacaacaacaaaa mus_*Atoh1*_4 cagttcaacgaaggggataa mus_Atoh1_5 ttttacctcagcccactctt mus_Atoh1_6 tatccaggagggacagttct mus Atoh1 7 tgcaaagtgggggtcagcca mus_Atoh1_8 agaatgcagcagatactggg mus Atoh1 9 tctccttaccagctcaccct mus_Atoh1_10 agctgttcccgtactttgac mus_Atoh1_11 acaaccccacccttcagctt mus_Atoh1_12 attcacctgtttgctggaag mus_Atoh1_13 agcctcctttgcttctgtac mus_Atoh1_14 ttgaaggacgggataacgtt mus_Atoh1_15 tttggacagcttcttgtcgt mus_Atoh1_16 ttgatgtagatctgggccat mus_Atoh1_17 attgggagtctgcagcaact mus Atoh1 18 atttttgcaggaagctgtgg mus_Atoh1_19 tgtgccatcatcgctgttag mus_Atoh1_20 tttgctgttgtcctcctgta mus_Atoh1_21 ttctgtgggatctgggagat mus Atoh1 22 taatgagagtgggggaaaa mus_Atoh1_23 aactggcctcatcagagtca mus_Atoh1_24 tttcagggagctgttgcctt aagggcatttggttgtctca mus_Atoh1_25 mus_Atoh1_26 aagggtgcagggatatttgt mus Atoh1 27 cgatcaccacagaccaaaaa mus Atoh1 28 gaagtcaagtcgttgctaac mus Atoh1 29 taggaggaagggggattggaa mus_Atoh1_30 ctacatacagaggaaggaga mus_Atoh1_31 gatgccacgtaaaggtacat mus_Atoh1_32 atattggcagcatggaccat mus_Atoh1_33 cagagatacgacattttagc mus_Atoh1_34 taagtgaaacccagaccaga mus_Atoh1_35 ggatgaactcccaaggtata mus_Atoh1_36 atttgtgagtgagcgcaaca mus Atoh1 37 ggggaaacaacttcattgac mus_Atoh1_38 aaagtacccaatgcgggtct mus_Atoh1_39 caacacaatagtccgtgttc mus_Atoh1_40 cttatctgcccctgcatttt mus_Atoh1_41 ggtgtctaagctctacagat mus Atoh1 42 tagacacactgctggacaca mus_Atoh1_43 atgaagtgcgtgtattctgg mus_Atoh1_44 ttgagtttcttcaaggcggc mus_Atoh1_45 aaaagttgctctgcattggc mus_Atoh1_46 ccaaatgcctttgacactac mus Atoh1 47 gaaatgggtccaaatacgca mus Atoh1 48 cgatctcgagtagaaaatgt

811 Table S11. Atoh1 probes for smFISH

Wnt2b	
mus_Wnt2b_1	ggatgttgtcacagatcact
mus_Wnt2b_2	tactgagcgcatgatgtctg
mus_Wnt2b_3	atagcatagacgaacgctgc
mus_Wnt2b_4	atggatgttgtcactacagc
mus_Wnt2b_5	ttgtgtaagttcatgagggc
mus_Wnt2b_6	agtagacaagatcagtccgg
mus_ <i>Wnt2b_</i> 7	tagaagtcttgctgcagacg
mus_Wnt2b_8	aacacatgatttcacaccca
mus_Wnt2b_9	gtggaatttgcactcacact
mus_Wnt2b_10	atgtgtggacatccacagtg
mus_Wnt2b_11	ttgtgcttttgagtcagagg
mus <i>Wnt2b</i> _12	ggattgagggtagaggaagg
mus_Wnt2b_13	cgtgacagaagccatagcag
mus_ <i>Wnt2b</i> _14	taaatccatcccctatcaac
mus_ <i>Wnt2b</i> _15	ccttgacttagtgcaactca
mus_ <i>Wnt2b</i> _16	tgcaagcaaaggggaggatg
	gcatacccaaagaggatcag
mus_ <i>Wnt2b</i> _18	tcaaacacggaagctacctc
mus_ <i>Wnt2b</i> _19	gacaggcagttttatctctg
mus_ <i>Wnt2b_20</i>	actatggcctaagattgtct
mus_Wnt2b_21	taacccatctagctatctca
mus_Wnt2b_22	atgtggagccttgttcaatg
mus_Wnt2b_23	ccactactttataagctgcg
mus_ <i>Wnt2b_24</i>	agagcattgtgattttcctc
mus_Wht2b_25	ggcacagagaatgtgtatct
mus_ <i>Wnt2b_26</i>	gtaagaatttgacccactgc
mus_Wht2b_27	atteteteacaateetgtte
mus_Wht2b_28	cgaaleleeggaalagigga
mus_Wht2b_29	getgaagattatagaattat
mus_W/nt2b_30	tagttaggattaggatgttg
$\frac{1110S_W112D_31}{110S_W112D_31}$	
mus W/nt2b_32	
mus W/nt2b_33	
mus Wnt2b_35	aagatgaccattgtcgaggt
mus <i>Wnt2b_</i> 00	tgatgacgtctatcagtcgg
mus <i>Wnt2b</i> _00	
mus <i>Wnt2b</i> 38	gaatctagtctgttgtctgc
mus <i>Wnt2b</i> 39	agaatteettgtgaaageet
mus <i>Wnt2b</i> 40	tgctccacaaacatctgaga
mus Wnt2b 41	caaatcccctcaccaaaaqa
mus Wnt2b 42	gactagctcatgttttgtqt
mus_Wnt2b 43	ctactctgcgaggaagacat
mus_Wnt2b_44	aaactcctctcttccaagag
mus_ <i>Wnt2b</i> _45	accgtaacttggatgttctc
mus_ <i>Wnt2b</i> _46	aagtagatttacctcaggct
mus_ <i>Wnt2b</i> _47	gagatgtcacagatgtctgc
mus_ <i>Wnt2b</i> _48	atcagctagaatttggagcc

813 Table S12. Wnt2b probes for smFISH

815 RNASeq

For RNASeq analysis, RNA was extracted from small intestinal tissue that had been frozen in 816 817 RNAlater (Sigma-Aldrich); taken from mice sacrificed 3 or 4 days post induction. RNA extraction and DNA digestion was performed on homogenised tissue using QIAGEN RNeasy 818 Mini Kit (QIAGEN, #74104) according to the manufacturer's instructions. The quality of the 819 purified RNA was tested on an Agilent 2200 Tapestation using RNA screentape. Libraries for 820 cluster generation and RNA sequencing were prepared following an adapted method from 821 Fisher et al., 2011²³ using an Illumina TruSeq RNA LT Kit v2. Libraries were run on the Illumina 822 NextSeq 500 using the High Output 75 cycles kit (2x36cycles, paired end reads, single index) 823 ²⁴. Quality control of the raw RNASeq data files was performed by fastqc 824 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 825 and fastq_screen 826 (http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/). Next, RNASeq reads were aligned to the mouse genome (GRCm38.75) using TopHat2 (tophat2), and gene level 827 counts were determined from the resulting bam files using htseq_count (http://www-828 huber.embl.de/users/anders/HTSeq/doc/count.html) with default settings. Differential 829 expression analysis and data normalisation was performed using the R package DESeq2, with 830 statistically significant differences in gene expression defined using a false discovery rate 831 (FDR) of 5% or 10%. A detailed list of signaling pathways enriched in i-*Mcl*^{ΔIEC} mice compared 832 with wild type control mice is shown in Table S13. A table of linked toxic pathologies associated 833 with up-regulated genes detected in i- $McI1^{\Delta IEC}$ mice are listed in Table S14. 834

835

GSEA analysis was performed using the GSEA v2.0 software (Broad Institute). The reference
gene sets were obtained from published sources as follows; genes upregulated following APC
loss ²⁵ & WNT target genes commonly upregulated in human colorectal cancer ²⁶.

839

#	Pathways Enriched in i-McI-1 ^{ΔIEC} mouse small intestine	p-value	FDR
1	Cell cycle_Start of DNA replication in early S phase	1.249E-10	1.123E-07
2	Cell cycle_Nucleocytoplasmic transport of CDK/Cyclins	2.142E-07	8.790E-05
3	Apoptosis and survival_Role of IAP-proteins in apoptosis	3.307E-07	8.790E-05
4	Cell cycle_Regulation of G1/S transition (part 1)	4.557E-07	8.790E-05
5	Cell cycle_Role of SCF complex in cell cycle regulation	6.619E-07	8.790E-05
6	CAR signaling via cross-talk / Human Version	6.844E-07	8.790E-05
7	Cell cycle_Regulation of G1/S transition (part 2)	6.844E-07	8.790E-05
8	CAR signaling via cross-talk / Rodent version	1.325E-06	1.489E-04
9	Regulation of metabolism_Bile acids regulation of glucose and lipid metabolism via FXR	1.535E-06	1.533E-04
10	Development_Regulation of telomere length and cellular immortalization	3.090E-06	2.558E-04
11	Transcription_Epigenetic regulation of gene expression	3.345E-06	2.558E-04
12	Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling	3.414E-06	2.558E-04
13	Development_EGFR signaling pathway	6.640E-06	4.592E-04
14	ATP/ITP metabolism	8.389E-06	5.387E-04
15	Cell cycle_Cell cycle (generic schema)	1.064E-05	6.375E-04
16	GTP-XTP metabolism	1.195E-05	6.581E-04
17	Development_WNT signaling pathway. Part 2	1.244E-05	6.581E-04
18	Development_Prolactin receptor signaling	1.767E-05	8.827E-04
19	Cell cycle_ESR1 regulation of G1/S transition	3.214E-05	1.521E-03
20	Transcription_Ligand-dependent activation of the ESR1/SP pathway	4.102E-05	1.844E-03

Table S13. Pathways enriched in i- $Mcl1^{\Delta IEC}$ mice compared with wild type control mice.

- **Table S14**. Toxic pathologies associated with genes enriched in i- $McI1^{\Delta IEC}$ mice compared with
- wild type control mice.

#	Toxic pathologies in i-McI-1 ^{ΔIEC} mouse small intestine	p-value	FDR
1	Small intestine, intestinal epithelium injury	7.194E-09	1.743E-05
2	Small intestine, mucosa-degeneration	6.027E-08	5.141E-05
3	Jejunum, mucosa-degeneration	6.473E-08	5.141E-05
4	Jejunum-degeneration	1.156E-07	5.141E-05
5	Jejunum, mucosa, intestinal epithelium injury	1.252E-07	5.141E-05
6	Small intestine-degeneration	1.352E-07	5.141E-05
7	Intestinal epithelium injury	1.489E-07	5.141E-05
8	Intestine-regeneration	1.697E-07	5.141E-05
9	Intestine-degeneration	2.613E-07	7.034E-05
10	Small intestine, mucosa injury	3.871E-07	9.380E-05
11	Liver-centrilobular regeneration	5.995E-07	1.321E-04
12	Jejunum, mucosa injury	9.324E-07	1.883E-04
13	Jejunum injury	1.852E-06	3.045E-04
14	Large intestine-regeneration	1.885E-06	3.045E-04
15	Colon-regeneration	1.885E-06	3.045E-04
16	Small intestine, mucosa-apoptosis	2.907E-06	4.402E-04
17	Colon, mucosa-regeneration	3.785E-06	5.095E-04
18	Large intestine, mucosa-regeneration	3.785E-06	5.095E-04
19	Small intestine injury	4.707E-06	6.003E-04
20	Small intestine-apoptosis	5.326E-06	6.391E-04

863 Supplemental References

- 8641.Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of865mammals to their commensal intestinal microbiota. Semin Immunol 2007;19:59-69.
- Vick B, Weber A, Urbanik T, et al. Knockout of myeloid cell leukemia-1 induces liver damage and increases apoptosis susceptibility of murine hepatocytes. Hepatology 2009;49:627-36.
- Weber A, Boger R, Vick B, et al. Hepatocyte-specific deletion of the antiapoptotic protein myeloid cell leukemia-1 triggers proliferation and hepatocarcinogenesis in mice. Hepatology 2010;51:1226-36.
- el Marjou F, Janssen KP, Chang BH, et al. Tissue-specific and inducible Cre-mediated
 recombination in the gut epithelium. Genesis 2004;39:186-93.
- 8735.Opferman JT, Letai A, Beard C, et al. Development and maintenance of B and T lymphocytes874requires antiapoptotic MCL-1. Nature 2003;426:671-6.
- 875 6. Brault V, Moore R, Kutsch S, et al. Inactivation of the beta-catenin gene by Wnt1-Cre876 mediated deletion results in dramatic brain malformation and failure of craniofacial
 877 development. Development 2001;128:1253-64.
- 878
 7. Shibata H, Toyama K, Shioya H, et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 1997;278:120-3.
- Propheter DC, Chara AL, Harris TA, et al. Resistin-like molecule beta is a bactericidal protein that promotes spatial segregation of the microbiota and the colonic epithelium. Proc Natl Acad Sci U S A 2017;114:11027-11033.
- 8839.Packey CD, Shanahan MT, Manick S, et al. Molecular detection of bacterial contamination in
gnotobiotic rodent units. Gut Microbes 2013;4:361-70.
- Erben U, Loddenkemper C, Doerfel K, et al. A guide to histomorphological evaluation of
 intestinal inflammation in mouse models. Int J Clin Exp Pathol 2014;7:4557-76.
- Boivin GP, Washington K, Yang K, et al. Pathology of mouse models of intestinal cancer:
 consensus report and recommendations. Gastroenterology 2003;124:762-77.
- Huang H, Ushijima T, Nagao M, et al. Beta-catenin mutations in liver tumors induced by 2amino-3,4-dimethylimidazo[4,5-f]quinoline in CDF1 mice. Cancer Lett 2003;198:29-35.
- Wolf MJ, Adili A, Piotrowitz K, et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes.
 Cancer Cell 2014;26:549-64.
- Fred T. Bosman FC, Ralph H. Hruban, Neil D. Theise. Tumours of the colon and rectum.
 WHO Classification of Tumours of the Digestive System. Volume 4th Edition: WHO Press,
 2010:140-142.
- Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.
 Bioinformatics 2009;25:1754-60.
- 89916.DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping900using next-generation DNA sequencing data. Nat Genet 2011;43:491-8.
- 17. Cingolani P, Platts A, Wang le L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012;6:80-92.
- 90418.Fairfield H, Srivastava A, Ananda G, et al. Exome sequencing reveals pathogenic mutations in90591 strains of mice with Mendelian disorders. Genome Res 2015;25:948-57.
- 906 19. UniProt: a hub for protein information. Nucleic Acids Res 2015;43:D204-12.
- 90720.Forbes SA, Beare D, Gunasekaran P, et al. COSMIC: exploring the world's knowledge of
somatic mutations in human cancer. Nucleic Acids Res 2015;43:D805-11.
- Moor AE, Harnik Y, Ben-Moshe S, et al. Spatial Reconstruction of Single Enterocytes
 Uncovers Broad Zonation along the Intestinal Villus Axis. Cell 2018;175:1156-1167.e1
- 910 Uncovers Broad Zonation along the Intestinal Villus Axis. Cell 2018;175:1156-1167.e15.
 911 22. Bahar Halpern K, Itzkovitz S. Single molecule approaches for quantifying transcription and degradation rates in intact mammalian tissues. Methods 2016;98:134-142.
- 91323.Fisher S, Barry A, Abreu J, et al. A scalable, fully automated process for construction of914sequence-ready human exome targeted capture libraries. Genome Biol 2011;12:R1.
- 91524.Rath N, Morton JP, Julian L, et al. ROCK signaling promotes collagen remodeling to facilitate916invasive pancreatic ductal adenocarcinoma tumor cell growth. EMBO Mol Med 2017;9:198-917218.
- Sansom OJ, Reed KR, Hayes AJ, et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 2004;18:1385-90.
- 920 26. Van der Flier LG, Sabates-Bellver J, Oving I, et al. The Intestinal Wnt/TCF Signature.
 921 Gastroenterology 2007;132:628-32.