**Supporting Information** 

**Eradicating Infecting Bacteria while Maintaining Tissue Integration** 

on Photothermal Nanoparticle-coated Titanium Surfaces

Xiaoxiang Ren<sup>a#</sup>, Ruifang Gao<sup>a,c#</sup>, Henny C. van der Mei<sup>a\*</sup>,

Yijin Ren<sup>b</sup>, Brandon W. Peterson<sup>a</sup>, Henk J. Busscher<sup>a</sup>

\*both first authors contributed equally to this article

<sup>a</sup> University of Groningen and University Medical Center of Groningen, Department of

Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands

<sup>b</sup> University of Groningen and University Medical Center of Groningen, Department of

Orthodontics, Hanzeplein 1, 9700 RB Groningen, The Netherlands

<sup>c</sup> College of Chemistry, Chemical Engineering and Materials Science, Soochow University,

Suzhou, China

\*Corresponding author: H.C. van der Mei

Department of Biomedical Engineering, University Medical Center Groningen

Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands

Phone: +31 50 361 6094

e-mail: h.c.van.der.mei@umcg.nl

1

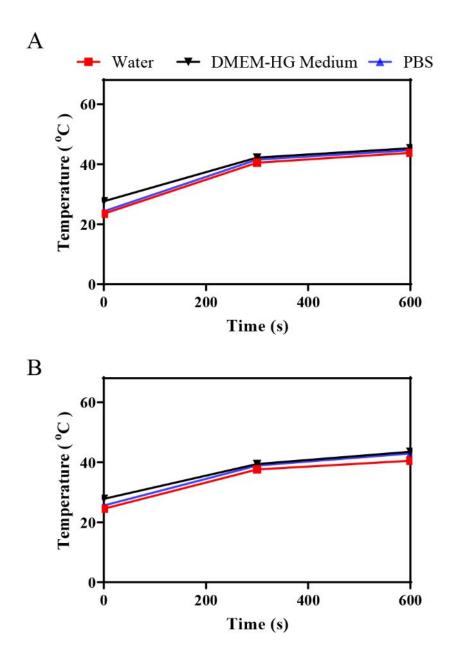



Figure S1. Photothermal effects of titanium samples immersed in different fluids.

- A. Temperature of PDA-NP coated titanium as a function of NIR irradiation time at 808 nm  $(1 \text{ W/cm}^2)$  immersed in 10  $\mu$ L of fluid above the sample.
- B. Same as (A), but now for immersion in 300 μL of fluid above the sample.

Table S1. Killing (%) of *S. aureus* ATCC12600 adhering on PDA-NP (200  $\mu$ g/cm<sup>2</sup>) coated titanium surfaces immersed in different PBS volumes after different NIR irradiation times (1 W/cm<sup>2</sup>). Staphylococcal killing was expressed with respect to the number of CFUs observed on samples in absence of NIR irradiation.

| NIR irradiation time | 10 μL | 50 μL | 100 μL | 300 μL | 600 μL |
|----------------------|-------|-------|--------|--------|--------|
| (min)                |       |       |        |        |        |
| 0.5                  | 42.1  | 37.5  | 23.4   | 15.6   | 15.6   |
| 1                    | 93.8  | 86.3  | 81.7   | 78.1   | 73.4   |
| 3                    | 99.9  | 99.2  | 96.1   | 84.4   | 75.2   |
| 5                    | 99.9  | 99.9  | 99.9   | 99.9   | 76.6   |
| 10                   | 99.9  | 99.9  | 99.9   | 99.9   | 94.1   |