JOUL, Volume 4

Supplemental Information

Energy Consumption

of Cryptocurrencies

Beyond Bitcoin

Ulrich Gallersdörfer, Lena Klaaßen, and Christian Stoll

Contents of this file

Table S1 provides details on the studies depicted in overview of Bitcoin energy consumption estimates, related to Figure 1 in the main body.

Table S2 provides details on data sources of input parameters (market capitalization, algorithms, and has-rates), related to Table 1 in the main body.

Table S3 provides details on reference hardware for ASIC-compatible algorithms, related to Table 1 in the main body.

Table S4 provides details on reference hardware for ASIC-resistant algorithms (GPUs), related to Table 1 in the main body.

Remarks on data validity.

Supplemental Data Items

Table S1. Details on the studies depicted in overview of Bitcoin energy consumption estimates, related to Figure 1 in the main body.

Figure 1 in the Commentary's main body depicts the electricity consumption estimates of the Bitcoin network. Table S1 provides details on the studies depicted in Figure 1 (from 01/2017 until 03/2020). Most study results reflect the electricity consumption of the Bitcoin network at a specific date. Some studies state an average consumption or ranges over a period of time, as highlighted in the third column of Table S1. The indexed hash-rate (the computing power of the network) charted in Figure 1 is retrieved from Blockchain.com¹.

Study	Date	Observation	Estimate [MW]		
Vranken ²	01/01/2017	Cutoff date	100-500ª		
Bevand ³	02/26/2017	Cutoff date	470-540 ^b		
	07/28/2017		816-944 ^b		
	01/11/2018		2,100 ^b		
De Vries ⁴	03/2018	Cutoff date	2,550-7,670 ^c		
McCook ⁵	06/19/2018	Cutoff date	12,080 ^d		
Mora et al.6	2017	Period average	13,010 ^e		
Krause and Tolaymat ⁷	2017	Period average	948 ^f		
	2018 (first half-year)		3,441 ^f		
Stoll et al.8	12/2016	Cutoff date	345 ^g		
	12/2017		1,637 ⁹		
	11/2018		5,232 ^g		
Köhler and Pizzol ⁹	2018	Period average	3,571 ^h		
Digiconomist ¹⁰	03/2017-03/2020	Period range	1,182-8,272 ⁱ		
CBECI ¹¹	01/2017-03/2020	Period range	847-8,095 ^j		
This study	03/27/2020	Cutoff date	4,291		

Table S1 | Details on the studies depicted in overview of Bitcoin energy consumption estimates. Estimates are presented in megawatt (MW). a. range derived from lower limit (miners use state-of-the-art hardware) and upper limit (miners spend revenues on energy), b. ranges calculated by a bottom-up approach assuming different hardware mixes, c. lower limit assumes miners use state-of-the-art hardware; upper limit assumes miners spend 40% of all revenues on hardware and 60% on electricity and represents a scenario possibly applicable in the future, d. only figure that includes the power spent on manufacturing of the mining hardware, which represents 57% of this total power estimate; power usage effectiveness (PUE) of 1.25 considered, e. calculation based on the flawed assumption that the number of transactions drives power consumption, f. bottom-up approach deploying hash-rates and miners device efficiencies, g. bottom-up approach; PUE of 1.05 considered, h. 27.14 milliwatt hours/terahash; translated in monthly averages with total annual as of 2018, i. historical development of monthly averages; estimates calculated by assuming 60% of revenues are spent on operational costs incl. electricity, hardware, and cooling costs, j. Historical development of monthly averages using a bottom-up approach; PUE of 1.1 considered.

Table S2. Data sources of input parameters, related to Table 1 in the main body.

Table 1 in the main body of the Commentary displays the top 20 mineable currencies with their respective algorithms, hash-rates of the networks, the efficiency of suitable hardware, and rated power of the networks. Table S2 lists the data sources of underlying input parameters.

Input parameter	Data source
Market capitalization	CoinMarketCap ¹²
Hash algorithms	WhatToMine ¹³
Network hash-rate: BTC, ETH, BCH, BSV, LTC, XMR, DASH, ETC, ZEC, DOGE, BTG	CoinMetrics.io14
Network hash-rate: RVN, MONA, DGB, ZEN	CoinWarz ¹⁵
Network hash-rate. KMD, BCN	WhatToMine ¹³
Network hash-rate: DCR	dcrstats.com16
Network hash-rate: BTM	tokenview.com17
Network hash-rate: SC	siastats.info18

 Table S2 | Data sources of input parameters of Table 1.

Table S3. Reference hardware for ASIC-compatible algorithms, related to Table 1 in the main body.

For each currency we decide – depending on the ASIC-resistance of the PoW-algorithm – which hardware to select. If the algorithm is ASIC-compatible, we rely on hardware estimates of WhatToMine¹³. Table S3 depicts ASIC-hardware used in our calculation. We verified the data for speed and energy consumption with ASICMinerValue¹⁹. We validated the collected data with information on manufacturers' websites if a device was not available on both ASICMinerValue and WhatToMine.

		Speed	Rated Power	Efficiency	
Algorithm	Hardware	[Hashes/s]	[W]	[Hashes/s/W]	
SHA-256	Bitmain Antminer S17 Pro 53TH	5.3E+13	2,094	2.53E+10	
Scrypt	Innosilicon A4+ LTCMaster	6.2E+08	750	8.27E+05	
X11	Spondoolies SPx36	5.4E+11	4,400	1.22E+08	
Blake	Bitmain Antminer DR5	3.4E+13	1,800	1.89E+10	
Equihash	Innosilicon A9++ ZMaster	1,4E+05	1,550	9.00E+01	
CryptoNight	Innosilicon A8+ CryptoMaster	2.4E+05	480	5.00E+02	
Tensority	Bitmain Antminer B7	9.8E+04	528	1.82E+02	
Lyra2REv2	FusionSilicon X1 Miner	1.296E+10	1,110	1.17E+07	
Sia	Obelisk SC1 Slim	5.5E+11	450	1.22E+09	

Table S3 | Reference hardware for ASIC-compatible algorithms.

			Ethash		Ra	RandomX		ZHash		X16Rv2	
Device r	name	Release date	Speed [Mh/s]	Rated power [W]	Speed [h/s]	Rated power [W]	Speed [h/s]	Rated power [W]	Speed [Mh/s]	Rated power [W]	
AMD	Radeon R9 380	June 2015	19	140	n.a.	n.a.	16	120	3.9	130	
	Radeon R9 Fury	June 2015	29	220	n.a.	n.a.	32	240	13	270	
	Radeon RX 470	June 2016	26	120	340	80	18	110	9.5	130	
	Radeon RX 480	June 2016	29.5	135	470	90	21	120	11.5	140	
	Radeon RX 570	April 2017	27.9	120	390	80	19	100	10	120	
	Radeon RX 580	April 2017	30.2	125	470	90	21	110	11.5	130	
	Radeon RX Vega 56	August 2017	36.5	180	1040	150	34	230	16	230	
	Radeon RX Vega 64	August 2017	40	200	1160	160	38	250	18	250	
	Radeon RX 5700XT	July 2019	51.5	140	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
	Radeon VII	February 2019	78	230	1400	170	49	180	23	240	
	GTX 1050 Ti	October 2016	13	80	200	60	19	80	8	80	
	GTX 1060	August 2016	22.5	90	350	80	32.5	90	9.4	90	
	GTX 1070	June 2016	30	130	560	120	56	130	18	130	
	GTX 1070 Ti	October 2017	30.5	130	640	120	59	130	19.5	130	
	GTX 1080	May 2016	34.5	170	700	120	67	160	23	150	
	GTX 1080 Ti	September 2017	45.5	180	1030	160	86	200	31	190	
	GTX 1660	March 2019	20.5	90	530	90	37	90	17	90	
	GTX 1660 Ti	February 2019	25.7	90	580	90	39	90	17.2	90	
	RTX 2060	January 2019	27.6	130	600	110	57	130	22	130	
	RTX 2070	October 2018	36.9	150	700	140	62	150	24.5	150	
	RTX 2080	September 2018	36.9	190	1000	150	88	190	33.5	190	
	RTX 2080 Ti	September 2018	52.5	220	1380	190	100	220	41	220	
	Overall Efficiency [H	lashes/s/W]	228	,128.83		6.02		0.30	116,0	006.10	

Table S4. Reference hardware for ASIC-resistant algorithms (GPUs), related to Table 1 in the main body.

Table S4 | Reference hardware for ASIC-resistant algorithms. For algorithms that are ASIC-resistant, Table S4 depicts the hardware selection, release date, hash-rates, and energy consumption for four ASIC-resistant algorithms. In the bottom line, the overall efficiency of all cards is displayed for the respective algorithm. We rely equally on all 22 GPUs suggested by WhatToMine. Some values are not available on WhatToMine. We marked them as *n.a.* (not available) and exclude them in our estimates.

Remarks on data validity

- Device selection: We select ASIC hardware and graphics cards according to data provided by WhatToMine. For ASIC-compatible algorithms, we assume one representative device per algorithm (see Table S3). For ASIC-resistant algorithms, we take a multitude of suitable devices into account. Deciding on the distribution of hardware devices is highly challenging, primarily due to the vast number of GPUs available. We build our estimate on popular GPUs suited for mining as suggested by WhatToMine. It is noteworthy that considerable differences in efficiencies exist among the selected GPUs and that the release dates not necessarily correlate with efficiencies (for Ethash algorithm e.g., Nvidia GTX 1060 with release date 08/16 is 28% more efficient than Nvidia RTX 2080, which was released more than two years later in 09/18). To account for the diversity in the graphics card ecosystem, we assume an equal distribution due to limited empirical evidence adds a certain degree of uncertainty. Assuming a different distribution would change the absolute results according to the efficiencies of overweighed GPUs.
- **Optimized devices**: WhatToMine provides hash-rates and energy usage of GPUs with settings that enhance the efficiency of the device. This is facilitated by increasing or decreasing GPU clock speed, lowering voltage, or installing a custom basic input/output system (BIOS). Generally, this affects our estimates as not all miners might apply these settings, and as not all GPUs are affected by such optimization equally (e.g., due to chip quality). Future research may validate these estimates and provide more accuracy here by physically measuring the energy efficiency of different GPUs in certain configurations.
- Further inefficiencies: Our estimate does not include power usage effectiveness (e.g., losses due to cooling, or cable and transformer losses), or other auxiliary energy costs (e.g., GPUs require additional hardware such as a mainboard or CPU). Additionally, the rated power is not equal to measured (and consumed) power of devices. Such aspects add further uncertainty to the absolute energy consumption figures per single cryptocurrency, as we directionally underestimate the energy consumption compared to other approaches (as seen in Table S1, and as suggested by the comparison of our results with more sophisticated methodologies for Bitcoin (see main body for details)). However, as this inaccuracy applies to all examined cryptocurrencies, potential changes in absolute numbers would likely impair the estimates of all cryptocurrencies in a similar manner, and not impair the relative shares. Future research into understudied coins (besides Bitcoin) may provide more certainty on absolute figures.

Supplemental References

1. Blockchain.com (2020). Hash Rate. https://www.blockchain.com/de/charts/hash-rate?timespan=2years.

2. Vranken, H. (2017). Sustainability of bitcoin and blockchains. Current Opinion in Environmental Sustainability, 28, 1–9.

3. Bevand, M. (2018). Electricity consumption of Bitcoin: a market-based and technical analysis. http://blog.zorinaq.com/bitcoin-electricity-consumption/#fn:refB.

4. De Vries, A. (2018). Bitcoin's Growing Energy Problem. Joule, 2(5), 801-805.

5. McCook, H. (2018). The Cost & Sustainability of Bitcoin. https://www.academia.edu/37178295/The_Cost_and_Sustainability_of_Bitcoin_August_2018_.

6. Mora, C., Rollins, R. L., Taladay, K., Kantar, M. B., Chock, M. K., Shimada, M., and Franklin, E. C. (2018). Bitcoin emissions alone could push global warming above 2°C. Nature Climate Change, *8*(11), 931–933.

7. Krause, M. J., and Tolaymat, T. (2018). Quantification of energy and carbon costs for mining cryptocurrencies. Nature Sustainability, *1*(11), 711–718.

8. Stoll, C., Klaaßen, L., and Gallersdörfer, U. (2019). The Carbon Footprint of Bitcoin. Joule, *3*(7), 1647–1661.

9. Köhler, S., and Pizzol, M. (2019). Life Cycle Assessment of Bitcoin Mining. Environmental Science & Technology, *53*(23), 13598–13606.

10. Digiconomist (2020). Bitcoin Energy Consumption Index. https://digiconomist.net/bitcoin-energy-consumption.

11. CBECI (2020). Cambridge Bitcoin Electricity Consumption Index. https://www.cbeci.org/.

12. CoinMarketCap (2020). Cryptocurrency Market Capitalization. https://coinmarketcap.com/.

13. WhatToMine (2020). ASIC. https://whattomine.com/.

14. Coinmetrics.io (2020). CM Network Data Charts. https://coinmetrics.io/charts/#assets=btc.

15. CoinWarz (2020). Cryptocurrency Mining Profitability Calculator. https://www.coinwarz.com/cryptocurrency.

16. Dcrstats.com (2020). Network Hashrate. https://dcrstats.com/pow.

17. Tokenview.com (2020). Bytom Explorer. https://btm.tokenview.com/.

18. Siastats.info (2020). Mining metrics. https://siastats.info/mining.

19. ASICMinerValue (2019). Miners profitability: Live income estimation of all known ASIC miners, updated every minute. https://www.asicminervalue.com/.