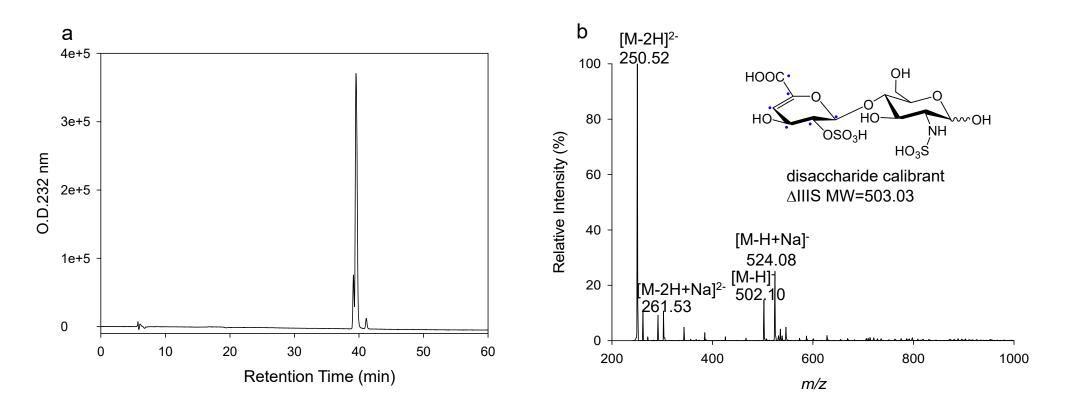
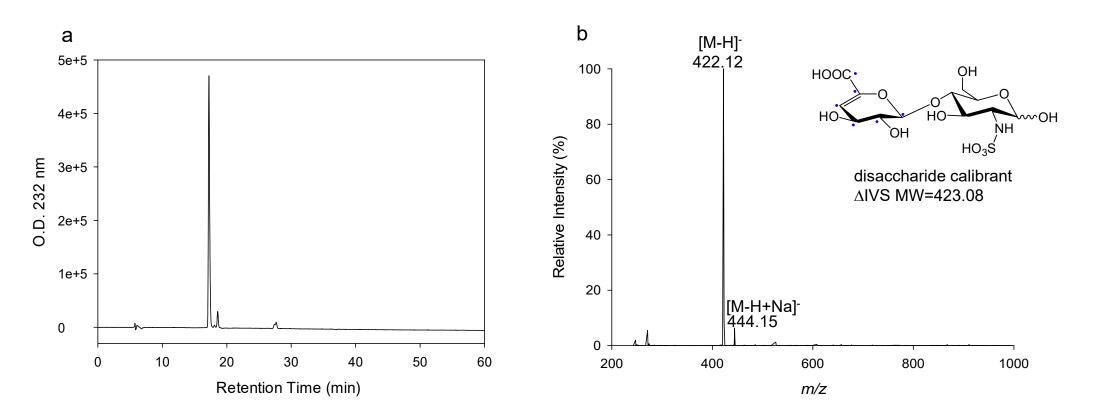
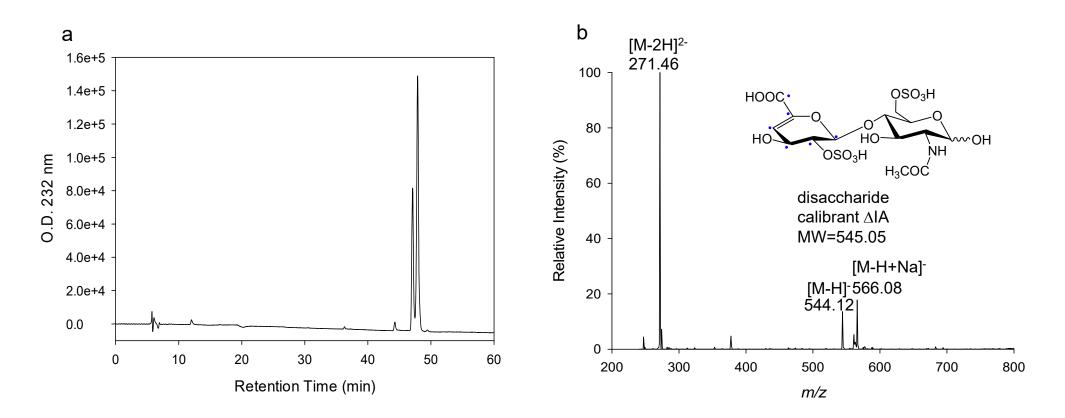
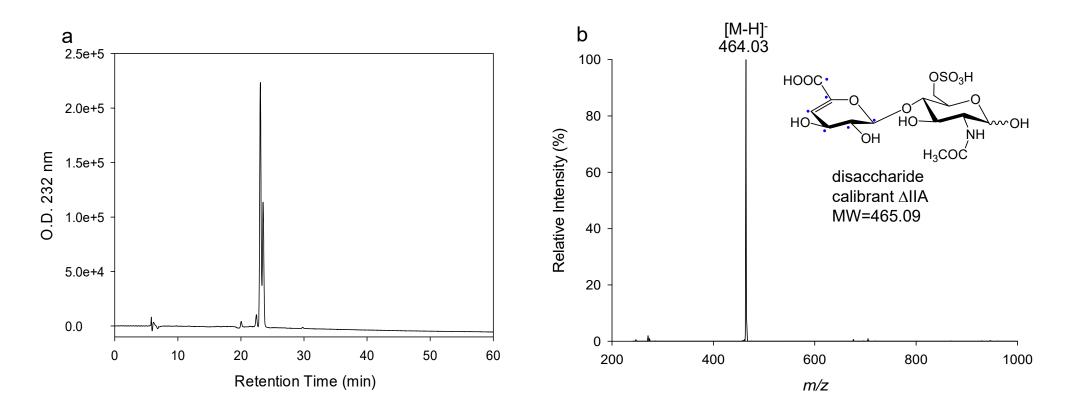

Quantitative analysis of heparan sulfate using isotopically labeled calibrants

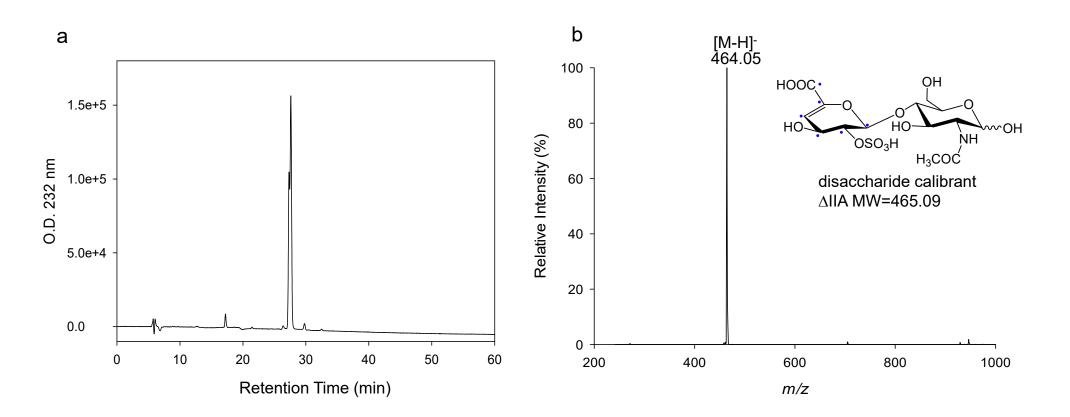
(Supporting information)

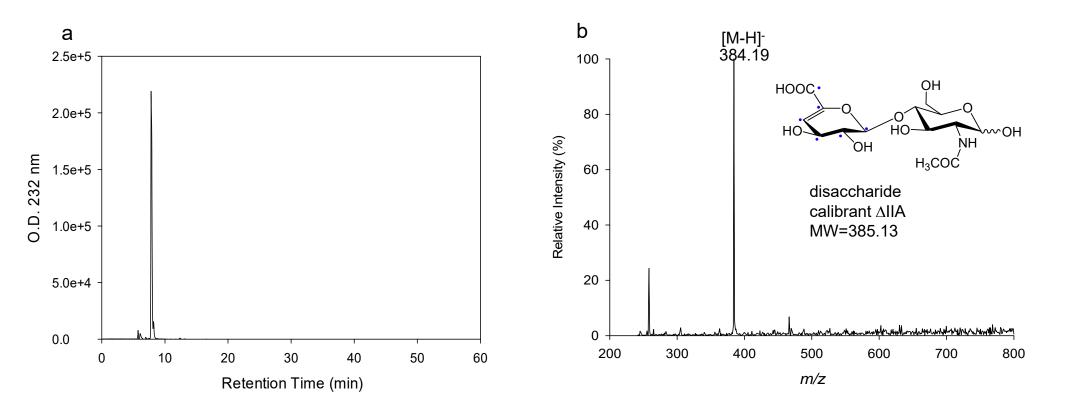

Supplementary Figures

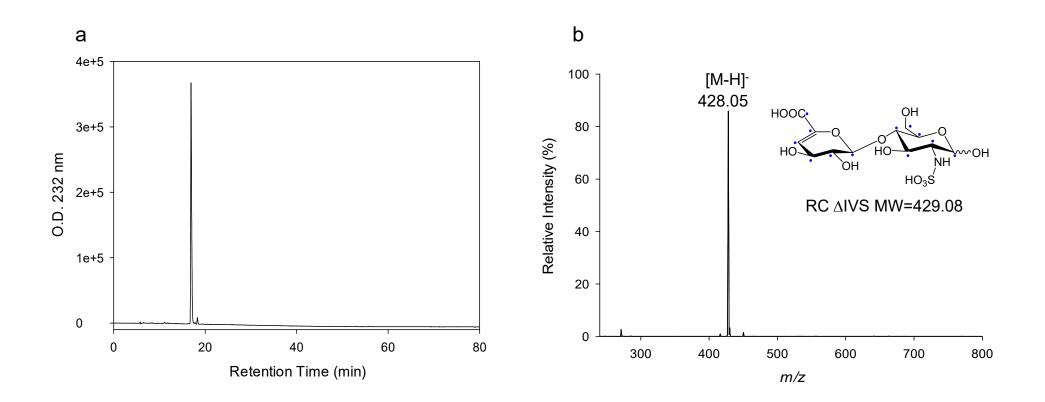

Supplementary Fig. 1. Purity analysis of disaccharide calibrant Δ IS. Panel **a** shows the SAX-HPLC chromatogram. A major single peak with a small shoulder peak was eluted at 56 min, suggesting that the chemical purity of disaccharide calibrant Δ IS is high. The small shoulder peak is an anomeric isomer. Panel **b** shows the ESI-MS spectrum of disaccharide calibrant Δ IS. The measured MW was 583.04, which is very close to the calculated value of 582.99. No signal in the m/z value of 287.48 [M-2H]²⁻ and 575.97 [M-H]⁻, the molecular ions representing unlabeled Δ IS counterpart. The data suggest that our preparation of disaccharide calibrant Δ IS standard has high isotopic purity.

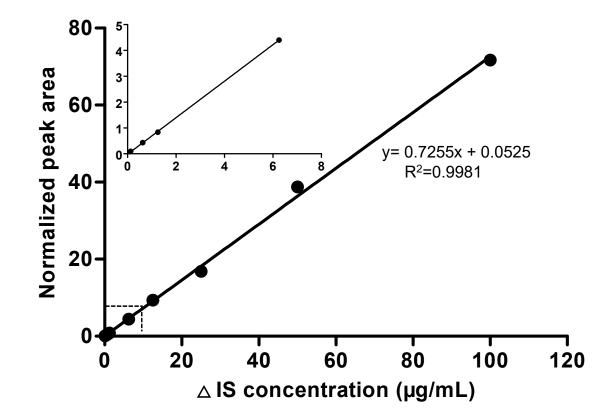

Supplementary Fig. 2. Purity analysis of disaccharide calibrant Δ IIS. Panel **a** shows the SAX-HPLC chromatogram. A major single peak with a small shoulder peak was eluted at 36 min, suggesting that the chemical purity of disaccharide calibrant Δ IIS is high. The small shoulder peak is an anomeric isomer. Panel **b** shows the ESI-MS spectrum of disaccharide calibrant Δ IIS. The measured MW was 503.04, which is very close to the calculated value of 503.03. No signal in the m/z value of 247.51 [M-2H]²⁻ and 496.01 [M-H]⁻, the molecular ions representing unlabeled Δ IIS counterpart. The data suggest that our preparation of disaccharide calibrant Δ IIS standard has high isotopic purity.

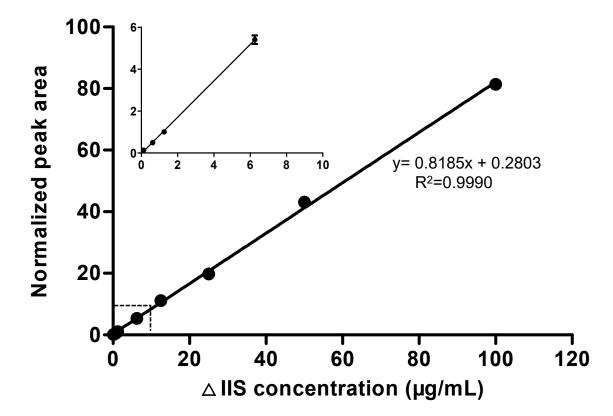

Supplementary Fig. 3. Purity analysis of disaccharide calibrant Δ IIIS. Panel **a** shows the SAX-HPLC chromatogram. A major single peak with a small shoulder peak was eluted at 39 min, suggesting that the chemical purity of disaccharide calibrant Δ IIIS is high. The small shoulder peak is an anomeric isomer. Panel **b** shows the ESI-MS spectrum of disaccharide calibrant Δ IIIS. The measured MW was 503.06, which is very close to the calculated value of 503.03. No signal in the m/z value of 247.51 [M-2H]² and 496.01 [M-H]⁻, the molecular ions representing unlabeled Δ IIIS counterpart. The data suggest that our preparation of disaccharide calibrant Δ IIIS standard has high isotopic purity.

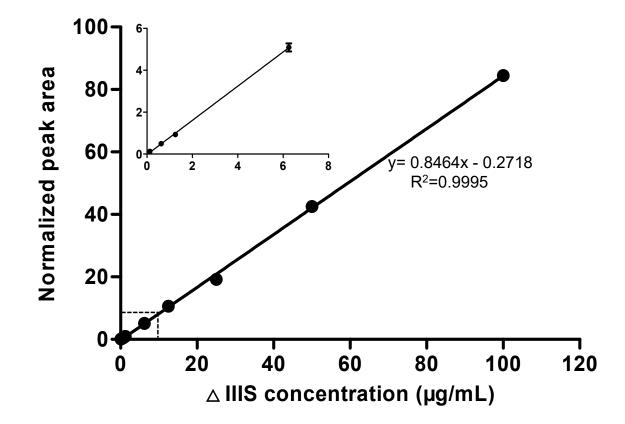

Supplementary Fig. 4. Purity analysis of disaccharide calibrant Δ IVS. Panel **a** shows the SAX-HPLC chromatogram. A major single peak was eluted at 17 min, suggesting that the chemical purity of disaccharide calibrant Δ IVS is high. Panel **b** shows the ESI-MS spectrum of disaccharide calibrant Δ IVS. The measured MW was 423.12, which is very close to the calculated value of 423.08. No signal in the m/z value of 416.06 [M-H]⁻, the molecular ions representing unlabeled Δ IVS counterpart. The data suggest that our preparation of disaccharide calibrant Δ IVS standard has high isotopic purity.

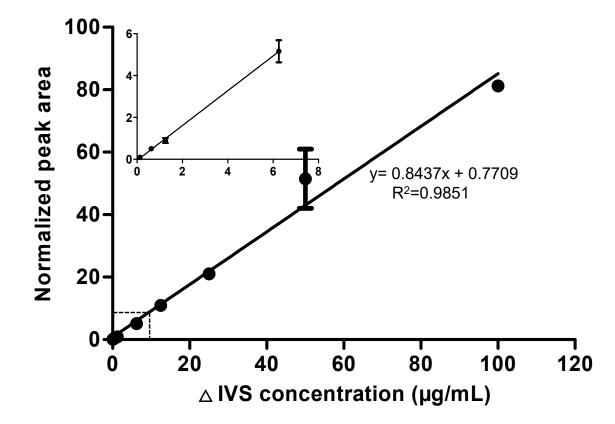

Supplementary Fig. 5. Purity analysis of disaccharide calibrant $\triangle IA$. Panel **a** shows the SAX-HPLC chromatogram. A major single peak with a shoulder peak was eluted at 47 min, suggesting that the chemical purity of disaccharide calibrant $\triangle IA$ is high. The shoulder peak is an anomeric isomer. Panel **b** shows the ESI-MS spectrum of disaccharide calibrant $\triangle IA$. The measured MW was 545.12, which is very close to the calculated value of 545.05. No signal in the m/z value of 268.51 [M-2H]²⁻ and 538.03 [M-H]⁻, the molecular ions representing unlabeled $\triangle IA$ counterpart. The data suggest that our preparation of disaccharide calibrant $\triangle IA$ standard has high isotopic purity.

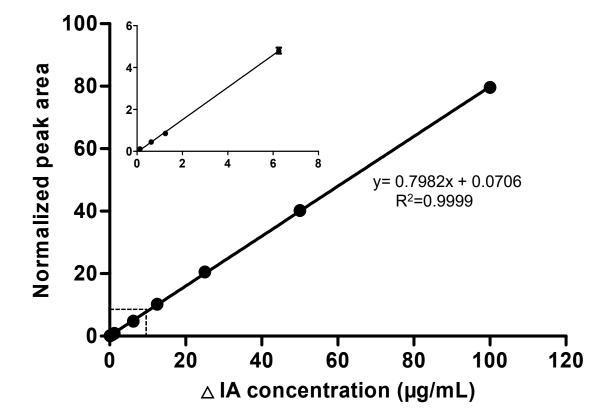

Supplementary Fig. 6. Purity analysis of disaccharide calibrant Δ IIA. Panel **a** shows the SAX-HPLC chromatogram. A major single peak with a shoulder peak was eluted at 24 min, suggesting that the chemical purity of disaccharide calibrant Δ IIA is high. The shoulder peak is an anomeric isomer. Panel **b** shows the ESI-MS spectrum of disaccharide calibrant Δ IIA. The measured MW was 465.03, which is very close to the calculated value of 465.09. No signal in the m/z value of 458.07 [M-H]⁻, the molecular ions representing unlabeled Δ IIA counterpart. The data suggest that our preparation of disaccharide calibrant Δ IIA standard has high isotopic purity.

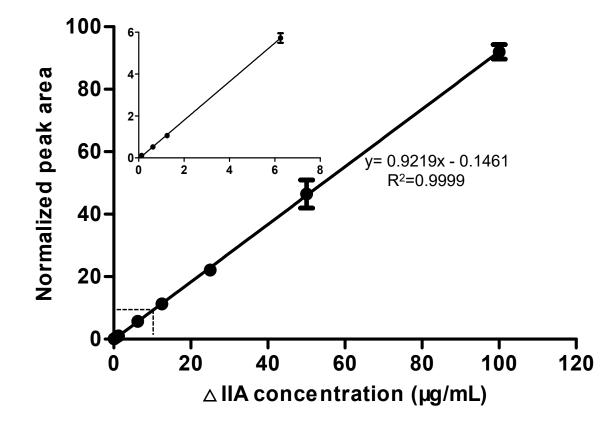

Supplementary Fig. 7. Purity analysis of disaccharide calibrant Δ IIIA. Panel **a** shows the SAX-HPLC chromatogram. A major single peak with a shoulder peak was eluted at 27 min, suggesting that the chemical purity of disaccharide calibrant Δ IIIA is high. The small shoulder peak is an anomeric isomer. Panel **b** shows the ESI-MS spectrum of disaccharide calibrant Δ IIIA. The measured MW was 465.05, which is very close to the calculated value of 465.09. No signal in the m/z value of 458.07 [M-H]⁻, the molecular ions representing unlabeled Δ IIIA counterpart. The data suggest that our preparation of disaccharide calibrant Δ IIIA standard has high isotopic purity.

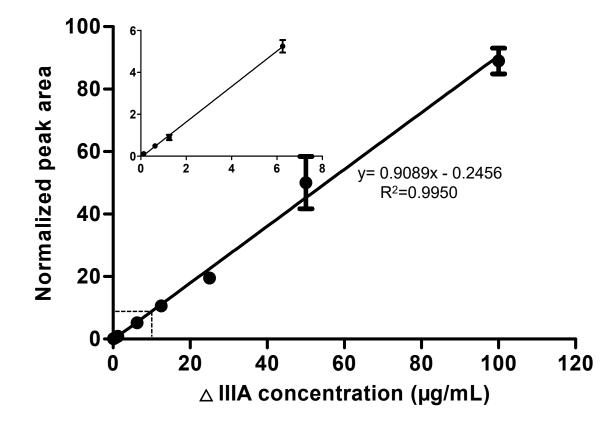

Supplementary Fig. 8. Purity analysis of disaccharide calibrant \triangle IVA. Panel **a** shows the SAX-HPLC chromatogram. A major single peak was eluted at 8 min, suggesting that the chemical purity of disaccharide calibrant \triangle IVA is high. Panel **b** shows the ESI-MS spectrum of disaccharide calibrant \triangle IVA. The measured MW was 385.19, which is very close to the calculated value of 385.13. No signal in the m/z value of 378.11 [M-H]⁻, the molecular ions representing unlabeled \triangle IVA counterpart. The data suggest that our preparation of disaccharide calibrant \triangle IVA standard has high isotopic purity.

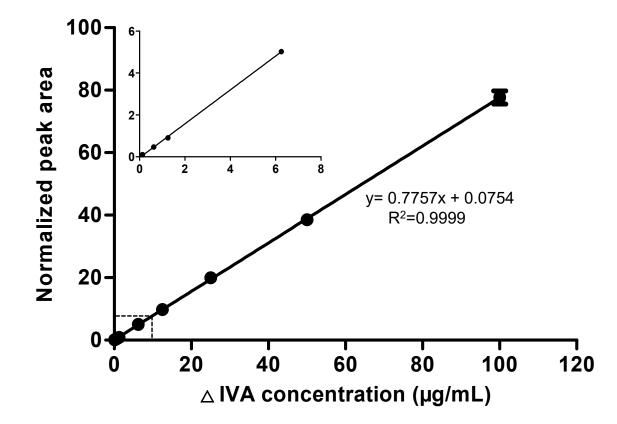

Supplementary Fig. 9. Disaccharide compositional analysis of RC standard. Panel **a** shows the SAX-HPLC chromatogram of RC standard after the digestion with heparin lyases. Only a single disaccharide of RC Δ IVS was observed, confirming that the RC standard is N-sulfo heparosan with the anticipated disaccharide repeating unit. Panel **b** shows the ESI-MS spectrum of the disaccharide from RC standard. The measured MW of the disaccharide was 429.05, which is close to the calculated value of 429.08. No signals at the range of m/z of 416.06 to 422.08 were observed, suggesting that the RC standard has high isotopic purity.

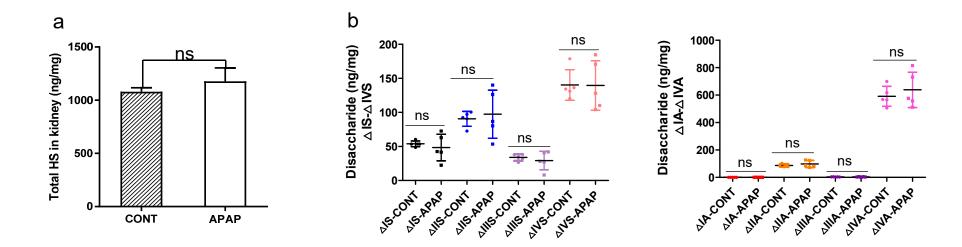

Supplementary Fig. 10. Linear dynamic range curve of Δ IS. The curve and linear equation of normalized peak area as a function of concentration for Δ IS are shown. The concentration of Δ IS used for LC-MS/MS analysis were 0.125, 0.625, 1.25, 6.25, 12.5, 25, 50 and 100 µg/mL, mixing with 1.25 µg/mL disaccharide calibrant Δ IS. Data represent means ± S.D. (n=3)

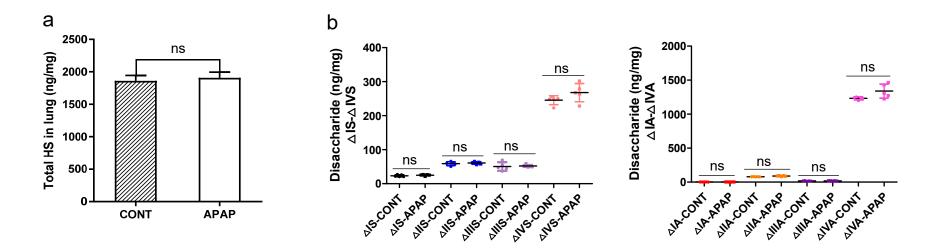

Supplementary Fig. 11. Linear dynamic range curve of Δ IIS. The curve and linear equation of normalized peak area as a function of concentration for Δ IIS are shown. The concentration of Δ IIS used for LC-MS/MS analysis were 0.125, 0.625, 1.25, 6.25, 12.5, 25, 50 and 100 µg/mL, mixing with 1.25 µg/mL disaccharide calibrant Δ IIS. Data represent means ± S.D. (n=3)


Supplementary Fig. 12. Linear dynamic range curve of Δ IIIS. The curve and linear equation of normalized peak area as a function of concentration for Δ IIIS are shown. The concentration of Δ IIIS used for LC-MS/MS analysis were 0.125, 0.625, 1.25, 6.25, 12.5, 25, 50 and 100 µg/mL, mixing with 1.25 µg/mL disaccharide calibrant Δ IIIS. Data represent means ± S.D. (n=3)


Supplementary Fig. 13. Linear dynamic range curve of \triangle IVS. The curve and linear equation of normalized peak area as a function of concentration for \triangle IVS are shown. The concentration of \triangle IVS used for LC-MS/MS analysis were 0.125, 0.625, 1.25, 6.25, 12.5, 25, 50 and 100 µg/mL, mixing with 1.25 µg/mL disaccharide calibrant \triangle IVS. Data represent means ± S.D. (n=3)


Supplementary Fig. 14. Linear dynamic range curve of Δ IA. The curve and linear equation of normalized peak area as a function of concentration for Δ IA are shown. The concentration of Δ IA used for LC-MS/MS analysis were 0.125, 0.625, 1.25, 6.25, 12.5, 25, 50 and 100 µg/mL, mixing with 1.25 µg/mL disaccharide calibrant Δ IA. Data represent means ± S.D. (n=3)


Supplementary Fig. 15. Linear dynamic range curve of Δ IIA. The curve and linear equation of normalized peak area as a function of concentration for Δ IIA are shown. The concentration of Δ IIA used for LC-MS/MS analysis were 0.125, 0.625, 1.25, 6.25, 12.5, 25, 50 and 100 µg/mL, mixing with 1.25 µg/mL disaccharide calibrant Δ IIA. Data represent means ± S.D. (n=3)


Supplementary Fig. 16. Linear dynamic range curve of Δ IIIA. The curve and linear equation of normalized peak area as a function of concentration for Δ IIIA are shown. The concentration of Δ IIIA used for LC-MS/MS analysis were 0.125, 0.625, 1.25, 6.25, 12.5, 25, 50 and 100 µg/mL, mixing with 1.25 µg/mL disaccharide calibrant Δ IIIA. Data represent means ± S.D. (n=3)

Supplementary Fig. 17. Linear dynamic range curve of \triangle IVA. The curve and linear equation of normalized peak area as a function of concentration for \triangle IVA are shown. The concentration of \triangle IVA used for LC-MS/MS analysis were 0.125, 0.625, 1.25, 6.25, 12.5, 25, 50 and 100 µg/mL, mixing with 1.25 µg/mL disaccharide calibrant \triangle IVA. Data represent means ± S.D. (n=3)

Supplementary Fig. 18. Demonstrate of the utilities of quantitative LC-MS/MS method in mice kidney heparan sulfate. Panel a shows the total amount heparan sulfate in the kidney of mice with or without APAP overdose. The data is presented as mean \pm S.D. (n = 5). CONT represents the group of animals without APAP overdose; and APAP represents the group of animals with APAP overdose. The *p* value was determined by two-tailed unpaired t test, ns, not significant (p>0.05). Panel **b** shows the amount of individual disaccharides from mice kidney with or without APAP overdose.

Supplementary Fig. 19. Demonstrate of the utilities of quantitative LC-MS/MS method in mice lung heparan sulfate. Panel a shows the total amount heparan sulfate in the lung of mice with or without APAP overdose. The data is presented as mean \pm S.D. (n = 5). CONT represents the group of animals without APAP overdose. The *p* value was determined by two-tailed unpaired t test, ns, not significant (p>0.05). Panel **b** shows the amount of individual disaccharides from mice lung with or without APAP overdose.

Supplementary Table 1

The structure of ¹³C-labeled oligosaccharides and prepared ¹³C-labeled disaccharide calibrants, and corresponding theoretical molecular mass, amount and purity of ¹³C-labeled disaccharide calibrants.

	¹³ C-labeled	¹³ C-labeled	Molecular	Amount	Purity
	oligosaccharides	disaccharide calibrants	mass	(mg)	(%)
Comp 1	GIcNS-GIcA*-GIcNS-IdoA2S*-	∆UA2S*-GlcNS	503.03	2.0	97.3
	GlcNS-GlcA-pNP	∆UA*-GlcNS	423.08	2.1	97.6
Comp 2	GlcNS6S-GlcA*-GlcNS6S-IdoA2S*-	∆UA2S*-GlcNS6S	582.99	3.6	95.4
	GlcNS6S-GlcA-pNP	∆UA*-GlcNS6S	503.03	10.0	95.2
Comp 3	GIcNS-GIcA-GIcNS-IdoA2S*-	∆UA2S*-GlcNAc	465.09	2.7	96.5
	GlcNAc-GlcA*-GlcNAc-GlcA-pNP	∆UA*-GlcNAc	385.13	1.3	99.6
Comp 4	GlcNS6S-GlcA-GlcNS6S-IdoA2S*-	∆UA2S*-GlcNAc6S	545.05	3.0	97.3
	GIcNAc6S-GIcA*-GIcNAc6S-GIcA-pNP	∆UA*-GlcNAc6S	465.09	2.2	95.4

*indicates the saccharide residue carries ¹³C-labeled carbon atoms.

The ALT concentration in plasma 24 h after APAP administrations for mice liver tissue harvest

	ALT concentration (U/L)						
Subject	Saline control mice	APAP-overdose mice					
1	37	1901					
2	19	2658					
3	23	3985					
4	28	2684					
5	27	1565					
6	39	2483					
7	23	2967					
8	19	1830					

The ALT concentration in plasma 24 h after APAP administrations for mice kidney and lung tissue harvest

	ALT concentration (U/L)						
Subject	Saline control mice	APAP-overdose mice					
1	35.5	4710					
2	13.5	3419					
3	35	3264					
4	23.5	3052					
5	18	3366					

Comparison of disaccharide composition of liver HS in the Saline control and APAP-overdose mice.

	Saline control mice liver- Disaccharides (ng/mg)								HS recovery yield	Total HS	
Subject	ΔIS	ΔIIS	ΔIIIS	ΔIVS	ΔIA	ΔIIA	∆IIIA	ΔΙVΑ	(%)	(ng/mg)	
1	16.7±0.5ª	13.7±0.3	3.9±0.03	23.9±0.9	0.2±0.01	19.3±0.2	0.8±0.2	101.5±2.4	93.8±3.3 ^b	191.4±1.7°	
2	14.4±0.3	15.1±0.3	2.2±0.1	27.3±0.4	0.2±0.1	24.1±0.5	0.7±0.2	116.5±1.0	94.3±0.4	213.3±1.2	
3	12.7±0.2	13.6±0.2	3.0±0.2	29.0±2.2	0.2±0.1	22.3±0.5	0.9±0.2	135.7±3.0	93.8±6.1	231.2±2.4	
4	11.2±0.2	13.5±0.2	2.6±0.1	25.3±1.7	0.1±0.0	19.5±0.8	0.3±0.2	104.8±4.2	97.2±8.2	182.8±5.8	
5	11.0±0.2	13.8±0.4	3.6±0.2	36.1±3.9	0.1±0.0	18.7±0.3	0.6±0.1	157.8±2.4	102.7±10.4	241.8±6.4	
6	11.5±0.1	12.8±0.4	3.0±0.1	29.9±2.7	0.1±0.0	20.2±0.8	0.6±0.0	123.6±2.2	92.3±5.8	219.2±4.0	
7	14.5±0.4	18.1±0.5	3.1±0.1	35.7±2.7	0.1±0.0	26.4±0.6	0.6±0.1	166.0±1.7	101.4±5.6	264.5±3.1	
8	11.4±0.3	11.4±0.3	3.7±0.2	25.0±1.1	0.1±0.0	17.3±0.5	0.6±0.0	110.9±3.3	106.1±4.3	180.4±3.1	
Ave (n=8)	12.9±2.1 ^d	14.0±2.0	3.1±0.6	29.0±4.7	0.1±0.0	21.0±3.0	0.6±0.2	127.1±24.1	97.7±5.1°	215.6±29.8 ^f	
			APAP-ove	erdose mice liv	ver- Disaccha	rides (ng/mg)			HS recovery yield	Total HS	
Subject	ΔIS	ΔIIS	ΔIIIS	ΔIVS	ΔIA	ΔIIA	ΔIIIA	ΔΙVΑ	(%)	(ng/mg)	
1	26.5±0.9	27.4±0.7	8.3±0.1	44.0±1.2	0.2±0.1	37.9±2.2	1.2±0.1	220.1±5.9	94.3±3.7	389.0±10.2	
2	15.7±0.7	18.6±0.1	3.3±0.2	29.9±1.2	0.2±0.1	27.9±1.6	0.7±0.0	145.2±4.3	93.9±3.0	256.9±3.6	
3	25.1±0.9	20.8±0.3	6.6±0.0	33.8±1.4	0.2±0.0	28.2±0.6	1.1±0.1	177.3±4.6	91.8±3.4	318.5±4.0	
4	15.2±0.0	23.3±0.4	3.7±0.1	34.5±3.3	0.1±0.0	30.6±0.5	0.5±0.1	172.9±3.9	98.4±8.0	286.4±3.9	
5	12.4±0.2	23.2±1.2	2.2±0.1	31.4±1.1	0.1±0.0	27.4±0.5	0.4±0.0	147.2±4.3	92.3±4.8	265.7±4.1	
6	15.7±0.7	24.0±0.8	3.0±0.2	37.3±0.7	0.1±0.0	32.9±0.6	0.5±0.0	187.9±4.5	86.1±0.7	350.5±6.8	
7	17.1±0.2	26.1±1.2	3.1±0.3	37.4±1.4	0.1±0.0	32.5±0.5	0.4±0.1	171.8±7.4	118.2±4.4	244.5±7.9	
8	12.3±0.5	21.2±0.3	2.1±0.1	30.2±2.8	0.1±0.0	27.1±1.1	0.3±0.1	149.7±5.0	102.9±9.3	214.8±8.4	
Ave (n=8)	17.5±5.4	23.1±2.9	4.0±2.2	34.8±4.7	0.2±0.1	30.5±3.7	0.6±0.3	171.5±25.1	97.2±9.8	294.3±53.6	

a, b and c indicate that the values were means of three measurements ± standard deviations. d, e and f present that the values were means of the measurements of eight mouse liver (n=8) ± standard deviations.

Comparison of disaccharide composition of kidney HS in the Saline control and APAP-overdose mice.

			HS recovery yield	Total HS						
Subject	ΔIS	ΔIIS	ΔIIIS	ΔIVS	ΔΙΑ	ΔIIA	ΔIIIA	ΔΙVΑ	(%)	(ng/mg)
1	53.4±5.1	90.6±6.7	32.1±1.6	131.2±5.7	0.6±0.0	85.5±0.5	3.6±0.4	567.8±7.7	87.9±5.0	1096.4±29.9
2	60.5±5.7	100.4±6.5	38.3±2.0	178.7±7.0	0.7±0.2	103.2±5.8	4.7±0.3	699.5±8.4	109.7±4.2	1079.2±7.9
3	53.6±2.4	72.5±4.0	26.4±0.5	136.3±16.0	0.4±0.1	78.3±4.0	2.9±0.2	565.1±31.8	97.2±9.6	964.5±20.2
4	53.5±6.7	92.4±8.4	34.8±1.5	120.5±4.8	0.6±0.1	78.7±2.5	3.1±0.2	506.4±12.8	83.8±0.5	1059.6±27.8
5	48.7±1.7	97.2±3.9	37.9±2.7	134.3±9.2	0.6±0.1	91.5±1.6	3.5±0.2	618.0±10.0	85.9±5.4	1199.6±15.2
Ave (n=5)	53.9±4.2	90.6±10.8	33.9±5.0	140.2±22.4	0.6±0.1	87.4±10.3	3.6±0.7	591.4±72.2	92.9±10.7	1079.9±84.1
			APAP-overc	lose mice kidn	ey- Disacch	arides (ng/mg	I)		HS recovery yield	Total HS
Subject	ΔIS	ΔIIS	ΔIIIS	ΔIVS	ΔΙΑ	ΔIIA	ΔIIIA	ΔΙVΑ	(%)	(ng/mg)
1	72.5±3.6	140.1±5.7	42.1±1.9	184.6±19.7	0.8±0.1	123.9±7.4	5.7±0.7	731.3±21.5	92.2±11.0	1414.2±6.5
2	22.3±1.0	53.5±1.7	8.1±0.1	104.1±0.6	0.1±0.0	72.7±1.6	0.2±0.0	557.2±11.7	85.3±0.1	962.7±17.1
3	41.5±0.7	86.7±1.9	27.0±0.6	128.1±13.8	0.7±0.1	86.2±2.6	3.1±0.3	576.6±12.3	87.1±9.3	1091.9±4.3
4	42.6±1.9	80.3±2.2	28.3±0.3	110.1±4.2	0.5±0.0	78.7±1.2	3.1±0.4	512.2±2.8	96.5±1.2	882.3±7.3
5	63.0±0.8	126.3±3.9	40.7±0.6	170.7±6.6	0.8±0.1	126.8±3.8	4.6±0.5	814.6±7.5	87.5±2.7	1531.2±19.5
Ave (n=5)	48.4±19.7	97.4±35.3	29.2±13.7	139.5±36.2	0.6±0.3	97.7±25.7	3.3±2.1	638.4±128.5	89.7±4.6	1176.4±283.6

Comparison of disaccharide composition of lung HS in the Saline control and APAP-overdose mice.

	Saline control mice lung- Disaccharides (ng/mg)									Total HS	
Subject	ΔIS	∆IIS	∆IIIS	ΔIVS	ΔΙΑ	ΔIIA	∆IIIA	ΔIVA	(%)	(ng/mg)	
1	27.3±2.7	65.9±2.1	69.6±1.4	250.5±8.8	1.9±0.2	80.8±2.1	21.6±2.7	1243.0±6.7	90.7±2.2	1096.4±29.9	
2	25.9±1.2	59.7±1.5	55.1±1.5	249.1±15.2	1.8±0.4	78.9±1.7	18.1±2.1	1199.8±31.2	91.2±6.4	1079.2±7.9	
3	20.7±0.7	58.1±0.6	47.0±0.5	256.5±31.7	1.8±0.2	78.7±3.0	17.2±0.5	1245.5±61.8	97.3±13.7	964.5±20.2	
4	20.6±0.8	50.4±2.0	44.4±1.3	223.0±9.4	1.5±0.3	76.8±3.6	14.6±0.5	1252.5±13.1	85.7±4.1	1059.6±27.8	
5	22.0±1.6	60.5±1.3	36.4±0.7	249.0±19.4	1.6±0.2	78.0±1.3	12.2±0.9	1218.6±33.3	94.2±5.4	1199.6±15.2	
Ave (n=5)	23.3±3.1	58.9±5.6	50.5±12.6	245.6±13.0	1.7±0.1	78.6±1.5	16.7±3.6	1231.9±22.0	91.8±4.3	1862.5±82.6	
			APAP-ov	erdose mice lu	ng- Disaccl	narides (ng/m	g)		HS recovery yield	Total HS	
Subject	ΔIS	ΔIIS	ΔIIIS	ΔIVS	ΔIA	ΔIIA	∆IIIA	ΔΙVΑ	(%)	(ng/mg)	
1	25.6±0.2	65.6±2.1	49.7±0.9	301.7±33.2	2.0±0.1	93.7±2.7	15.4±0.8	1465.9±50.8	101.6±11.0	1414.2±6.5	
2	26.6±1.4	61.2±1.8	51.6±1.6	263.3±18.5	2.0±0.2	87.0±7.1	18.6±1.3	1272.8±10.9	102.8±8.8	962.7±17.1	
3	25.0±0.5	57.9±2.3	53.1±0.6	278.7±12.5	1.9±0.2	95.6±8.0	19.5±1.3	1427.1±26.4	102.8±4.4	1091.9±4.3	
4	26.7±0.9	62.8±0.7	58.3±1.4	267.4±7.5	1.9±0.2	90.6±7.7	18.7±1.4	1305.1±28.1	96.8±4.4	882.3±7.3	
5	21.1±0.3	55.9±2.2	48.9±1.0	228.4±19.6	1.6±0.1	80.9±2.4	15.0±1.8	1223.1±58.9	89.3±8.0	1531.2±19.5	
Ave (n=5)	25.0±2.3	60.7±3.9	52.3±3.7	267.9±26.7	1.9±0.1	89.5±5.9	17.4±2.1	1338.8±103.5	98.7±5.8	1906.3±89.0	