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Kinetic simulations 

Time courses of parameters from XAS were simulated on the basis of a consecutive 3-step 

reaction scheme (Eq. 1) and using Eq. S1 (Y1-4, scaling factors) for description of the formation 

of states C (i.e., Hox-CO) and D (i.e., Hox), with the respective time constants () given in the 

text corresponding to the inverted rate constants (i = ki
-1):  
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In the XAS data simulations it was assumed that species C and D were visible simultaneously 

in the data so that the sum of the C(t) and D(t) terms was included with individual scaling factors 

Y3 and Y4. 
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Table S1: EXAFS simulation parameters.a 

 

sample 
Fe-C(-N/O) Fe-S Fe-Fe RF 

[%] N [per Fe] / R [Å] / 22 x103 [Å2] 

[2Fe]adt 

2.0* / 1.81 (1.76) / 3& 

2.0* / 2.75 / 3& 

2.0* / 1.42 / 8§# 

1.0* / 2.02 (1.94) / 3& 

1.0* / 2.98 / 3& 

1.0* / 1.57 / 8§# 

2.0* / 2.29 (2.28) / 3 1.0* / 2.51 (2.51) / 3 14.2 

apo-HydA1 - 4.1 / 2.29 (2.28) / 7 2.8 / 2.72 (2.72) / 10 13.5 

apo-HydA1 

+ [2Fe]adt 

mean 

1.0* / 1.87 (1.86) / 5* 

1.0* / 2.97 / 5* 

1.0* / 1.34 / 5*# 

3.3* / 2.29 (2.30) / 6 
0.3* / 2.52 (2.55) / 2* 

2.0* / 2.71 (2.69) / 9 
10.5 

32 sb 

1.0* / 1.86 / 5* 

1.0* / 2.98 / 5* 

1.0* / 1.07 / 5*# 

3.3* / 2.28 / 7 
0.3* / 2.47 / 2* 

2.0* / 2.72 / 12 
14.1 

51 sb 

1.0* / 1.90 / 5* 

1.0* / 2.99 / 5* 

1.0* / 1.10 / 5*# 

3.3* / 2.28 / 6 
0.3* / 2.51 / 2* 

2.0* / 2.72 / 10 
11.4 

75 sb 

1.0* / 2.09 / 5* 

1.0* / 3.02 / 5* 

1.0* / 1.11 / 5*# 

3.3* / 2.29 / 5 
0.3* / 2.61 / 2* 

2.0* / 2.73 / 8 
10.2 

115 sb 

1.0* / 1.92 / 5* 

1.0* / 3.00 / 5* 

1.0* / 1.09 / 5*# 

3.3* / 2.28 / 6 
0.3* / 2.55 / 2* 

2.0* / 2.72 / 9 
13.3 

269 sb 

1.0* / 1.88 / 5* 

1.0* / 2.98 / 5* 

1.0* / 1.08 / 5*# 

3.3* / 2.28 / 7 
0.3* / 2.48 / 2* 

2.0* / 2.71 / 10 
14.2 

750 sb 

1.0* / 1.87 / 5* 

1.0* / 2.98 / 5* 

1.0* / 1.07 / 5*# 

3.3* / 2.28 / 7 
0.3* / 2.49 / 2* 

2.0* / 2.71 / 10 
15.0 

 
aData correspond to EXAFS spectra in Fig. 5. N, coordination number; R, interatomic distance; 

22, Debye-Waller factor; RF, error sum calculated for reduced distances of 1-3 Å. bData for 

averaged spectra of apo-HydA1/[2Fe]adt mixtures (Figs. 5A and 5B). Fit restraints: *fixed 

parameter, &,§parameter coupled to yield the same value for different shells, #parameters of a 

multiple-scattering shell of C(N/O) ligands. Distances from crystal structures of the [2Fe]adt 

complex and of [FeFe]-hydrogenase apo or holo (oxidized) protein are given in parentheses [1, 

2]. Data in Fig. 6 stem from a similar fit approach as for the mean apo-HydA1 + [2Fe]adt 

spectrum, using a variable or fixed E0 value in combination with a shorter or longer mean Fe-

C(-O/N) bond length in the simulations of the individual EXAFS spectra of the protein/complex 

mixtures (Fig. S6). 
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Fig. S1. Overview of simulated and experimental EPR spectra. Left panel: Simulated 

spectra of (a) Hox; (b) Hox-CO; (c) the total simulation of the spectrum of apo-HydA / [2Fe]adt 

after an incubation period of 200 seconds by linear combination of spectra in (a) and (b). The 

relative contributions of the Hox and Hox-CO EPR signals to the resultant spectrum were found 

to be 0.47 and 0.53, respectively. (cf. Fig. 2, bottom panel). g-values used for the simulation: 

Hox: g1=2.102, g2=2.040, g3=1.998; Hox-CO: g1=2.052, g2=2.008, g3=2.008. The simulation 

was carried out in EasySpin 5.2 [3], run as a toolbox in Matlab 2016b (the MathWorks, Inc., 

Natick, Massachusetts). Right panel: H-cluster assembly monitored by EPR spectroscopy. 

Spectra recorded for mixtures of apo-HydA1 and [2Fe]adt incubated for increasing mixing 

periods (indicated in the figure). For each time-point three samples were prepared and their 

respective spectra are overlaid. Reported g-values for Hox (blue) and Hox-CO (red) are 

indicated; a feature at g = 1.91 (asterisks) is attributable to a reduced iron-sulfur cluster (see 

main text).  

 

 



6 

 

 

Fig. S2. Protein film hydration monitored by ATR FTIR spectroscopy. Left panel: FTIR 

spectra shown in Fig. 3 and Fig. S4 were normalized according to the amplitude of the amide 

II protein band at 1545 cm-1, which varied due to variations in the hydration level of the HydA1 

protein film. Right panel: Amplitude of the amide II band during the protein/complex mixing 

experiment. Increasing film dehydration (drying) prior to [2Fe]adt addition causes an increase 

in the protein band signals, addition of the [2Fe]adt solution onto the film results in a transient 

drop of the band amplitudes due to the film hydration, and increasing dehydration at longer 

incubation periods finally results in constant IR intensities of protein and H-cluster bands. 

 

 

Fig. S3. Influence of the [2Fe]adt concentration on H-cluster assembly. Maturation of apo-

HydA1 with ~0.8 µM (left panel) and ~80 µM (right panel) [2Fe]adt solution. Regardless of 

[2Fe]adt concentrations the same order of events was observed, i.e. Hox-CO formation 

preceding Hox appearance. The overall cofactor formation yield is much larger in the presence 

of ~80 µM [2Fe]adt solution, but apparent faster Hox formation was observed with ~0.8 µM 

[2Fe]adt solution; (marker bands: Hox-CO, 2012 cm−1; Hox,  1940 cm−1; Hred, 1891 cm−1).  
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Fig. S4. H-cluster assembly under reducing conditions. 78 µM [2Fe]adt was added to a film 

of 500 µM apo-HydA1 (pH 8) in the presence of 1 mM sodium dithionite (DT) and the reaction 

was monitored by the appearance of H-cluster specific bands in the CO vibrations region. Left 

panel: FTIR spectra in the CO region at selected mixing periods. Spectra are normalized at the 

amide II band at 1545 cm−1 (not shown). Sharp bands are assigned to water vapor. Right panel: 

Appearance of specific H-cluster states as a function of time as derived from respective marker 

bands in the right panel (Hox-CO, 2012 cm−1; Hox, 1940 cm−1; HoxH, 1946 cm−1; Hhyd, 1978 

cm−1). Bands marked with an asterisk in the left panel (i.e., 1988 and 1971 cm-1) hint at the 

existence of Htrans.  

 

  

Fig. S5. Effect of reductant on H-cluster assembly (comparison). H-cluster assembly 

efficiency in the presence (red spectrum) or absence (black spectrum) of the reductant sodium 

dithionite (DT). Spectra were recorded after a apo-HydA1/[2Fe]adt mixing period of 1900 s 

(Figs. 3 and S4) for identical protein concentrations with or without pre-treatment of the apo-

HydA1 film with DT.  
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Fig. S6. Fe XAS spectra of apo-HydA1/[2Fe]adt mixtures. Mixtures were incubated prior to 

freezing for the indicated approximate time periods. 22 spectra from two series of samples are 

overlayed. (A) XANES spectra. (B) Fourier-transforms of EXAFS spectra in the inset. 
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