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S1 Fynewever-Yethiraj density functional theory for LChLCs

In the context of classical density functional theory, the Helmholtz free energy of a system of

polyatomic molecules may be written in the general form (45)

F [ρm] = Fid[ρm] + Fex[ρm], (1)

where the microscopic density ρm generally depends on the discrete set of atom positions

{ri}i≥1 and bond orientations {Rj}j≥1 characterising the full microscopic state of each in-

dividual constituent particle. The center-of-mass position r and molecular orientation R of a

given particle in any conformation are uniquely determined by the specification of all internal

degrees of freedom {ri} and {Rj}, so that one may write, without loss of generality,

ρm
(
{ri}, {Rj}

)
= ρm

(
r,R, {X}

)
, (2)



with {X} ≡
(
{ri}i≥2, {Rj}j≥2

)
. Let r′i and R′j be the respective projections of ri and Rj in

the molecular frameR centerd on r,

r′i ≡ RT · (ri − r), (3)

R′j ≡ RT · Rj, (4)

with RT the matrix transpose of R. The Fynewever-Yethiraj (FY) approximation postulates

that ρm may be cast in the decoupled form (33, 34, 46)

ρm
(
r,R, {X}

)
' ρ(r,R)× P

(
{X ′}

)
, (5)

where {X ′} ≡
(
{r′i}i≥2, {R′j}j≥2

)
. In Eq. (5), ρ corresponds to the molecular density de-

scribing the global distribution of particle centers of mass r and orientations R throughout the

sample, while P quantifies the distribution of the conformational degrees of freedom r′i andR′j

in the local molecular frame, subject to the respective normalisation constraints (46)

ˆ
d{X ′}P

(
{X ′}

)
= 1, (6)

ˆ
V

dr

˛
dR ρ(r,R) = N. (7)

In the FY theory, P is assumed to be entirely determined by the intra-molecular interaction

potential Uintra = Uintra

(
{X ′}

)
, so as to be independent of the overall position r and orientation

R of the molecule. In the absence of external fields, this approximation amounts to neglect-

ing the effects of many-particle interactions on conformational statistics, and is therefore only

rigorously justifiable in the case of highly-stiff molecules, for which the accessible conforma-

tional space is largely independent of density in the regime of low-to-moderate particle packing

fractions (33).

Discarding the effects of inter-molecular interactions, the ideal component Fid of the Helmholtz



free energy functional is given by (46, 47)

βFid[ρm] =

ˆ
V

dr

˛
dR
ˆ
d{X} ρm

(
r,R, {X}

)
×
{

log
[
λ3dBρm

(
r,R, {X}

)]
− 1 + βUintra

(
{X}

)}
,

with λdB the thermal de Broglie wavelength. Using Eqs. (5)–(7),

βFid[ρ] =

ˆ
V

dr

˛
dR ρ(r,R)

{
log
[
λ3ρ(r,R)

]
− 1
}
, (8)

where the lengthscale λ now reads as

λ = λdB exp

{
1

3

ˆ
d{X ′}P

(
{X ′}

)[
logP

(
{X ′}

)
+ βUintra

(
{X ′}

)]}
,

in which we used the change of variables of Eqs. (3) and (4), with unit Jacobian determinant.

Note that λ generally depends on intra-molecular properties as well as temperature, but is in-

dependent of ρ. In the case of a prolate nematic phase with arbitrary director field n(r), the

molecular density function ρ takes the form

ρ(r,R) = ρψ
{
u · n(r)

}
, (9)

where ρ ≡ N/V is the molecular number density, and the orientation distribution function

(ODF) ψ describes the ordering of the long molecular axes u ≡ R · ex about the local di-

rector n(r). Note that Eq. (9) is only valid in the limit where the spatial fluctuations of n

are negligible at the molecular lengthscale, as is typical in experimental cholesterics, and in

the absence of long-ranged biaxial correlations, as is commonly presumed in theoretical stud-

ies (14–16, 25, 48). Eq. (9) further assumes the local molecular density ρ to be unaffected by

director fluctuations, which is expected to be appropriate in the case of the twist deformations

characteristic of LChLCs (49). Let us define the unit-Jacobian transformation

R′ ≡ T (r)T · R, (10)



with T (r) a rotation matrix such that

n(r) = T (r) · n(0) ≡ T (r) · n0. (11)

Eqs. (8) and (9) immediately yield

βFid[ψ]

V
= 4π2ρ

ˆ 1

−1
du′x ψ(u′x)

{
log
[
ρλ3ψ(u′x)

]
− 1
}
, (12)

where u′x ≡ nT
0 · R′ · ex, and we dropped the overline notation from ρ. Thus, Eq. (12) indicates

that Fid is independent of the configuration of the director field n.

In the case of highly stiff and elongated molecules, the excess component Fex of the Helmholtz

free energy may be related to the inter-molecular interaction potential Uinter at the second virial

level through the Onsager mean-field functional (47),

βFex[ρm] = −1

2

¨
d1d2 ρm(1)ρm(2)f(1,2), (13)

where the shorthand i ≡
(
ri,Ri, {Xi}

)
refers to the full microscopic degrees of freedom asso-

ciated with particle i, and f is the so-called Mayer function,

f(1,2) ≡ exp
{
− βUinter(1,2)

}
− 1.

Using Eqs. (5) and (9), Eq. (13) may be recast as (25, 33, 46)

βFex[ψ] = −ρ
2

2

¨
V

dr1dr2

‹
dR1dR2 ψ

{
u1 · n(r1)

}
ψ
{
u2 · n(r2)

}
f(r1, r2,R1,R2), (14)

with f the conformational average of the Mayer function,

f(r1, r2,R1,R2) ≡
¨

d{X ′1}d{X ′2}P
(
{X ′1}

)
P
(
{X ′2}

)
f(1,2). (15)

Note that the integrand in Eq. (14) is non-zero only if f(r1, r2,R1,R2) 6= 0, i.e., if there

exists two molecular conformations with respective center-of-mass positions r1,2 and overall

orientations R1,2 such that Uinter 6= 0. It follows that in the case of short-range interaction



potentials, a pair of molecules 1 and 2 may physically contribute to the integral in Eq. (14) only

if their center-of-mass separation distance r12 ≡ r2 − r1 is of the order of the typical molecular

dimensions. Let us introduce the particle barycenter R = (r1 + r2)/2,

r1,2 = R∓ r12
2
. (16)

Under the assumptions of Eq. (9), we may thus write (15)

n(ri) ' n(R)∓ ∇n(R) · r12
2

+
∇2n(R) : (r12 ⊗ r12)

8
.

with ⊗ and : the respective tensor and double dot products. In the case of a cholesteric phase of

axis ez and inverse pitch q ≡ 2π/P , the helical modulation of the director field takes the form

n(R) = cos(qRz) ex + sin(qRz) ey,

where Rz ≡ R · ez and we have chosen the laboratory frame such that ex ≡ n0. Let T (R) ≡[
e′x e

′
y e
′
z

]
be a local rotating frame satisfying Eq. (11),

T (R) ≡

cos(qRz) − sin(qRz) 0
sin(qRz) cos(qRz) 0

0 0 1

 .
It is straightforward to show that

∇n(R) = q e′y ⊗ e′z,

∇2n(R) = −q2 e′x ⊗ e′z ⊗ e′z,

which directly lead to

ψ
{
ui · n(ri)

}
= ψ(u′ix)∓

qu′iyr
′
z

2
ψ̇(u′ix)−

u′ix
2

{
qr′z
2

}2

ψ̇(u′ix) +
1

2

{
qu′iyr

′
z

2

}2

ψ̈(u′ix) +O(q3),

(17)

where primed quantities are expressed in the rotating frame T (R), with u′ij ≡ ui · e′j and

r′z ≡ r12 · e′z. Plugging Eq. (17) into Eq. (14), and using the changes of variables of Eqs. (10)



and (16), we obtain

F =

ˆ
V

dR f (R) ≡
ˆ
V

dR (f0 + fd),

in which f0 is the free energy density of the uniform nematic state with director n0 ≡ ex,

βf0[ψ] = 4π2ρ

ˆ 1

−1
dux ψ(ux)

{
log
[
ρλ3ψ(ux)

]
− 1
}

− ρ2

2

ˆ
V

dr12

‹
dR1dR2 ψ(u1x)ψ(u2x)f(r12,R1,R2), (18)

where we used Eqs. (1) and (12), and dropped the prime notation from the dummy integration

variables. The integration by parts of the second-order terms in Eq. (17) with respect to R yields

the distortion free energy density fd in the form, to quadratic order in q (24),

fd[ψ] = −kt[ψ]q +K2[ψ]
q2

2
, (19)

which by term-to-term comparison with the Oseen-Frank free energy (Eq. (7) in the main text)

leads to the microscopic expressions of the chiral strength kt and twist elastic modulus K2 as

direct generalisations of the Poniewierski-Stecki formulae (50),

βK2[ψ] =
ρ2

2

ˆ
V

dr12

‹
dR1dR2 f(r12,R1,R2)× ψ̇(u1x)ψ̇(u2x)u1yu2yr

2
z , (20)

βkt[ψ] =
ρ2

2

ˆ
V

dr12

‹
dR1dR2 f(r12,R1,R2)× ψ(u1x)ψ̇(u2x)u2yrz, (21)

from which one recovers Eqs. (9) and (10) of the main text, with cos θi ≡ uix.

In the limit of long-wavelength director distortions, it may be assumed that the degree of

local orientational order is unaffected by the spatial variations of n, so that the equilibrium ODF

ψeq of the cholesteric phase may be assimilated to that ψ0
eq of the uniform nematic state. This

approximation has been previously shown to be valid for cholesteric pitches as short as a few

dozen particle diameters (25), and is expected to hold without restrictions in our case. ψeq may

then be obtained through the functional minimisation of f0 (Eq. (18)) in the self-consistent form

ψeq(ux) =
1

Z
exp

{
ρ

4π2

ˆ 1

−1
du′x ψeq(u

′
x)κ(ux, u

′
x)

}
,



with Z a Lagrange multiplier such that

4π2

ˆ 1

−1
dux ψeq(ux) = 1,

and κ a generalised excluded-volume kernel (34),

κ(ux, u
′
x) =

ˆ
dr12

‹
dR1dR2 f(r12,R1,R2)δ(u1x − ux)δ(u2x − u′x). (22)

As in Refs. (33,34,46), we sample the conformational distribution P by single-molecule simula-

tions, following the numerical protocol described in the main text (see Materials and Methods).

In this context, the Mayer function f (Eq. (15)) is averaged over all pairs of simulated origami

conformations in the computation of Eqs. (20), (21) and (22), and the inverse equilibrium

cholesteric pitch qeq is finally obtained by minimisation of fd at fixed T and ρ (Eq. (19)) (24),

qeq(ρ, T ) =
kt[ψeq]

K2[ψeq]
.

S2 Chiral potential of mean force and phase handedness

In the following, let us denote the properties relative to right- and left-handed pair configurations

by + and − subscripts, respectively. The angular two-body potential of mean force (PMF) U±

associated with two-particle arrangements of fixed handedness is given by (15, 51)

βU±(θ) ≡ − log
〈
e−βUinter

〉(θ)
± , (23)

where the configurational average
〈
·
〉(θ)
± is defined as

〈
e−βUinter

〉(θ)
± ≡

1

Vint

ˆ
V

dr12

‹
dR1dR2 e

−βUinter(r12,R1,R2)

× δ(u1 · u2 − cos θ)Θ
{
± r12 · (u1 × u2)

}
, (24)

using the notations of Section S1. In Eq. (24), the Heaviside function Θ mirrors the fact that

the handedness of an arrangement of two particles with center-of-mass separation vector r12 ≡



r2 − r1 and respective long axes ui ≡ Ri · ex is determined by the sign of r12 · (u1 × u2), and

Vint represents the total volume spanned by the spatial and angular integrals,

Vint =
(8π2)2

2
V,

where the factor 1/2 accounts for the equal division of the two-particle configurational space

between left- and right-handed arrangements. Note that in the case of flexible particles, Eq. (24)

may be further averaged over a representative ensemble of molecular conformations using the

numerical procedure outlined in the main text (see Materials and Methods). In this study, we

use for the volume V the smallest cubic box containing all possible interacting configurations

of any two origami conformations.

In the context of Eqs. (23) and (24), a system of two particles with fixed inter-axis angle θ12

(Fig. 2A) may adopt a thermodynamically-stable right-handed configuration if their net repul-

sion is minimised in a right-handed arrangement — i.e., if U+(θ12) < U−(θ12). Conversely,

U+(θ12) > U−(θ12) indicates a thermodynamic preference for left-handed arrangements. The

relative stability of chiral two-particle assemblies is thus quantified by the chiral component of

the PMF,

∆cU(θ) ≡ U+(θ)− U−(θ) = kbT log

〈
e−βUinter

〉(θ)
−〈

e−βUinter

〉(θ)
+

. (25)

In the case of particles with high aspect ratios interacting through short-ranged repulsive poten-

tials, it is easy to verify that only a small statistical fraction of the configurations sampled in

Eq. (24) may display a significant interaction energy Uinter > 0, so that

〈
e−βUinter

〉(θ)
± −→ 1 ∀θ ∈ [−π/2, π/2].

The Taylor expansion of Eq. (25) then reads as, to leading order in 1−
〈
e−βUinter

〉
±,

∆cU(θ) = kbT
{〈
e−βUinter

〉(θ)
− −

〈
e−βUinter

〉(θ)
+

}
,



Figure S1: Chiral two-body PMF of ground-state and thermalised origamis. A) Chiral
component of the angular PMF (∆cU ) as a function of origami inter-axis angle (θ12, see Fig. 2A)
for ground-state filaments. Positive (resp. negative) values of θ12 denote right-handed (resp. left-
handed) two-particle arrangements. Solid dots mark the locations of the curve minima, as
discussed in the text, and are only displayed in the case of pure steric repulsion for clarity. B)
Same as A) for thermalised origamis.

and one recovers the definition of the chiral pair excluded volume employed in Refs. (48)

and (26) for systems of hard particles, up to a constant multiplicative prefactor.

It is apparent from Fig. S1 that the chiral PMFs of thermalised origamis are significantly

larger in magnitude than those of their respective ground states, and are also relatively insensi-

tive to the inclusion of electrostatic repulsion. These two observations evidence the ascendency

of long-wavelength backbone deformations over local axial twist in their LChLC ordering, as

the larger lengthscales associated with solenoidal writhe render the chiral assembly of ther-

malised filaments largely independent of the detailed nature of their much shorter-ranged re-

pulsive interactions. The PMFs of thermalised origamis are further found to bear a unique

minimum θm such that θm < 0 for left-twisted filaments and θm > 0 for their right-twisted

counterparts (Fig. S1B), thus ensuring their stabilisation of iso-chiral LChLC arrangements; a

thorough discussion of the quantitative link between phase handedness and chiral PMFs may

be found in Ref. (26).



Conversely, the PMFs of ground-state filaments interacting purely through steric repulsion

display a shallower minimum at large inter-axis angles (θm ' +70◦, Fig. S1A), corresponding

to the close-approach configuration of ground-state duplexes, as the helical threads of B-DNA

form a fixed angle of roughly 35◦ with respect to the normal to the double-helix axis (27).

This large value is obviously incompatible with the local orientational order of LChLCs, but is

nonetheless associated with a regime of weakly-negative values of ∆cU at smaller angles θ12 >

0 in the case of the s, 1x-lh and 2x-lh origami variants — and thus leads to their formation of

stable right-handed phases. However, the chiral PMF of 1x-rh filaments bears a local secondary

minimum θl at small inter-axis angles of about −20◦ (Fig. S1A), arising from their weak right-

handed axial twist, which instead stabilises their left-handed LChLC assembly.

Finally, we report that electrostatic interactions greatly reduce the magnitude of the chiral

PMFs for all ground-state filaments, indicating that the inclusion of longer-ranged repulsion re-

sults in an effective screening of their local chiral molecular surfaces — and therefore unwinds

their equilibrium pitches (32). This conclusion is consistent with the recent results of extensive

all-atom simulations of short DNA oligomers (31), in which the net contribution of electro-

static interactions to the chiral PMF was found to be negligible at comparable monovalent salt

concentrations.

S3 Oseen-Frank twist elastic moduli and chiral strengths

We reproduce in Fig. S2 the density dependence of the Oseen-Frank twist elastic modulus K2

and chiral strength kt in the case of thermalised origami filaments, computed following the pro-

cedure outlined in the main text (see Materials and Methods). The orders of magnitudes of

the obtained values are in very good agreement with experimental measurements performed in

filamentous virus solutions (52), whose molecular dimensions, relative flexibility and absolute

cholesteric pitches are comparable to those of the origamis (21). The general tendencies appar-



Figure S2: Twist elastic modulus and chiral strength of thermalised origamis. A) Oseen-
Frank twist modulus (K2) as a function of particle concentration (c) for the different thermalised
origami variants. B) Same as A) for the chiral strength (kt).

ent in Fig. S2 are also consistent with experimental results on virus assemblies, with bothK2 and

kt displaying a marked increase in magnitude with increasing particle concentration (52). The

observed stiffening of twist curvature elasticities upon the inclusion of electrostatic repulsion

(Fig. S2A) further mirrors the experimental variations of K2 with decreasing salt concentration

in such systems (52). The precise experimental determination of these quantities in LChLC

phases of origami filaments would be desirable for the thorough investigation of these effects,

and for further quantitative comparisons with the theoretical predictions of Fig. S2.

S4 Derivation of an helicity order parameter

Let us parametrise an arbitrary backbone conformation of an origami with contour length lc by

a continuous curve r(s), where s ∈ [0, lc] is the curvilinear abscissa. The local unit tangent to

the curve reads as

t(s) =
dr

ds
≡ t‖(s)u + t⊥(s), (26)

with u the long axis of the conformation as defined in the main text (see Materials and Methods)

and t⊥ · u = 0. Due to the large bending rigidity of the filaments, we assume the transverse



fluctuations of r to be small,

‖t⊥(s)‖ =

∥∥∥∥dr⊥ds
∥∥∥∥� 1,

where we used the notation of Fig. 3A in the main text, with ‖·‖ the Euclidean norm. Thus,

t‖(s) =
√

1− ‖t⊥(s)‖2 = 1 +O
(
‖t⊥‖2

)
,

and integrating Eq. (26) yields, to leading order in t⊥,

r(s) = r0 + su + r⊥(s), (27)

where r0 = r(0)− r⊥(0). Consistently with the previous approximations, we further assimilate

the filament long axis u with the normalised end-to-end separation vector,

u ∼=
r(lc)− r(0)

‖r(lc)− r(0)‖
,

so that Eq. (27) imposes simple periodic boundary conditions for r⊥,

r⊥(0) = r⊥(lc).

r⊥ may then be expressed in the form of an inverse Fourier transform,

r⊥(s) =
1

lc

∑
k

r̂⊥(k)× e2iπks, (28)

with discrete wavenumbers k = n/lc for any non-zero integer n and coefficients

r̂⊥(k) =

ˆ lc

0

ds r⊥(s)× e−2iπks ≡ r̂⊥v(k)v + r̂⊥w(k)w. (29)

Let |·| be the complex modulus, and

eiφv(k) ≡ r̂⊥v(k)

|r̂⊥v(k)|
, (30)

eiφw(k) ≡ r̂⊥w(k)

|r̂⊥w(k)|
. (31)



Using Eqs. (27)–(31), the backbone conformation rk associated with a transverse deformation

mode of arbitrary wavenumber k is given by the parametric equation

rk(s) = su +
2

lc

{
|r̂⊥v(k)| cos[2πks+ φv(k)]v + |r̂⊥w(k)| cos[2πks+ φw(k)]w

}
. (32)

In the most general case, Eq. (32) describes an elliptical helix of axis u and pitch p = 1/k.

The shape chirality associated with a deformation mode rk is thus quantified by the anisotropy

of its elliptical cross-section, which we now proceed to analyse. In the following, we omit some

of the explicit k dependences in order to alleviate the notations when no confusion can arise.

Let us denote by

‖r̂⊥‖ ≡
√

r̂⊥ · r̂ ∗⊥ =

√
|r̂⊥v|2 + |r̂⊥w|2 (33)

the Euclidean modulus of r̂⊥, and define

θ ≡ arccos
|r̂⊥v|
‖r̂⊥‖

, (34)

A ≡ 2‖r̂⊥‖
lc

. (35)

Using Eqs. (32)–(35), the transverse components of rk may be rewritten as

rkv(s) ≡ rk(s) · v = A cos θ × cos(ωs+ φv), (36)

rkw(s) ≡ rk(s) ·w = A sin θ × cos(ωs+ φw), (37)

with ω ≡ 2πk. Eq. (37) then yields

rkw(s)

A sin θ
= cos(ωs+ φv) cosφ+ sin(ωs+ φv) sinφ,

where

φ ≡ φv − φw. (38)

Thus, using Eq. (36),

rkw(s)

A sin θ
− rkv(s)

A cos θ
cosφ = sin(ωs+ φv) sinφ, (39)



and Eq. (36) immediately yields the further relation

sin(ωs+ φv) = ±

√
1−

{
rkv(s)

A cos θ

}2

. (40)

Plugging Eq. (40) into Eq. (39) leads to a quadratic equation for rkv and rkw,(
rkv

A cos θ

)2

+

(
rkw

A sin θ

)2

− 2 cosφ
rkvrkw

A2 cos θ sin θ
= sin2 φ. (41)

Denoting by rk⊥ the total transverse component of rk,

rk⊥(s) ≡ rkv(s)v + rkw(s)w,

Eq. (41) may be recast in the compact form

rTk⊥ · Q · rk⊥ = 1,

with rTk⊥ the matrix transpose of rk⊥ and Q the matrix representation of the quadratic form in

Eq. (41),

Q =
1

sin2 φ

 1
(A cos θ)2

− cosφ
A2 cos θ sin θ

− cosφ
A2 cos θ sin θ

1
(A sin θ)2

 .
The respective lengths r± of the semi-major and semi-minor elliptical axes are then related to

the respective largest and smallest eigenvalues λ± of Q through (53)

r± = 1/
√
λ∓,

which yields, after rearrangements,

r± = A

√
1±

√
1− sin2 φ sin2 2θ

2
. (42)

Interestingly, Eq. (42) bears a strong resemblance to the Jones vector parametrisation of the

polarisation ellipse in classical electrodynamics (54), which stems from the similarity between



Eq. (32) and the field equation of a polarised electromagnetic wave propagating along the di-

rection u.

Let us define

H ≡ sinφ sin 2θ. (43)

An explicit expression for H in terms of the Fourier components r̂⊥(k) may be obtained by

substituting Eqs. (33) and (34) for θ,

sin 2θ = 2 cos θ sin θ =
2 |r̂⊥v| |r̂⊥w|
|r̂⊥v|2 + |r̂⊥w|2

,

and substituting Eqs. (38), (30) and (31) for φ,

eiφ = eiφve−iφw =
r̂⊥v × r̂ ∗⊥w
|r̂⊥v| |r̂⊥w|

.

Eq. (43) may thus be rewritten in the form

H = 2×
=
{
r̂⊥v × r̂ ∗⊥w

}
|r̂⊥v|2 + |r̂⊥w|2

= 2×
=
{
ĉvw
}

ĉvv + ĉww
, (44)

and one recovers the definition of Eq. 4 in the main text, with ĉvw(k) the Fourier components of

the cross-correlation function of r⊥v and r⊥w as given by the convolution theorem,

ĉvw(k) = r̂⊥v(k)× r̂ ∗⊥w(k).

Using Eqs. (42) and (43), the transverse eccentricity of the elliptical cross-section reads as

e2 ≡
r2+ − r2−
r2+

=
2
√

1−H2

1 +
√

1−H2
.

A necessary and sufficient condition for the deformation mode rk to describe an ideal circular

helix is given by

e(k) = 0 ⇐⇒ H(k) = ±1.

Conversely,

e(k) = 1 ⇐⇒ H(k) = 0



describes the degenerate case in which the elliptical cross-section collapses to a flat line seg-

ment, leading to an achiral deformation mode. The mean solenoidal radius rm of an arbitrary

deformation mode may finally be obtained in the compact form

rm ≡
√
r+ × r− = A

√
|H|
2
.

The magnitude of H(k) may thus be understood as a measure of the degree of circular he-

licity of the deformation mode rk. The link between the sign of H(k) and the corresponding

helical handedness may be elucidated by considering the case of an ideal circular helical con-

formation of axis u, radius rh > 0 and inverse pitch q = 1/ph. The general parametric equation

of such a conformation reads as, in the limit of weak helical curvature (qrh � 1),

rhq (s) = su + rh cos(2πqs+ φh)v + rh sin(2πqs+ φh)w, (45)

with φh ∈ [0, 2π]. In the convention of Eq. (45), the handedness of the helix is quantified by the

sign of q, with q > 0 (resp. q < 0) corresponding to a right-handed (resp. left-handed) helicity.

Using the previous notations, the Fourier components of the transverse vector rhq⊥ associated

with Eq. (45) read as

r̂ hq⊥(k) =

lc ×
rhe
±iφh

2

(
v ± e−iπ/2w

)
if k = ±q

0 if |k| 6= |q|
.

In this case, for any wavenumber k > 0, Eq. (44) reduces to

H(k) = δk,|q| × sgn q,

and it is easy to check that Eqs. (42), (33) and (35) yield

r+(k) = r−(k) = δk,|q| × rh,

with δ the Kronecker delta and sgn the sign function. Therefore, the handedness of a defor-

mation mode with arbitrary wavenumber k > 0 may be determined by the sign of H(k), with

H(k) > 0 andH(k) < 0 respectively describing a right- and left-handed helicity.



S5 Fluctuation spectrum from the equipartition theorem

Using the notations of Section S4, the enthalpic penalty associated with the bending response

of a single origami to thermal fluctuations reads as, in the case of weak curvature deformations,

∆Hbend =
K
2

ˆ lc

0

ds

∥∥∥∥d2r⊥ds2

∥∥∥∥2, (46)

where the bending modulus K is related to the origami persistence length lp through

K = lpkbT. (47)

Substituting Eqs. (28) and (29) for r⊥ in Eq. (46) yields

∆Hbend =
K
2lc
×
∑
k

(2πk)4
{
|r̂⊥v(k)|2 + |r̂⊥w(k)|2

}
. (48)

Assimilating the different transverse deformation modes in Eq. (48) to decoupled degrees of

freedom, the equipartition theorem imposes for r̂⊥v and r̂⊥w

〈
|r̂⊥v(k)|2

〉
=
〈
|r̂⊥w(k)|2

〉
=
kbT lc

K
× 1

(2πk)4
.

Thus, using Eqs. (33) and (47),

〈
‖r̂⊥(k)‖2

〉
=
lc
lp
× 1

8π4k4
, (49)

valid in the limit of long-wavelength fluctuations (k → 0).

S6 Twist-writhe conversion and helical fluctuations

Let us consider a long origami filament whose extremities are firmly clamped to impose the

parallel alignment of its backbone end tangents,

dr

ds

∣∣∣∣
s=0

=
dr

ds

∣∣∣∣
s=lc

≡ t0. (50)



The origami backbone curve r is defined as

r ≡ 1

6

6∑
i=1

ri,

where the continuous centerline ri(si) of the i-th constituent DNA duplex is obtained by con-

tour interpolation of the center-of-mass positions of its bonded nucleotides (see Materials and

Methods). For simplicity, we neglect the effects of duplex splaying at the origami ends, and

thus assume Eq. (50) to hold at each of the center curve extremities,

dri
dsi

∣∣∣∣
si=0

=
dri
dsi

∣∣∣∣
si=li

= t0.

We further restrict our study to the regime of weak bending deformations of the duplex center-

lines about the straight backbone conformation of the origami ground state, and neglect potential

fluctuations in their respective contour lengths li.

Under these assumptions, the formulation of the Călugăreanu-Fuller-White theorem ex-

tended to the treatment of open curves (41) states that the linking number Lki of each individual

duplex may be decomposed into twist and writhe contributions,

Lki = Twi + Wri. (51)

In this context, Lki represents the (signed) number of net right-handed turns per unit contour

length by which the two strands of the duplex wind around t0 (41). These turns may result in

both a local twist of the strands about their common centerline ri, as quantified by the twist

density Twi, and/or in a global supercoiling of the centerline itself, as measured by the writhe

integral Wri. It should be noted that the linking number Lki is generally not a topological

invariant in the case of non-circular DNA fragments. Within the origami filament architecture,

Lki is initially constrained by the designed locations of the inter-helical crossovers, but may

partially relax towards its preferred unhindered value Lk0 — thus inducing global axial twist in

the origami ground state (22).



Within ground-state B-DNA, the relaxed linking number Lk0 is entirely absorbed in the

form of twist strain,

Lk0 = Tw0 '
1

10.5
bp−1. (52)

The axial twist handedness of an origami filament comprised of duplexes with linking number

Lki is therefore determined by the sign of ∆Lki ≡ Lki − Lk0, with ∆Lki > 0 (∆Lki < 0)

respectively denoting a residual over-winding (under-winding) of the duplexes, associated with

a global left-handed (right-handed) compensatory twist of the origami. The total elastic energy

of a constituent duplex, as defined by an arbitrary centerline curve ri and uniform twist density

Twi, may be obtained as a straightforward generalisation of Eq. (46) (55),

∆Hi =
1

2

ˆ li

0

dsi

{
Ki

∥∥∥∥d2rids2i

∥∥∥∥2 + 4π2Ci

(
Twi − Tw0

)2}
,

with Ki and Ci the respective effective bending and twisting moduli of B-DNA within the

origami structure. Eqs. (51) and (52) immediately yield

∆Hi =
Ki

2

ˆ li

0

dsi

∥∥∥∥d2rids2i

∥∥∥∥2 + 2π2Cili

(
∆Lki −Wri

)2
. (53)

It is apparent that the twist elastic contribution in Eq. (53) is minimised by conformations

in which ∆Lki and Wri bear equal sign and magnitude, leading to a favoured positive (right-

handed) supercoiling in the case of left-twisted origamis (∆Lki > 0, Wri > 0), and negative

(left-handed) supercoiling for their right-handed counterparts (∆Lki < 0, Wri < 0). However,

this twist relaxation mechanism is hindered by the high penalty in bending energy arising from

the finite curvature of the resulting solenoidal centerline deformations. The competition of

these two effects, acting constructively on each duplex within the origami structures, leads to

the weak anti-chiral backbone fluctuations underpinning their LChLC assembly.
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