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DEVICE FABRICATION AND CHARACTERIZATION

Bulk KV3Sb5 crystals were mechanically exfoliated using Scotch tape on Si/SiO2(275 nm) substrate. Exfoliated
flakes were first screened using an optical microscope. The thickness of the selected flakes were then measured using
an atomic force microscope (AFM). Figure 1a shows the AFM image of a typical flake of KV3Sb5, which has the
thickness of ≈ 105 nm as shown in the extracted profile in Fig. 1b. Electrical contacts were then patterned by
standard electron-beam lithography and Ru/Au (10 nm/ 200 nm) electrodes were deposited using sputtering. Figure
1c shows the optical image of a typical device used in this work.
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FIG. 1: AFM topography and optical image of a typical device. (a) AFM image of an KV3Sb5 exfoliated
flake. (b) Extracted height profile of the nanoflake shown in (a). (c) Optical image of a typical device used in this
work.



TEMPERATURE AND ANGLE DEPENDENCE OF THE MAGNETORESISTANCE

Temperature dependent magnetoresistance measurements were performed between 1.6 K and 20 K with the field
applied in the out-of-plane direction, as shown in Fig. 2. After subtracting a monotonic background (Fig. 2b), the
longitudinal ∆R shows a clear damping of SdH amplitude with increasing temperature. The carrier effective mass
m∗ is extracted by fitting the ∆R as a function of temperature:

RT =
2π2(kBT/h̄ωc)

sinh[2π2(kBT/h̄ωc)]
(1)

where kB is the Boltzmann constant, h̄ is the Planck constant and ωc is the cyclotron frequency (ωc = eB
m∗ ).

Detailed angle-dependent magnetoresistance measurements were also performed at 2 K with the field applied from
the out-of-plane direction to the in-plane direction, as shown in Fig. 2c, in which clear SdH oscillations are observable
at different angles. The FFT reveals the angle dependence of orbit frequency as shown in Fig. 2d. The frequency as
a function of angle is plotted in the inset, which appears independent of θ when θ is below 20◦, and then follows a
1/cos above 20◦.
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FIG. 2: Temperature and angle dependence of magnetoresistance. (a) Magnetoresistance with field
applied out-of-plane measured at various temperatures that are used for the LK fitting in the main text. (b) The
temperature dependence of magnetoresistance after subtracting a monotonic background plotted against inverse of
field. The oscillation amplitude damps as temperature increases. (c) Angle dependence of magnetoresistance as field
is applied from out-of-plane to in-plane at 2 K. The SdH oscillations are observed at different angles. (d) Extracted
FFT frequency with field applied at various angles. The inset shows the FFT frequency as a function of angle
between the field direction and the out-of-plane direction.



ANGLE DEPENDENCE OF HALL EFFECT MEASUREMENTS

Detailed angle-dependent Hall effect measurements are performed at 2 K with the field applied from the out-of-
plane direction to the in-plane direction, as shown in Fig. 4a and 4b. Similar to the magnetoresistance, clear SdH
oscillations are observable at different angles. As the field is tilted from out-of-plane to in-plane, the Hall resistivity
decreases in magnitude. As it goes past 90◦, both the ordinary Hall signal (high field regime) as well as anomalous
Hall signal (low field regime) switch sign, signifying that both are true Hall signals.
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FIG. 3: Angle dependence of the Hall effect measurements. (a) The angle dependence of Hall as the field is
applied from out-of-plane to in-plane at 2 K. (b) As the field goes past 90◦, the overall Hall response switches sign.



ROBUSTNESS OF ANOMALOUS HALL EFFECT EXTRACTION

There are two nonlinearities in the Hall response of KV3Sb5: a low-field, low temperature “S” shape and a high-field,
low-temperature nonlinear curve. Through temperature and magnetic field dependence measurement, we find that at
high temperature, the high field Hall effect evolves into a linear Hall response while the low field nonlinearity sustains.
This enables us to distinguish the origin of nonlinear Hall resistivity at low and high field: the low field nonlinearity
comes from the nonspontaneous AHE, and the high field nonlinearity originates from the OHE that evolves from
two-band to one-band type with increasing temperature. The zoom-in plot of the Hall resistivity shows that the low
field ordinary Hall resistivity is consistently linear in the field range between 1 T and 2 T over the whole temperature
range, allowing us to robustly subtract the background OHE in the AHE-relevant region. The angle-dependence
measurement is also a supporting evidence that the low-field nonlinearity does not originate from the OHE: OHE
should scale linearly with the out-of-plane component of the external magnetic field, which is clearly not the case as
shown in Figure 3a in the main text. Furthermore, the intrinsic AHC extracted experimentally matches well with the
theoretically calculated AHC. This provides a sanity check and confirms the robustness of the AHE extraction that
was not contaminated by an unaccounted OHE contribution.

FIG. 4: Zoom-in plot of the Hall resistivity at different temperatures. Zoom-in plot of the Hall resistivity
at different temperatures, showing the low field ordinary Hall resistivity is consistently linear in the field range
between 1 T and 2 T over the whole temperature range.



AB INITIO ELECTRONIC STRUCTURE AND INTRINSIC HALL CONDUCTIVITY IN KV3SB5

KV3Sb5 crystal is formed by the Kagome lattice of Vanadium atoms intercalated with a graphite lattice of one of
the antimony positions, as shown in Fig. 5a. It crystallizes in the symmorphic space group which is known to host
gapped Dirac quasiparticles in the quasi-2D Brillouin zone wedge ΓKMΓ.

The density functional theory (DFT) calculations were performed in the VASP package52 employing the projector
augmented plane wave method53 and spherically symmetric Dudarev DFT+U54 is used with U = 2 eV. The energy
cut-off of the plane wave basis of 520 eV, the PBE exchange correlation function55, and the crystal momentum grid
11 × 11 × 6 is chosen. While the Dirac points are gapless in our calculations without SOC, adding the SOC in the
calculations generates tiny gaps shown in Fig. 5b (e.g. 10 meV at K point) at the Dirac points since the symmorphic
rotational symmetries cannot protect the Dirac crossings56. This behavior is exactly analogous to the Dirac semimetal
graphene and also other Kagome systems such as Fe3Sn2

43, which the ARPES of Fig. 1b establishes. Furthermore,
as we highlight by grey shading in the Fig. 5b the system behaves as a semimetal because the states at the Fermi
level are comprised from the Dirac quasiparticle set of bands with electron/hole semi-metallic pockets.

The application of magnetism further splits the Dirac quasiparticles, as shown in Fig. 5c. Since the detailed
microscopic magnetism is not known33, for the purpose of our DFT calculations, to determine the possible intrinsic
anomalous Hall conductivity component, we used the experimental lattice parameters, Wyckoff positions, and assumed
the ferromagnetic moments on Vanadium are along the [0001] axis with electronic correlation U = 2 eV. This value
of electronic correlations gives a magnetization consistent to the effective magnetic moment observed in33. With
constructed maximally localized Wannier function in the Wannier90 code57, intrinsic anomalous Hall conductivity
is calculated by employing the Berry curvature formula58,59 using the fine-mesh of 320 × 320 × 240 Brillouin zone
sampling points. Note that the calculated ground-state magnetic moment (0.25 µB per Vanadium atom) matches well
with experimentally determined effective moment observed by Ortiz et al33 (0.22µB per Vanadium atom). The Berry
curvature driven intrinsic AHC calculated from the ferromagnetic assumption represents the upper boundary for the
intrinsic AHC observed in the experiment in the samples in the “low conductivity” regime. This intrinsic component
is separate from the giant extrinsic AHC we observe.
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FIG. 5: Ab initio electronic structure and intrinsic Hall conductivity in ferromagnetic KV3Sb5. (a)
Top view of the crystal with Kagome plane coinciding with the Hall plane. (b) Band structure (Brillouinzone shown
to the right) with SOC without ferromagnetism. Green and purple bands comprise the Fermi surface. Grey shaded
region denotes the continuous gap illustrating the semimetallic nature of KV3Sb5. (c) Band structure calculated in
the ferromagnetic state with U = 2 eV and ground-state moments 0.25 µB per Vanadium atom. (d) Energy resolved
intrinsic Hall conductivity (x-axis is oriented along the a-crystal axis.)
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