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Bitcoin’s energy hunger has triggered a

passionate debate in academic litera-

ture as well as in the general public

about the energy consumption of cryp-

tocurrencies. Bitcoin is a digital cur-

rency based on a cryptographically

secured distributed ledger and repre-

sents the first and best-known block-

chain application. Its computationally

intensive validation process called

‘‘mining’’ requires specific hardware

and vast amounts of electricity to reach

consensus about ownership and trans-

actions. Depending on the methodol-

ogy and assumptions, energy con-

sumption estimates chart a wide range

of results as depicted in Figure 1. The

methodologies of the estimates have

become more sophisticated over time,

and yet, most studies have focused

exclusively on Bitcoin and thereby

ignored that more than 500 further

mineable coins and tokens exist.1

Beyond Bitcoin

To estimate the energy consumption of

cryptocurrencies beyond Bitcoin, we

resort to a methodology proposed by

Krause and Tolaymat2 that employs

hash rates of cryptocurrency networks

and suitable mining devices. Hash rates

measure the processing power; they

describe the number of attempts per sec-

ond to solve a block in the so-called

‘‘proof-of-work’’ mining process. Table 1

lists the hash-rates of the top 20mineable
Joule 4, 1839–1851
cryptocurrencies by market capitalization

that account for more than 98% of the

total market capitalization. These top 20

use 13 different proof-of-work algo-

rithms. Bitcoin, for instance, uses the

SHA-256 algorithm that allows for mining

with highly specialized, ASIC-based de-

vices, which are considerably more en-

ergy efficient than conventional graphic

processing units (GPUs). GPUs are used,

for instance, to mine Monero that

prevents ASIC-based devices from its

validation process.3 Table 1 lists the effi-

ciency of mining devices that suit the

respective algorithms. Dividing the

network hash rates by efficiencies of min-

ing devices yields the rated power of

each network. Figure 2 illustrates the cu-

mulative market capitalization and rated

power of the top 20 cryptocurrencies:

#1—Bitcoin—accounts for 2/3 of the total

energy demand; #2–20 complement 1/3.

It is important to note that currencies with

ASIC-resistant algorithms consume an

overproportionate amount of energy in

relation to their market capitalization.

As listed in Table 1, RavenCoin, for

instance, accounts for 4.32% of the total

rated power, whereas its market cap

only accounts for 0.06% of the consid-

ered top 20. A second example is Mon-

ero, which became ASIC-resistant after

an update in March 2018. The update

led to an abrupt decrease in the net-

work’s computational power of more

than 80%. After a few days, the hash

rate bounced back to half of the pre-up-

date level as miners switched from ASIC

to less-energy-efficient GPUs.3

In absolute terms, the total energy con-

sumption estimate in Figure 1 appears

rather conservative. Alternative estima-

tion methods (including, e.g., auxiliary

losses in mining facilities) suggest that

the actual energy consumption of Bitcoin

might be higher: Digiconomist,4 for

instance, derives 7.9 gigawatts (GW),

and the Cambridge Bitcoin Electricity

Consumption Index (CBECI)5 states 6.1

GW, whereas we estimate 4.3 GW (all es-

timates with a cutoff date of 03/27/2020;
, September 16, 2020 ª 2020 Elsevier Inc. 1843
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Figure 1. Bitcoin Energy Consumption Estimates 2017–2020

Energy consumption is presented in gigawatt (GW). Details on the underlying methodologies and

date sources can be found in the Supplemental Information and Table S1.
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note: Figure 1 shows monthly averages

for Digiconomist and CBECI). The CBECI

uses a bottom-up approach, whereas

Digiconomist applies a top-down

approach (which has been criticized for

potential overestimating in the past6).

Given that we consistently apply the bot-

tom-up approach of Krause and Tolay-

mat2 to all 20 currencies, potentially

higher absolute numbers would not

impair the relative shares (if we assume

the neglected factors apply to all cur-

rencies equally).

Nonetheless, all energy estimates and

underlying assumptions are subject to

uncertainty. In particular, the selections

and operation of the mining devices

pose a significant challenge given that

the mining industry operates secretively.

Miners may shut down and ramp up

certain devices temporarily as a response

to variations in electricity prices and mar-

ket prices (i.e., when electricity costs

exceed mining revenues, as seen during

coronavirus pandemic when market pri-

ces and hash rates tumbled).7 Including

outdated and unprofitable mining de-

vices in the estimate has been found to
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distort the energy demand estimate and

overvalue the resulting carbon emissions

by a factor of 4.5.8 Here again, potential

changes in absolute numbers would

likely impair the estimates of all crypto-

currencies in a similar manner.

Environmental Impacts

Energy consumption, per se, is not an

issue in the context of climate change.

For instance, clean generation resources,

such as wind and solar, produce energy

without emitting greenhouse gases

(GHG) (which trap heat in the atmosphere

and cause cost—now and for future gen-

erations). Fossil generation resources—

most prominently coal and gas—cause

such GHG emissions. Consequently,

the emission factor of electricity depends

on the constitution of the generation

resource mix, which varies among coun-

tries as well as regions. The relative

energy demand of cryptocurrencies in

Table 1 could beused to roughly estimate

GHG emissions. To derive a profound

estimate of caused GHG emissions,

however, more research is needed into

currency-specific factors such as the

respective footprint of mining operations.
Translating energy consumption into

GHG emissions adds further uncertainty.

Krause and Tolaymat,2 for instance, use

average emission factors of electricity

consumption in several countries to chart

a range of potential results, which vary by

a factor of over 4 between the lowest and

highest values. As miners seek locations

with low electricity prices, other studies

assume high shares of cheap renewable

energy, which results inmuch lower emis-

sions estimates.9 From a power system

perspective, the most accurate approach

would be to consider marginal emission

factors. Mining operations cause an addi-

tional load that activates additional gen-

eration resources. The increase in full-

load hours of certain generation re-

sources may lead to fuel switching effects

and alter local emission intensities.7 As

this approach requires exact mining loca-

tions and load information—which are

extremely hard to get—Stoll et al.10 use

average emission factors as a proxy to

balance the effect of higher emissions at

the margin and mining in regions with

high shares of clean energy.

Conclusions

We show in this Commentary the neces-

sity to broaden the debate on the envi-

ronmental impacts of cryptocurren-

cies—beyond Bitcoin. Irrespective of

the uncertainty in assessing the energy

demand and associated GHG emissions

of cryptocurrencies, our estimate for

understudied currencies underlines the

importance of including these in the

debate. Based on the underlying

algorithms, current hash rates, and

suitable mining devices, we conclude

that Bitcoin accounts for 2/3 of the

total energy consumption, and under-

studied cryptocurrencies represent the

remaining 1/3. Therefore, understudied

currencies add nearly 50% on top of Bit-

coin’s energy hunger, which already

alone may cause considerable environ-

mental damage.10 Including the remain-

ing hundreds of mineable coins and to-

kens, which account for the 1.77%

market capitalization not captured by

the top 20, would further increase the



Table 1. Top 20 Mineable Cryptocurrencies by Market Capitalization on 03/27/2020

# Name Symbol Algorithm Market cap
[USD million]

Market
cap [%]

Hashes/s
(network)

Efficiency (device)
[Hashes/s/W]

Rated power
(network) [kW]

Rated power
(network) [%]

1 Bitcoin BTC SHA-256 122.768 79.69% 1.09E+20 2.53E+10 4.291.366 68.39%

2 Ethereum ETH Ethasha 15.209 9.87% 1.64E+14 2.28E+05 719.087 11.46%

3 Bitcoin
Cash

BCH SHA-256 4.183 2.72% 3.88E+18 2.53E+10 153.374 2.44%

4 Bitcoin SV BSV SHA-256 3.181 2.07% 3.04E+18 2.53E+10 120.077 1.91%

5 Litecoin LTC Scrypt 2.595 1.68% 1.36E+14 8.27E+05 164.796 2.63%

6 Monero XMR RandomXa 864 0.56% 1.27E+09 6.00E+00 210.277 3.35%

7 Dash DASH X11 639 0.41% 4.59E+15 1.23E+08 37.386 0.60%

8 Ethereum
C

ETC Ethasha 597 0.39% 9.87E+12 2.28E+05 43.278 0.69%

9 Zcash ZEC Equihash 310 0.20% 4.42E+09 9.00E+01 49.022 0.78%

10 DogeCoin DOGE Scrypt 229 0.15% 1.30E+14 8.27E+05 157.494 2.51%

11 Bitcoin
Gold

BTG ZHasha 133 0.09% 2.64E+06 0.00E+00 8.949 0.14%

12 Decred DCR Blake 125 0.08% 4.16E+17 1.89E+10 22.013 0.35%

13 RavenCoin RVN X16Rv2a 89 0.06% 3.14E+13 1.16E+05 270.792 4.32%

14 MonaCoin MONA Lyra2REv2 85 0.05% 9.16E+13 1.17E+07 7.844 0.13%

15 Bytom BTM Tensority 61 0.04% 5.30E+08 1.82E+02 2.915 0.05%

16 SiaCoin SC Sia 55 0.04% 5.70E+15 1.22E+09 4.664 0.07%

17 DigiByte DGB SHA-256 53 0.03% 6.60E+16 2.53E+10 2.608 0.04%

18 Horizen ZEN Equihash 48 0.03% 6.86E+08 9.00E+01 7.606 0.12%

19 Komodo KMD Equihash 46 0.03% 6.08E+07 9.00E+01 674 0.01%

20 Bytecoin BCN CryptoNight 43 0.03% 2.33E+08 5.00E+02 467 0.01%

TOTAL – – 151.315 98.23% – – 6.274.688 100%

The table displays the top 20 mineable currencies with their respective algorithms, efficiencies of suitable mining devices, and rated power of the networks. De-

tails on methodology, data, and sources can be found in the Supplemental Information and Tables S2, S3, and S4.
aASIC-resistant algorithms

Figure 2. Cumulative Market Capitalization and Energy Demand of Top 20 Currencies by Market

Capitalization

Data sources: own calculations (see Table 1); values as of 03/27/2020.
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share of energy consumption caused by

cryptocurrencies besides Bitcoin.

Going forward, a holistic understanding

of the environmental impacts may also

help policymakers to set the right rules

for cryptocurrenciesandblockchainappli-

cations ingeneral.Most academic studies

have been focusing not only exclusively

on Bitcoin but also primarily on external-

ities resulting from the energy consump-

tion during the mining process. Although

the use phase predominantly contributes

to the carbon footprint of conventional

data centers,11 this might not apply to

cryptocurrencies given the high price

volatility and technological changes.

Translating the total energy consumption

into carbon emissions, and including
Joule 4, 1839–1851, September 16, 2020 1845



ll
Commentary
embedded emissions of mining device

production as well as e-waste,12 would

further complement the picture and

reveal the total environmental damage

caused by cryptocurrencies.

The insights from cryptocurrencies may

alsobe applied to novel blockchain appli-

cations that are rapidly maturing. In the

energy sector, for instance, an increasing

number of blockchain use cases have

emerged, ranging from peer-to-peer en-

ergy trading to the management of car-

bon emissions to mitigate climate

change.13,14Basedon the lessons learned

from cryptocurrencies, however, it is

important to carefully differentiate be-

tween energy-hungry algorithms and en-

ergy-efficient algorithms (e.g., private/

permissioned networks do not need en-

ergy-intense validation processes) and

find the right balance between deep de-

tails and big picture.

SUPPLEMENTAL INFORMATION

Supplemental Information can be

found online at https://doi.org/10.

1016/j.joule.2020.07.013.
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Contents of this file 

 

Table S1 provides details on the studies depicted in overview of Bitcoin energy consumption estimates, 

related to Figure 1 in the main body. 

 

Table S2 provides details on data sources of input parameters (market capitalization, algorithms, and 

has-rates), related to Table 1 in the main body. 

 

Table S3 provides details on reference hardware for ASIC-compatible algorithms, related to Table 1 in 

the main body. 

 

Table S4 provides details on reference hardware for ASIC-resistant algorithms (GPUs), related to 

Table 1 in the main body. 

 

Remarks on data validity. 
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Supplemental Data Items 

Table S1. Details on the studies depicted in overview of Bitcoin energy consumption estimates, 

related to Figure 1 in the main body.  

 

Figure 1 in the Commentary's main body depicts the electricity consumption estimates of the Bitcoin 

network. Table S1 provides details on the studies depicted in Figure 1 (from 01/2017 until 03/2020). 

Most study results reflect the electricity consumption of the Bitcoin network at a specific date. Some 

studies state an average consumption or ranges over a period of time, as highlighted in the third column 

of Table S1. The indexed hash-rate (the computing power of the network) charted in Figure 1 is retrieved 

from Blockchain.com1. 

 

Study Date  Observation Estimate [MW] 

Vranken2 01/01/2017 Cutoff date 100-500a 

Bevand3 02/26/2017 

07/28/2017 

01/11/2018 

Cutoff date 470-540b 

816-944b 

2,100b 

De Vries4 03/2018 Cutoff date 2,550-7,670c 

McCook5 06/19/2018 Cutoff date 12,080d 

Mora et al.6 2017 Period average 13,010e 

Krause and Tolaymat7 2017 

2018 (first half-year) 

Period average 948f 

3,441f 

Stoll et al.8 12/2016 

12/2017 

11/2018 

Cutoff date 345g 

1,637g 

5,232g 

Köhler and Pizzol9 2018 Period average 3,571h 

Digiconomist10 03/2017-03/2020 Period range 1,182-8,272i 

CBECI11 01/2017-03/2020 Period range 847-8,095j 

This study 03/27/2020 Cutoff date 4,291 

Table S1 | Details on the studies depicted in overview of Bitcoin energy consumption estimates. 
Estimates are presented in megawatt (MW). a. range derived from lower limit (miners use state-of-the-
art hardware) and upper limit (miners spend revenues on energy), b. ranges calculated by a bottom-up 
approach assuming different hardware mixes, c. lower limit assumes miners use state-of-the-art 
hardware; upper limit assumes miners spend 40% of all revenues on hardware and 60% on electricity 
and represents a scenario possibly applicable in the future, d. only figure that includes the power spent 
on manufacturing of the mining hardware, which represents 57% of this total power estimate; power 
usage effectiveness (PUE) of 1.25 considered, e. calculation based on the flawed assumption that the 
number of transactions drives power consumption, f. bottom-up approach deploying hash-rates and 
miners device efficiencies, g. bottom-up approach; PUE of 1.05 considered, h. 27.14 milliwatt 
hours/terahash; translated in monthly averages with total annual as of 2018, i. historical development of 
monthly averages; estimates calculated by assuming 60% of revenues are spent on operational costs 
incl. electricity, hardware, and cooling costs, j. Historical development of monthly averages using a 
bottom-up approach; PUE of 1.1 considered. 
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Table S2. Data sources of input parameters, related to Table 1 in the main body. 

 

Table 1 in the main body of the Commentary displays the top 20 mineable currencies with their 

respective algorithms, hash-rates of the networks, the efficiency of suitable hardware, and rated power 

of the networks. Table S2 lists the data sources of underlying input parameters. 

 

Input parameter Data source 

Market capitalization CoinMarketCap12 

Hash algorithms WhatToMine13 

Network hash-rate: BTC, ETH, BCH, BSV, LTC, XMR, DASH, ETC, ZEC, DOGE, BTG CoinMetrics.io14 

Network hash-rate: RVN, MONA, DGB, ZEN CoinWarz15 

Network hash-rate. KMD, BCN WhatToMine13 

Network hash-rate: DCR dcrstats.com16 

Network hash-rate: BTM tokenview.com17 

Network hash-rate: SC siastats.info18 

Table S2 | Data sources of input parameters of Table 1. 
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Table S3. Reference hardware for ASIC-compatible algorithms, related to Table 1 in the main 

body. 

 

For each currency we decide – depending on the ASIC-resistance of the PoW-algorithm – which 

hardware to select. If the algorithm is ASIC-compatible, we rely on hardware estimates of WhatToMine13. 

Table S3 depicts ASIC-hardware used in our calculation. We verified the data for speed and energy 

consumption with ASICMinerValue19. We validated the collected data with information on 

manufacturers' websites if a device was not available on both ASICMinerValue and WhatToMine. 

 

Algorithm Hardware 

Speed 

[Hashes/s] 

Rated Power 

[W] 

Efficiency 

[Hashes/s/W] 

SHA-256 Bitmain Antminer S17 Pro 53TH 5.3E+13 2,094 2.53E+10 

Scrypt Innosilicon A4+ LTCMaster 6.2E+08 750 8.27E+05 

X11 Spondoolies SPx36 5.4E+11 4,400 1.22E+08 

Blake Bitmain Antminer DR5 3.4E+13 1,800 1.89E+10 

Equihash Innosilicon A9++ ZMaster 1,4E+05 1,550 9.00E+01 

CryptoNight Innosilicon A8+ CryptoMaster 2.4E+05 480 5.00E+02 

Tensority Bitmain Antminer B7 9.8E+04 528 1.82E+02 

Lyra2REv2 FusionSilicon X1 Miner 1.296E+10 1,110 1.17E+07 

Sia Obelisk SC1 Slim 5.5E+11 450 1.22E+09 

Table S3 | Reference hardware for ASIC-compatible algorithms. 
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Table S4. Reference hardware for ASIC-resistant algorithms (GPUs), related to Table 1 in the main body. 

Device name Release date 

Ethash RandomX ZHash X16Rv2 

Speed 

[Mh/s] 

Rated power 

[W] 

Speed 

[h/s] 

Rated power 

[W] 

Speed 

[h/s] 

Rated power 

[W] 

Speed 

[Mh/s] 

Rated 

power [W] 

AMD Radeon R9 380 June 2015 19 140 n.a. n.a. 16 120 3.9 130 

Radeon R9 Fury June 2015 29 220 n.a. n.a. 32 240 13 270 

Radeon RX 470 June 2016 26 120 340 80 18 110 9.5 130 

Radeon RX 480 June 2016 29.5 135 470 90 21 120 11.5 140 

Radeon RX 570 April 2017 27.9 120 390 80 19 100 10 120 

Radeon RX 580 April 2017 30.2 125 470 90 21 110 11.5 130 

Radeon RX Vega 56 August 2017 36.5 180 1040 150 34 230 16 230 

Radeon RX Vega 64 August 2017 40 200 1160 160 38 250 18 250 

Radeon RX 5700XT July 2019 51.5 140 n.a. n.a. n.a. n.a. n.a. n.a. 

Radeon VII February 2019 78 230 1400 170 49 180 23 240 

Nvidia GTX 1050 Ti October 2016 13 80 200 60 19 80 8 80 

GTX 1060 August 2016 22.5 90 350 80 32.5 90 9.4 90 

GTX 1070 June 2016 30 130 560 120 56 130 18 130 

GTX 1070 Ti October 2017 30.5 130 640 120 59 130 19.5 130 

GTX 1080 May 2016 34.5 170 700 120 67 160 23 150 

GTX 1080 Ti September 2017 45.5 180 1030 160 86 200 31 190 

GTX 1660 March 2019 20.5 90 530 90 37 90 17 90 

GTX 1660 Ti February 2019 25.7 90 580 90 39 90 17.2 90 

RTX 2060 January 2019 27.6 130 600 110 57 130 22 130 

RTX 2070 October 2018 36.9 150 700 140 62 150 24.5 150 

RTX 2080 September 2018 36.9 190 1000 150 88 190 33.5 190 

RTX 2080 Ti September 2018 52.5 220 1380 190 100 220 41 220 

 Overall Efficiency [Hashes/s/W] 228,128.83 6.02 0.30 116,006.10 

Table S4 | Reference hardware for ASIC-resistant algorithms. For algorithms that are ASIC-resistant, Table S4 depicts the hardware selection, release date, 
hash-rates, and energy consumption for four ASIC-resistant algorithms. In the bottom line, the overall efficiency of all cards is displayed for the respective algorithm. 
We rely equally on all 22 GPUs suggested by WhatToMine. Some values are not available on WhatToMine. We marked them as n.a. (not available) and exclude 
them in our estimates.
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Remarks on data validity 

 

• Device selection: We select ASIC hardware and graphics cards according to data provided by 

WhatToMine. For ASIC-compatible algorithms, we assume one representative device per 

algorithm (see Table S3). For ASIC-resistant algorithms, we take a multitude of suitable devices 

into account. Deciding on the distribution of hardware devices is highly challenging, primarily 

due to the vast number of GPUs available. We build our estimate on popular GPUs suited for 

mining as suggested by WhatToMine. It is noteworthy that considerable differences in 

efficiencies exist among the selected GPUs and that the release dates not necessarily correlate 

with efficiencies (for Ethash algorithm e.g., Nvidia GTX 1060 with release date 08/16 is 28% 

more efficient than Nvidia RTX 2080, which was released more than two years later in 09/18). 

To account for the diversity in the graphics card ecosystem, we assume an equal distribution 

across the listed graphics cards. This assumption we have to make on the GPU distribution due 

to limited empirical evidence adds a certain degree of uncertainty. Assuming a different 

distribution would change the absolute results according to the efficiencies of overweighed 

GPUs. 

 

• Optimized devices: WhatToMine provides hash-rates and energy usage of GPUs with settings 

that enhance the efficiency of the device. This is facilitated by increasing or decreasing GPU 

clock speed, lowering voltage, or installing a custom basic input/output system (BIOS). 

Generally, this affects our estimates as not all miners might apply these settings, and as not all 

GPUs are affected by such optimization equally (e.g., due to chip quality). Future research may 

validate these estimates and provide more accuracy here by physically measuring the energy 

efficiency of different GPUs in certain configurations. 

 

• Further inefficiencies: Our estimate does not include power usage effectiveness (e.g., losses 

due to cooling, or cable and transformer losses), or other auxiliary energy costs (e.g., GPUs 

require additional hardware such as a mainboard or CPU). Additionally, the rated power is not 

equal to measured (and consumed) power of devices. Such aspects add further uncertainty to 

the absolute energy consumption figures per single cryptocurrency, as we directionally 

underestimate the energy consumption compared to other approaches (as seen in Table S1, 

and as suggested by the comparison of our results with more sophisticated methodologies for 

Bitcoin (see main body for details)). However, as this inaccuracy applies to all examined 

cryptocurrencies, potential changes in absolute numbers would likely impair the estimates of all 

cryptocurrencies in a similar manner, and not impair the relative shares. Future research into 

understudied coins (besides Bitcoin) may provide more certainty on absolute figures. 
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