Mammalian histones facilitate antimicrobial synergy by disrupting the bacterial proton gradient and chromosome organization, Doolin et al.

Supplementary Information

Supplementary Table 1 Supplementary Figures 1-5 Source Data

SUPPLEMENTARY TABLE 1

Gene	Function	10/0	50/0	100/0
wza	colonic acid export protein: outer membrane auxillary linoprotein	2.0	43.3	72.8
w2u wzb	colonic acid production protein tyrosine phosphatase; Wzc P dephosphorylase	2.9	40.2	70.2
W2D	estation also and transformer	3.9	40.2	70.2
wcaE	putative glycosyl transferase	2.5	34.0	35.7
wcaG	bifunctional GDP-fucose synthetase: GDP-4-denydro-6-deoxy-D-mannose epimerase/	3.1	29.8	49.8
	GDP-4-dehydro-6-L-deoxygalactose reductase	1.0		10.6
bdm	biofilm-dependent modulation protein	4.0	35.3	49.6
yjbE	extracellular polysaccharide production threonine-rich protein	2.8	29.5	47.5
yjbF	extracellular polysaccharide production lipoprotein	2.9	25.8	44.0
wcaA	putative glycosyl transferase	2.1	23.3	39.7
rprA	Null	3.4	23.1	39.5
wcaD	putative colanic acid polymerase	2.2	23.3	37.6
gmd	GDP-D-mannose dehydratase, NAD(P)-binding	2.4	22.3	36.6
wzc	colanic acid production tyrosine-protein kinase; autokinase; Ugd phosphorylase	2.1	21.6	36.3
vibG	extracellular polysaccharide export OMA protein	2.2	20.5	34.9
wcaF	nutative acvl transferase	1.6	19.5	32.2
vmal	uncharacterized protein	1.0	25.1	32.0
osmB	osmotically and stress inducible lipoprotein	4.2	24.5	30.6
waal	putotivo glucogul transforaça	2.2	19.5	30.0
wear	plualive giveosyl transferase	2.5	10.3	30.2
cpsG		1.9	19.4	30.2
wcaH	GDP-mannose mannosyl hydrolase	1.8	16.1	26.4
wcaJ	colanic biosynthesis UDP-glucose lipid carrier transferase	2.3	16.5	25.2
cpsB	mannose-1-phosphate guanyltransferase	2.1	15.2	24.7
rcsA	transcriptional regulator of colanic acid capsular biosynthesis	1.9	14.7	21.6
ymgG	UPF0757 family protein	2.9	17.2	21.6
wcaC	putative glycosyl transferase	1.8	12.4	20.4
wzxC	putative colanic acid exporter	2.0	12.8	18.5
ymgD	periplasmic protein, HdeA structural homolog	2.5	14.8	18.2
wcaB	putative acyl transferase	1.4	9.7	16.9
wcaK	colanic acid biosynthesis protein	1.6	11.3	14.8
ivv	inhibitor of c-type lysozyme periplasmic	1.8	10.6	14 7
vihH	DIJE940 family extracellular polysaccharide protein	1.0	8.9	14.3
vgaC	uncharacterized protein	2.1	10.1	14.1
yguC	inhibitor of a type lyceryme, membrane hound, nutative linentation	2.1	7.0	14.1
mile orm V	solt in ducible nutative ABC transmoster normalization hinding metation	1.5	7.0	0.4
OSM I	Salt-inducible putative ABC transporter periprasific binding protein	1.0	0.0	9.4
uga	DDP-glucose o-denydrogenase	1.2	0.0	8.9
ygai	DUF903 family verified hpoprotein	1.0	6.0	8.2
ypeC	DUF2502 family putative periplasmic protein	1.5	5.3	8.2
ytjA	uncharacterized protein	1.4	5.5	8.1
ycfJ	uncharacterized protein	1.4	5.0	7.7
ybgS	putative periplasmic protein	1.2	5.2	7.2
wcaL	putative glycosyl transferase	1.3	5.4	7.1
yaiY	DUF2755 family inner membrane protein	1.4	4.8	7.0
<i>iraM</i>	RpoS stabilzer during Mg starvation, anti-RssB factor	1.1	5.1	6.8
ydeI	hydrogen peroxide resistance OB fold protein; putative periplasmic protein	0.9	5.6	6.6
ecpR	putative transcriptional regulator for the ecp operon	1.2	4.8	6.2
vghA	putative oxidoreductase	1.1	4.1	6.0
vcfT	inner membrane protein	1.1	3.7	5.9
katE	catalase HPII, heme d-containing	12	4 2	5.8
degP	serine endoprotease (protease Do) membrane-associated	1.2	3.6	53
acgi	linovl-dependent Cyc-based perovidese bydronerovide resistance; solt shock inducible	1.2	3.0	5.1
USINC	membrane protein: peroxiredovin	1.4	5.7	5.1
ani a D	multicent symmetry of hom Di system membrane linemetrin	1.5	4.2	5 1
yiuD	municopy suppressor of bands, buter memorane inpoprotein	1.3	4.3	5.0
yegs	phosphatidyigiyeeroi kinase, metal-dependent	1.2	4.0	5.0
sra	stationary-phase-induced ribosome-associated protein	1.5	3.9	5.0
есрВ	ECP production pilus chaperone	1.2	2.9	4.8
<i>ypfG</i>	DUF11/6 family protein	1.2	3.4	4.7
yohP	uncharacterized protein	2.0	3.1	4.7
yiaB	YiaAB family inner membrane protein	0.7	3.1	4.6
Gene	Function	10/0	50/0	100/0
hslJ	heat-inducible lipoprotein involved in novobiocin resistance	1.3	3.9	4.6
ecpA	ECP pilin	1.1	3.3	4.6
vjdP	putative periplasmic protein	1.3	3.5	4.5
bax	putative glucosaminidase	1.5	3.9	4.5

vajI	putative lipoprotein	1.4	3.2	4.4
loiP	Phe-Phe periplasmic metalloprotease, OM lipoprotein; low salt-inducible; Era-binding	1.2	3.3	4.3
	heat shock protein			
spy	periplasmic ATP-independent protein refolding chaperone, stress-induced	0.8	2.7	4.3
osmE	osmotically-inducible lipoprotein	1.4	3.3	4.2
vjbT	putative periplasmic protein	1.3	3.0	4.1
ybjP	lipoprotein	1.2	3.4	4.0
ytfK	DUF1107 family protein	1.1	2.8	3.9
ysaB	uncharacterized protein	1.3	3.6	3.9
galP	D-galactose transporter	1.2	3.0	3.8
rcnB	periplasmic modulator of Ni and Co efflux	1.3	3.4	3.7
ybaY	outer membrane lipoprotein	1.1	2.7	3.7
omrB	Null	1.1	2.4	3.7
omrA	Null	1.0	2.5	3.6
есо	ecotin, a serine protease inhibitor	1.2	2.8	3.5
<i>stpA</i>	DNA binding protein, nucleoid-associated	1.6	3.8	3.4
wcaM	colanic acid biosynthesis protein	1.2	3.1	3.4
ygdR	DUF903 family verified lipoprotein	1.1	2.7	3.3
ydeT'	pseudogene	0.8	3.0	3.3
ygaM	putative membrane-anchored DUF883 family ribosome-binding protein	1.1	2.2	3.3
glsA	glutaminase 1	1.5	2.0	3.2
yhbO	stress-resistance protein	1.0	2.3	3.2
yggE	oxidative stress defense protein	1.2	2.6	3.1
ybiH	DUF1956 domain-containing tetR family putative transcriptional regulator	1.3	2.0	3.1
yodB	cytochrome b561 homolog	1.2	2.6	3.1
ygiM	SH3 domain protein	1.1	2.4	3.0
ydeQ	putative fimbrial-like adhesin protein	1.3	2.1	3.0
ybhG	putative membrane fusion protein (MFP) component of efflux pump, membrane anchor	1.4	1.8	3.0
otsB	trehalose-6-phosphate phosphatase, biosynthetic	1.3	2.2	2.9
yjbJ	stress-induced protein, UPF0337 family	1.4	2.4	2.9
ybfA	DUF2517 family protein	1.2	1.5	2.9
ybdG	mechanosensitive channel protein, miniconductance	1.2	2.3	2.9
yehX	putative ABC transporter ATPase	1.4	1.7	2.8
fepA	ferrienterobactin outer membrane transporter	1.0	2.2	2.8
gmr	cyclic-di-GMP phosphodiesterase; csgD regulator; modulator of RNase II stability	1.0	2.2	2.8
ybdZ	stimulator of EntF adenylation activity, MbtH-like	1.0	2.2	2.7
entE	2,3-dihydroxybenzoate-AMP ligase component of enterobactin synthase multienzyme	1.0	2.0	2.7
	complex			
yfeY	RpoE-regulated lipoprotein	1.1	2.0	2.7
усеВ	lipoprotein, DUF1439 family	1.1	2.2	2.7
ydeS	putative fimbrial-like adhesin protein	1.2	1.8	2.6
caiD	carnitinyl-CoA dehydratase	1.4	2.3	2.6

Supplemental Table 1. Fold-change in mRNA transcript in the top 100 genes up-regulated in E. coli following a 30-minute treatment with H2A. The 10/0, 50/0, and 100/0 labels indicate comparison between 10, 50, or 100 μ g/mL H2A and untreated cells. Values are the average of three independent experiments.

SUPPLEMENTARY FIGURES

Supplementary Figure 1

Figure 1. Histone H2A kills E. coli and S. aureus in low ionic environments and synergizes with AMPs in physiological environments. H2A induces cell aggregates whereas LL-37 reduces cell size. (A) Colony forming unit (CFU) counts of E. coli and S. aureus treated with H2A in media containing low (1 µM) and physiological (1 mM) magnesium (n=5 for each condition). Bacteria were treated for 1 hour before addition to non-selective LB agar plates. (B) Intracellular propidium iodide (PI) fluorescence images of untreated and H2A-treated E. coli in 1 μ M and 1 mM concentrations of magnesium after 1-hour treatment. Fluorescence images are overlaid on phase contrast images. (C) Growth profiles of E. coli treated with the indicated concentrations of LL-37 alone, LL-37 and human H3, or LL-37 and citrullinated human H3 in minimal medium containing 1 mM magnesium (n=4 for each condition). (D) Growth profiles of E. coli treated with 10 µg/mL H2A, 50 µg/mL kanamycin (Kan), or both in minimal medium containing 1 mM magnesium (n=6 for each condition). (E) Scanning electron microscopy (SEM) images of E. coli treated with 10 µg/mL H2A and 1 µM LL-37 in minimal medium containing 1 mM magnesium. Blue arrows indicate some of the membrane blebs. (F) Representative phase contrast images and corresponding cell aggregate sizes of E. coli that were untreated or treated with 50 µg/mL H2A. E. coli were treated with the indicated concentrations of H2A for 1 hour (n=3 for each condition). (G) Representative phase contrast images and corresponding cell sizes of E. coli that were untreated or treated with the indicated concentrations of LL-37 for 1 hour (n=3 for each condition). (H) Intracellular propidium iodide (PI) fluorescence intensities of E. coli treated with 10 µg/mL H2A, 10 µM magainin-2 (MAG2), or both in minimal medium containing 1 mM magnesium (n=3 for each condition). Points and bars are the average of biologically independent experiments. Error bars indicate standard error of the mean (SEM). One-way ANOVAs were performed. No adjustments were made for multiple comparisons. ns > 0.05. Images are representative of three independent experiments. Scale bars in (B), (E), (F) and (G) represent 5, 5, 3, and 3 µm, respectively.

Figure 2. Effects of H2A in com bination with MAG2, recovery from H2A treatment, and the impact of H2A and AMP synergy on cell size. (A) Growth profiles of *E. coli* that were treated with 50 µg/mL fluorescently-labeled H2A (AF-H2A), 10 µM LL-37, or both, in minimal medium containing 1 mM magnesium (n=4 for each condition). (B) Phase contrast, fluorescence images, and (C) intracellular AF-H2A fluorescence intensities of *E. coli* that were untreated or treated with 10 µg/mL AF-H2A alone or in combination with 10 µM MAG2 (n=3 for each condition). AF-H2A is mixed at a concentration of 1% with unlabeled H2A to decrease fluorescence intensity. (D) Representative images and associated fluorescence intensity profiles of *E. coli* that were treated with 1% 5-FAM-LC-LL-37 alone or in combination with 10 µg/mL H2A for 0,30, or 60 minutes. The profiles are taken along the lines indicated in orange. Cell membranes were visualized using FM4-64. (E) Intracellular propidium iodide (PI) fluorescence intensities of *H2A*-treated *E. coli* over a 1-hour recovery following a 3-hour treatment with 10 µg/mL H2A in minimal medium containing low or physiological magnesium (n=3 for each condition). (G) *E. coli* cell size following 1-hour treatment with 10 µg/mL H2A, 2 µM LL-37, or the combination of H2A and LL-37 in minimal medium containing 1 mM magnesium (n=3 for each condition). Points and bars are the average of biologically independent experiments. Error bars indicate SEM. A one-tailed t-test for C, two-way ANOVAs for E-F, and a one-way ANOVA for G were performed. No adjustments were made for multiple comparisons. ns > 0.05. Images are representative of three independent experiments. Scale bars in represent 2 µm.

Figure 3. Electroporation facilitates H2A entry into the cytoplasm, H2A inhibits *E. coli* DNA migration, LL-37 has weak interactions with *E. coli* DNA and high concentrations of H2A inhibit *E. coli* growth. (A) AF-H2A fluorescence intensities of *E. coli* that were cultured in the absence of AF-H2A (control), electroporated with $10 \mu g/mL$ AF-H2A and cultured in minimal medium containing 1 mM magnesium with the same concentration of AF-H2A, or cultured with $2 \mu M$ LL-37 and $10 \mu g/mL$ AF-H2A (n=3 for each condition). AF-H2A is mixed with unlabeled H2A (1% AF-H2A, combined concentration of 10 $\mu g/mL$). Non-denaturing polyacrylamide gel electrophoresis of 1 μg of *E. coli* DNA mixed with indicated concentrations of (B) H2A or (D) LL-37. Corresponding DNA fluorescence intensities for gels with (C) H2A (n=7) or (E) LL-37 (n=5). (F) Growth profiles of *E. coli* treated with 0, 10, 25, 50, and 100 $\mu g/mL$ H2A in minimal medium containing 1 mM magnesium (n=4 for each condition). Bars and points are shown as mean \pm SEM and are representative of independent experiments. ns > 0.05. A one-way ANOVA was performed for A. No adjustments were made for multiple comparisons. For B-E, DNA was obtained from the same biological sample and gels were processed in parallel.

Figure 4. The Rcs phosphorelay pathway is upregulated by histones and improves *E. coli* survival under dual treatment with H2A and LL-37. (A) Intracellular *ompA-cfp* and *rcsA-yfp* fluorescence intensities of *E. coli* after a 1-hour treatment with 0, 10, 50, and 100 μ g/mL H2A in medium containing 1 mM magnesium (n=3 for each condition). (B) Phase contrast images and CFP, propidium iodide (PI), and YFP fluorescence images of *E. coli* after a 1-hour treatment with 100 μ g/mL H2A (n=3 for each condition). (C) Growth profiles of wild-type *E. coli* and a *rcsA* mutant *E. coli* strain treated with the 10 μ g/mL H2A and 2 μ M LL-37 (n=4 for each condition). Points and bars are the average of biologically independent experiments. Error bars indicate standard error of the mean (SEM). One-way ANOVAs were performed for A. No adjustments were made for multiple comparisons. Scale bars represent 10 μ m.

Supplementary Figure 4

Supplementary Figure 5

Figure 5. A positive feedback loop underlies histone-AMP synergy. (A) Total intracellular concentration of H2A and AMPs as a function of time for positive feedback (red) and non-interacting (blue) relationships. Positive feedback between H2A and AMPs results in the exponential uptake of H2A and AMPs (red). Removal of the feedback loop results in the uptake at a significantly lower rate (blue). Details of the model and simulation are described in the Supplemental Methods section. (B) Histogram of PI fluorescence intensities in *E. coli* following a 1-hour treatment with 10 μ g/mL H2A and 1 μ M LL-37 indicates a bimodal distribution of uptake phenotypes.