Biophysical Journal, Volume 119

Supplemental Information

AimB Is a Small Protein Regulator of Cell Size and MreB Assembly

John N. Werner, Handuo Shi, Jen Hsin, Kerwyn Casey Huang, Zemer Gitai, and Eric A. Klein

1 Supplementary methods

2

3 Strain construction

4 <u>Xylose-inducible expression of conserved hypothetical proteins.</u> Cloning of the entry-vector set

5 of *C. crescentus* open reading frames (ORFs) was described previously (1). Plasmid pZG241,

6 which contains a xylose-inducible promoter upstream of a Gateway cloning cassette, was used as

7 the destination vector (2). The 224 ORFs corresponding to conserved hypothetical proteins were

8 inserted into pZG241 using a previously described *in vivo* LR reaction (1, 3).

9

Chromosomal expression of *mreB-GFP^{SW}*. The gene encoding msfGFP was cloned at the site of 10 a loop-domain of MreB using Gibson assembly. The pNPTS-138 plasmid backbone was PCR 11 amplified using primers pNPTS-F/R, the *mreB* upstream and downstream chromosomal DNA 12 fragments were amplified using primers MreB-up/down-F/R, and msfGFP was amplified using 13 14 msfGFP-F/R. The four fragments were joined using Gibson assembly. The resulting plasmid (pZG1534) was transformed into C. crescentus. Individual colonies were grown overnight in 15 PYE without antibiotic selection and streaked onto PYE-3% sucrose plates to select for bacteria 16 17 that lost the *sacB* cassette. Individual colonies were screened for MreB fluorescence, resulting in strain ZG1511. 18

19

<u>Chromosomal expression of *aimB-FLAG*</u>. The *aimB* upstream and downstream chromosomal
 DNA fragments were amplified using primers EK582/1150 and EK585/1151, respectively, and
 cloned into the HindIII/EcoRI site of pNPTS-138. The resulting plasmid (pEK391) was
 transformed into *C. crescentus*. Individual colonies were grown overnight in PYE without

antibiotic selection and streaked onto PYE-3% sucrose plates to select for bacteria that lost the
 sacB cassette. Individual colonies were screened by PCR using primers EKS212/S260, resulting
 in strain EK399.

27

AimB overexpression strains. To generate C. crescentus AimB overexpression strains, the aimB 28 29 gene was amplified using primers aimB-F/R and inserted into the NdeI/EcoRI site of pBXMCS-2 (plasmid pZG825). A FLAG-tag was added to the C-terminus of AimB by inverse-PCR with 30 primers aimB-FLAG-F/R (plasmid pZG826). These plasmids were electroporated into NA1000 31 or *mreB::mreB-GFP^{SW}* to generate strains ZG870, ZG871, and EK25. To generate low-copy E. 32 coli AimB overexpression strains, aimB-FLAG was PCR-amplified from pZG826 using primers 33 EK809/810 (Ptet) or EK813/814 (Plac). Plasmid backbones were amplified with primers 34 EK807/808 (pBbS2k, Ptet) or EK811/812 (pTrc99a, Plac). The resulting PCR fragments were 35 ligated by Gibson assembly, yielding plasmids pEK188 (Plac) and pEK189 (Ptet); the plasmids 36 were transformed into ZG1516 (mreB::mreB-GFP^{SW}) to generate strains EK191 and EK192. For 37 high-copy expression, Ptet-aimB-FLAG was amplified from pEK189 using primers EK840/841 38 and plasmid pUC19 was amplified with primers EK838/839. The PCR products were ligated by 39 40 Gibson assembly and the resulting plasmid (pEK199) was transformed into ZG1516 to yield strain EK200. High-copy expression of Jann 2546-FLAG was achieved by PCR-amplifying 41 Jann 2546-FLAG from plasmid EK796 using primers EK1175/1176 and ligating the PCR 42 43 product into the Ndel/EcoRI site of pBXMCS-2. The resulting plasmid (EK397) was transformed into NA1000 to yield strain EK398. 44

Supplemental References

47	1.	Werner, J. N., E. Y. Chen, J. M. Guberman, A. R. Zippilli, J. J. Irgon, and Z. Gitai. 2009.
48		Quantitative genome-scale analysis of protein localization in an asymmetric bacterium.
49		PNAS 106(19):7858-7863.
50	2.	Ingerson-Mahar, M., A. Briegel, J. N. Werner, G. J. Jensen, and Z. Gitai. 2010. The
51		metabolic enzyme CTP synthase forms cytoskeletal filaments. Nat Cell Biol 12(8):739-
52		746.
53	3.	Werner, J. N., and Z. Gitai. 2010. High-throughput screening of bacterial protein
54		localization. Methods Enzymol 471:185-204.
55	4.	Evinger, M., and N. Agabian. 1977. Envelope-associated nucleoid from Caulobacter
56		crescentus stalked and swarmer cells. J Bacteriol 132(1):294-301.
57	5.	Irnov, I., Z. Wang, N. D. Jannetty, J. A. Bustamante, K. Y. Rhee, and C. Jacobs-Wagner.
58		2017. Crosstalk between the tricarboxylic acid cycle and peptidoglycan synthesis in
59		Caulobacter crescentus through the homeostatic control of alpha-ketoglutarate. PLoS
60		Genet 13(8):e1006978.
61	6.	Dye, N. A., Z. Pincus, I. C. Fisher, L. Shapiro, and J. A. Theriot. 2011. Mutations in the
62		nucleotide binding pocket of MreB can alter cell curvature and polar morphology in
63		Caulobacter. Mol Microbiol 81(2):368-394.
64	7.	Simon, R., U. Priefer, and A. Pühler. 1983. A broad host range mobilization system for in
65		vivo genetic engineering: transposon mutagenesis in Gram negative bacteria.
66		Bio/Technology 1(9):784-791.

67	8.	Ursell, T. S., J. Nguyen, R. D. Monds, A. Colavin, G. Billings, N. Ouzounov, Z. Gitai, J.
68		W. Shaevitz, and K. C. Huang. 2014. Rod-like bacterial shape is maintained by feedback
69		between cell curvature and cytoskeletal localization. PNAS 111(11):E1025-1034.
70	9.	Thanbichler, M., A. A. Iniesta, and L. Shapiro. 2007. A comprehensive set of plasmids
71		for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic
72		Acids Res 35(20):e137.
73	10.	Amann, E., B. Ochs, and K. J. Abel. 1988. Tightly regulated tac promoter vectors useful
74		for the expression of unfused and fused proteins in <i>Escherichia coli</i> . Gene 69(2):301-315.
75	11.	Lee, T. S., R. A. Krupa, F. Zhang, M. Hajimorad, W. J. Holtz, N. Prasad, S. K. Lee, and
76		J. D. Keasling. 2011. BglBrick vectors and datasheets: A synthetic biology platform for
77		gene expression. J Biol Eng 5:12.
78	12.	Norrander, J., T. Kempe, and J. Messing. 1983. Construction of improved M13 vectors
79		using oligodeoxynucleotide-directed mutagenesis. Gene 26(1):101-106.
80	13.	Chin, J. W., A. B. Martin, D. S. King, L. Wang, and P. G. Schultz. 2002. Addition of a
81		photocrosslinking amino acid to the genetic code of Escherichia coli. Proc Natl Acad Sci
82		U S A 99(17):11020-11024.
83	14.	Cox, R. S., 3rd, M. J. Dunlop, and M. B. Elowitz. 2010. A synthetic three-color scaffold
84		for monitoring genetic regulation and noise. J Biol Eng 4:10.
85	15.	Madeira, F., Y. M. Park, J. Lee, N. Buso, T. Gur, N. Madhusoodanan, P. Basutkar, A. R.
86		N. Tivey, S. C. Potter, R. D. Finn, and R. Lopez. 2019. The EMBL-EBI search and
87		sequence analysis tools APIs in 2019. Nucleic Acids Res.
88		

89 Table S1: Strains used in this study.

C. crescenti	C. crescentus				
Strain	Genotype	Construction	Source		
NA1000	Synchronizable variant of		(4)		
	wild-type C. crescentus strain				
	CB15				
ZG949	Pxyl-aimB (Gateway)	In vivo Gateway cloning of	This study		
		conserved hypothetical			
		genes			
ZG1511	mreB::mreB-GFP ^{SW}	Transformation of NA1000	This study		
		with pZG1534 followed by			
		sucrose selection			
ZG870	pBXMCS-Pxyl-aimB	Transformation of NA1000	This study		
		with pZG825			
ZG871	pBXMCS-Pxyl-aimB-FLAG	Transformation of NA1000	This study		
		with pZG826			
EK25	mreB::mreB-GFP ^{SW} ;	Transformation of ZG1511	This study		
	pBXMCS-Pxyl-aimB-FLAG	with pZG826			
ZG883	pBXMCS-2	Transformation of NA1000	This study		
		with pBXMCS-2			

CJW5939	∆vanA∷pV-dcas9hum-		(5)
	RBSmut1 with plasmid		
	psgRNA-base		
EK335	∆vanA∷pV-dcas9hum-	Transformation of	This study
	RBSmut1 with plasmid	CJW6270 with pEK334	
	psgRNA-aimB		
CJW6270	∆vanA∷pV-dcas9hum-		(5)
	RBSmut1		
JAT684	PmreB::T167A-mreB		(6)
JAT669	PmreB::L23P-mreB		(6)
JAT692	PmreB::D192G-mreB		(6)
JAT699	PmreB::V324A-mreB		(6)
ZG896	PmreB::L23P-mreB;	Transformation of JAT669	This study
	pBXMCS-AimB	with pZG825	
ZG897	PmreB::T167A-mreB;	Transformation of JAT684	This study
	pBXMCS-AimB	with pZG825	
ZG898	PmreB::D192G-mreB;	Transformation of JAT692	This study
	pBXMCS-AimB	with pZG825	
ZG899	PmreB::V324A-mreB;	Transformation of JAT699	This study
	pBXMCS-AimB	with pZG825	
ZG917	PmreB::A171V-mreB	AimB-overexpression	This study
		suppressor screen	

ZG918	PmreB::K236T-mreB	AimB-overexpression	This study
		suppressor screen	
ZG920	PmreB::T277A-mreB	AimB-overexpression	This study
		suppressor screen	
ZG921	PmreB::1290M-mreB	AimB-overexpression	This study
		suppressor screen	
ZG922	PmreB::M74I-mreB	AimB-overexpression	This study
		suppressor screen	
ZG923	PmreB::A20G-mreB	AimB-overexpression	This study
		suppressor screen	
ZG924	PmreB::N21G-mreB	AimB-overexpression	This study
		suppressor screen	
ZG925	PmreB::V170A-mreB	AimB-overexpression	This study
		suppressor screen	
ZG926	PmreB::T168A-mreB	AimB-overexpression	This study
		suppressor screen	
ZG928	PmreB::A325T-mreB	AimB-overexpression	This study
		suppressor screen	
EK398	pBXMCS-jann_2546-FLAG	Transformation of NA1000	This study
		with pEK397	
EK399	aimB::aimB-FLAG	Transformation of NA1000	This study
		with pEK391 followed by	
		sucrose selection	

E. coli			
Strain	Genotype	Construction	Source
S17-1	λ -pir cloning strain, Spec ^R		(7)
XL1-Blue	Cloning strain, Tet ^R		Agilent
			Technologies
ZG1516	mreB::mreB-GFP ^{SW}		(8)
EK191	<i>mreB::mreB-GFP^{SW}</i> ; Plac-	Transformation of ZG1516	This study
	aimB-FLAG	with pEK188	
EK192	<i>mreB::mreB-GFP^{SW}</i> ; Ptet-	Transformation of ZG1516	This study
	<i>aimB</i> -FLAG (low copy)	with pEK189	
EK200	<i>mreB::mreB-GFP^{SW}</i> ; Ptet-	Transformation of ZG1516	This study
	aimB-FLAG (high copy)	with pEK199	
NO36	$\Delta mreB$ (MC4100)		Lab collection
EK85	∆ <i>mreB</i> ; pEVOL-pBpF	Transformation of NO36	This study
		with pEVOL-pBpF	
MreBXL-	<i>∆mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
con	<i>mreB</i> /Para- <i>aimB</i>	with pMreBXL-con	
MreBXL-1	∆ <i>mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{K58} /Para-aimB	with pMreBXL-1	
MreBXL-2	<i>∆mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{L61} /Para-aimB	with pMreBXL-2	

MreBXL-3	<i>∆mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{G62} /Para-aimB	with pMreBXL-3	
MreBXL-4	∆ <i>mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{P65} /Para-aimB	with pMreBXL-4	
MreBXL-5	<i>∆mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{E69} /Para-aimB	with pMreBXL-5	
MreBXL-6	<i>∆mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{A70} /Para-aimB	with pMreBXL-6	
MreBXL-7	∆ <i>mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{R75} /Para-aimB	with pMreBXL-7	
MreBXL-8	<i>∆mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{E83} /Para-aimB	with pMreBXL-8	
MreBXL-9	Δ <i>mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{F102} /Para-aimB	with pMreBXL-9	
MreBXL-10	<i>∆mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{T116} /Para-aimB	with pMreBXL-10	
MreBXL-11	<i>∆mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{G149} /Para-aimB	with pMreBXL-11	
MreBXL-12	<i>∆mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{G166} /Para-aimB	with pMreBXL-12	
MreBXL-13	∆ <i>mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{T167} /Para-aimB	with pMreBXL-13	

MreBXL-14	<i>∆mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{R185} /Para-aimB	with pMreBXL-14	
MreBXL-15	∆ <i>mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{E193} /Para-aimB	with pMreBXL-15	
MreBXL-16	<i>∆mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ¹¹⁹⁶ /Para-aimB	with pMreBXL-16	
MreBXL-17	<i>∆mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{R200} /Para-aimB	with pMreBXL-17	
MreBXL-18	∆ <i>mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{H202} /Para-aimB	with pMreBXL-18	
MreBXL-19	<i>∆mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{E209} /Para-aimB	with pMreBXL-19	
MreBXL-20	∆ <i>mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{K217} /Para-aimB	with pMreBXL-20	
MreBXL-21	<i>∆mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{L240} /Para-aimB	with pMreBXL-21	
MreBXL-22	∆ <i>mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{A260} /Para-aimB	with pMreBXL-22	
MreBXL-23	<i>∆mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{A276} /Para-aimB	with pMreBXL-23	
MreBXL-24	∆ <i>mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{T277} /Para-aimB	with pMreBXL-24	

MreBXL-25	<i>∆mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{D287} /Para-aimB	with pMreBXL-25	
MreBXL-26	Δ <i>mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	mreB ^{K339} /Para-aimB	with pMreBXL-26	
EK210	Δ <i>mreB</i> ; pEVOL-pBpF; Plac-	Transformation of EK85	This study
	<i>mreB</i> ^{R185} /Para- <i>aimB</i> -FLAG	with pMreBXL-14-FLAG	

92 Table S2: Plasmids used in this study.

Name	Description	Source
pZG241	Gateway destination vector based on pJS14 modified	(2)
	to include a xylose-inducible promoter, Tet ^R	
pNPTS-138	sacB expressing plasmid used for allelic exchange in	M.R.K. Alley,
	<i>C. crescentus</i> , Kan ^R	unpublished
pZG1534	pNPTS-138 based plasmid for replacing the	This study
	chromosomal C. crescentus mreB with mreB-GFP ^{SW} ,	
	Kan ^R	
pBXMCS-2	<i>C. crescentus</i> high-copy plasmid with a xylose-	(9)
	inducible promoter, Kan ^R	
pZG825	pBXMCS-2-based plasmid for <i>aimB</i> expression, Kan ^R	This study
pZG826	pBXMCS-2-based plasmid for <i>aimB-FLAG</i>	This study
	expression, Kan ^R	
psgRNA-Base	sgRNA cloning vector for CRISPRi, Kan ^R	(5)
pEK334	<i>aimB</i> sgRNA expression plasmid, Kan ^R	This study
pTrc99a	Ptac containing expression vector used for IPTG	(10)
	induced overexpression in <i>E. coli</i> , Carb ^R	
pEK188	pTrc99a-based plasmid for <i>aimB</i> -FLAG expression,	This study
	Carb ^R	

pBbS2k	Ptet containing low-copy expression vector used for	(11)
	anhydro-tetracycline induced overexpression in E.	
	coli, Kan ^R	
pEK189	pBbS2k-based plasmid for <i>aimB</i> -FLAG expression,	This study
	Kan ^R	
pUC19	Plac containing high-copy expression vector used for	(12)
	IPTG induced overexpression in <i>E. coli</i> , Carb ^R	
pEK199	pUC19-based plasmid with Plac replaced with Ptet-	This study
	<i>aimB</i> -FLAG, Carb ^R	
pEVOL-pBpF	Plasmid encoding a tRNA synthetase/tRNA pair for in	(13)
	<i>vivo</i> incorporation of p-benzoyl-l-phenylalanine in <i>E</i> .	
	<i>coli</i> amber codons (Addgene #31190), Cm ^R	
pZS2-123	Cloning plasmid with 3 promoters to drive	(14)
	independent expression of CFP, YFP, and mCherry	
	(Addgene #26598), Kan ^R	
pEK70	pZS2-123 derived plasmid with CFP cassette removed	This study
	and mCherry replaced with <i>aimB</i> , Kan ^R	
pMreBXL series	pEK70-derived plasmids with YFP replaced by <i>mreB</i>	This study
	containing the respective amber codon mutation; <i>mreB</i>	
	mutants synthesized by Genscript (Table S1), Kan ^R	
pMreBXL-14-FLAG	pMreBXL-14-based plasmid with an AimB C-	This study
	terminal FLAG tag, Kan ^R	

pEK796	Codon optimized <i>jann_2546-FLAG</i> cloned into	This study
	pUC57; synthesized by Genscript, Carb ^R	
pEK397	pBXMCS-2 derived plasmid for xylose-inducible	This study
	expression of Jann_2546-FLAG, Kan ^R	
pEK391	pNPTS-138 based plasmid for replacing the	This study
	chromosomal C. crescentus aimB with aimB-FLAG,	
	Kan ^R	

Table S3: Primers used in this study.

Name	Sequence		
Cloning primers			
pNPTS-F	CTCTGCAGGATATCTGGATC		
pNPTS-R	CTAGTGAGTCGTATTACGTAG		
mreB-up-F	cgtaatacgactcactagTGTTCAAGGAACGCCTGACCCCTTTGCAGGTGGTC		
mreB-up-R	gagccagaGCCGTCGGCCGGCGCGCG		
msfGFP-F	cgacggcTCTGGCTCGAGCAGTAAAGGTGAAGAAC		
msfGFP-R	gacetteGCCCGGCGCGCCAGATTT		
mreB-down-F	cgccgggcGAAGGTCTGTCGATCGACG		
mreB-down-R	ccagatatcctgcagagAAGCTTGGGATTGGGCCC		
aimB-F	tactcatATGACCACCTTCGACGAACG		
aimB-R	tactgaattcTTACTCAGACTTGATCTGCTCGCG		
aimB-FLAG-F	gacgacgacaagTAAGCGCTCGGAGCGTCG		
aimB-FLAG-R	gtccttgtagtcCTCAGACTTGATCTGCTCGCG		
EK582	tactaagcttGTACTCGCTGATCCGGTTGT		
EK585	tactgaattcGGACAGTACTACGGCCATCC		
EK644	TAGAACTTCCGAGAAGTTCA		
EK645	GGTGGTTTGTTTGCCGGATC		
EK646	TAATAACCAGGCATCAAATAAAACGAAAGGC		
EK647	GGCAGGTGCTCCTTCTTAAAGTT		
EK648	tatttgatgcctggttattattaCTCAGACTTGATCTGCTCGC		
EK649	agaaggagcacctgccatgACCACCTTCGACGAACG		
EK679	TAATAATAACCAGGCATCAAATAAAACGAAAGG		
EK680	cttgtcatcgtcatccttgtagtcCTCAGACTTGATCTGCTCGCG		
EK807	ATGTATATCTCCTTCTTAAAAGATCTTTTGAATTCTTTTC		

EK808	GGATCCAAACTCGAGTAAG			
EK809	tttaagaaggagatatacatATGACCACCTTCGACGAAC			
EK810	actcgagtttggatccTTACTTGTCGTCGTCGTCGTC			
EK811	GGTCTGTTTCCTGTGTGAAATTG			
EK812	GGATCCTCTAGAGTCGACC			
EK813	acacaggaaacagaccATGACCACCTTCGACGAAC			
EK814	cgactctagaggatccTTACTTGTCGTCGTCGTCGTC			
EK838	CGAGCTCGAATTCACTGGCC			
EK839	CCTGCAGGCATGCAAGCTTG			
EK840	agtgaattcgagctcgTTAAGACCCACTTTCACATTTAAG			
EK841	ttgcatgcctgcaggTATAAACGCAGAAAGGCC			
EK1003	tagtgGCGTTCGTCGAAGGTGGTCA			
EK1004	aaacTGACCACCTTCGACGAACGCc			
EK1150	gtcgtcgtcGTCCTTGTAGTCCTCAGACTTGATCTGCTCGCGG			
EK1151	tacaaggacGACGACGACAAGTAAGCGCTCGGAGCGTCG			
EK1175	tactcatATGAGCACCTTCGACGACCG			
EK1176	tactgaattcTTACTTGTCGTCGTCGTCCTTGT			
EKS212	CGGATGAAGTGGTTCTGGAC			
EKS260	TTACTTGTCGTCGTCGTCCTTGTAG			

QPCR primers	Forward	Reverse
rpoD	CTCTATGCGATCAACAAGCG	ATAGGCCTTGAGGAACTCGC
aimB	ACGTGCTGCGCAAGGTCT	CCAGCAGCTCGGCCATTT

100 Table S4: MD simulation systems in this study.

Name	Structure source	Ligand	Atoms	Simulation time	Replicates
				(ns)	
<i>Cc</i> MreB	PDB ID: 4CZM	ATP, Mg ²⁺	84,000	100	1
<i>Ec</i> MreB	PDB ID: 4CZM	ATP, Mg ²⁺	84,000	100	1
	(homology model)				
CcMreB -	PDB ID: 4CZM;	ATP,	89,000	100	2
AimB	PDB ID: 2KZC	Mg ²⁺ ,			
	(homology model)	AimB			
EcMreB -	PDB ID: 4CZM	ATP,	89,000	100	2
AimB	(homology model);	Mg ²⁺ ,			
	PDB ID: 2KZC	AimB			
	(homology model)				
CcMreB -	PDB ID: 4CZM;	ATP,	89,000	100	2
Jann_2546	PDB ID: 2KZC	Mg ²⁺ ,			
		Jann_2546			

112 Supplemental Figure 2: Relative expression levels of MreB and AimB in *C. crescentus*.

- 113 AimB-FLAG and MreB-GFP^{SW} expression were assayed by immunoblotting. Samples
- 114 were normalized by OD. AimB-FLAG expression was induced in *C. crescentus* with
- 115 0.3% xylose for 9 h. Cultures were back-diluted 1:100 after 4.5 h to keep cells in log-
- 116 phase.

Supplemental Figure 3: Identification of AimB-overexpression suppressor mutants.
(A-C) The locations of the identified AimB-overexpression suppressor mutants are
mapped to structures for AimB (A), MreB (B), and the MreB longitudinal
polymerization interface (C). In (C), two interacting MreB monomers are colored by
dark blue (top) and green (bottom), respectively.

WT Plac-aimB Ptet-aimB

124	Supplemental Figure 4: Relative expression levels of MreB and AimB in <i>E. coli</i> .
125	AimB-FLAG and MreB-GFP ^{SW} expression were assayed by immunoblotting. Samples
126	were normalized by OD. AimB-FLAG expression was induced in E. coli with 1 mM
127	IPTG (Plac) or 100 ng/mL aTc (Ptet) for 9 h. Cultures were back-diluted 1:100 after 4.5 h
128	to keep cells in log-phase.

130 Supplemental Figure 5: Justification of the AimB homology model.

137 similar to AimB.

138	C) Overexpression of Jann_2546 for 24 h resulted in a significant increase (4%) in cell width
139	compared to cells harboring the empty expression plasmid ($n>230$ cells per strain; p -
140	values, two-tailed t-test). White circles represent the mean of each sample.
141	D) AimB and Jann_2546 were induced from the same plasmid backbone with 0.3% xylose
142	for 8 h and assessed by Western blot. Image quantification indicated \sim 70% lower
143	expression of Jann_2546.

Supplemental Figure 6: Comparison of AimB binding cleft in *C. crescentus* and *E. coli*.
MreB residues that approach within 5 Å of AimB in our molecular dynamics
simulations (Figure 4F) are highlighted in orange. The protein sequences of *Cc*MreB
and *Ec*MreB were aligned using Clustal Omega (15) and the interacting residues are
highlighted.

150 Supplemental Movies

152	Movie S1:	Molecular	dynamics	s simulation of	f CcMreB-AimB	interactions.	The interactions
-----	-----------	-----------	----------	-----------------	---------------	---------------	------------------

- between AimB and CcMreB were simulated over 100 ns using molecular dynamics (see
- 154 Methods). AimB remained stably associated with *Cc*MreB.
- 155
- 156 Movie S2: Molecular dynamics simulation of *Ec*MreB-AimB interactions. The interactions
- between AimB and *Ec*MreB were simulated over 100 ns using molecular dynamics (see
- 158 Methods). AimB did not remain stably associated with *Ec*MreB.