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Data Analysis 

We estimated normalisation factors and negative binomial dispersions from the raw count 

data. With these estimates, we adjusted negative binomial generalised linear models for each 

gene by conducting likelihood tests. We corrected the p values for multiple testing using the 

Benjamini-Hochberg false discovery rate (FDR) method to control for type I errors. We 

performed statistical analysis using R (version 4.0.0) and DESeq2 (v1.17.18) R-packages. 

 

Deconvolution Analysis 

Each of the blood cell type expresses a distinct set of genes and therefore gives a different 

contribution to the overall RNA expression in whole blood. Therefore, the observed 

differences in gene expression sometimes can reflect the differences in the cell type 

composition instead of a change in the gene expression profile, which is the effect of interest 
44. With the widespread use of whole blood gene expression to measure and interpret 

biological changes between specific conditions, the use of deconvolution is becoming 

increasingly important to gain a better insight into cell-subset specific information 45-47.  

We therefore evaluated the gene expression difference beyond those attributable to inter-

individual variation in the proportion of different blood cell types. Deconvolution analysis 

was performed on RNA-seq data using Cibersort software, which deconvolves mixture by 

using a linear support vector regression and a machine learning approach 11. The software 

requires the dataset to be deconvolved and a matrix of reference gene expression signatures 

for each of the blood cell types. We used the default input gene expression signature matrix 

of LM22, with 547 genes distinguishing 11 leukocytes subtypes 43. 

 

Deconvolution algorithms are based on well-characterised samples, which are generally from 

adults and that application of deconvolution to blood from newborns has to be treated with 

caution48. Therefore, we took an approach, which simplified the blood components into two 

broad compartments to avoid introducing artefacts. 

 

To study the potential importance of variation in blood cell numbers in the disease 

mechanism, we assessed the intensity of expression per unit volume of blood by multiplying 

normalized expression (FPKM) of each gene by the absolute cell count to give a composite 

measure (FPKM per L of blood). The analysis was then adjusted for the deconvolution results 

by using as input gene expression of the negative binomial generalized log-linear model, 

values adjusted for neutrophils and lymphocyte cell fraction counts. In order to create a 

lymphocyte cell fraction, we combined Naïve B cells, memory B cells, Plasma cells, CD8 T 

cells, CD4 T cells, resting memory CD4, activated memory CD4, Helper follicular T cells, 

regulatory T cells, Gamma delta T cells, resting NK and activated NK cells.  In order to 

assess the cell  fractions associations and gene expression, we assessed the correlation of the 

proportions of each cell blood type (as estimated by CIBERSORT) vs log CPM for the top 

differentially expressed genes (RGS1 and SMC4) and the differentially expressed genes of 

the melatonin pathway (based off analysis without adjustment for cell type). Note that the 

always opposite correlations in different cell types, may reflect the fact that proportion of 

blood cells are highly interdependent.  

 

 

Pathway analysis 

We used Ingenuity Pathway Analysis software (QIAGEN) to study the biological pathways 

enriched in the significantly differentially expressed genes. We performed the canonical 

pathway analysis of the differentially expressed genes, which fulfilled the criteria of an FDR 

value <0.05 and an absolute log2 fold change > 0.4. The association between the 



differentially expressed genes and biological pathways was determined in two ways: 1) a 

ratio of the number of genes from the list of differentially expressed genes that maps to the 

pathway divided by the total number of genes that map to the same pathway 2) Fisher's Exact 

to assess the probability that the association between the differentially expressed genes and 

the canonical pathways was explained by chance alone. The P-values obtained were corrected 

for multiple testing using the Benjamini-Hochberg FDR method.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Figure 1.  Flow-chart of the study. A and B indicate the blinded allocation to either whole-body cooling or usual care. 

 



Supplemental Figure 2.  Volcano plot showing the significant genes identified in the 

comparison of babies with adverse versus good outcome after adjustment for gender, trial 

randomization and blood cell type proportions (deconvolution), plotted according to log2 

fold-change (x axis) and log10 p value (y axis). In green are genes with false discovery rate 

(FDR) < 0.05 and fold-change <0.4; in red are genes with FDR < 0.05 and fold change > 0.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Table 1. Correlation of the proportions of each cell type (as estimated by 

CIBERSORT) vs log counts per million for the genes of interest (based off analysis without 

adjustment for cell type). The relative correlation between the top differentially expressed 

genes and Melatonin pathway with lymphocytes and neutrophils expressed as r coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*p<0.05 

 

 

 

 

 

 

 

 Lymphocytes  Neutrophils 

RGS1 0.39* -0.30* 

SMC4 0.57* -0.51* 

CALM1 -0.51* 0.46* 

CAMK4 0.64* -0.48* 

GLUT4 0.50* -0.51* 

PLCB2 -0.04 -0.01 

PLCG2 -0.52* 0.48* 

PLCL1 0.38* -0.28 

CAMK2G -0.40* 0.38* 

PRKACA -0.37* 0.26 

RORA 0.61* -0.53* 


