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Supplemental Methods 
 
Software versions referenced  
Data Processing  
Illumina CASAVA v1.8.2  
TopHat v2.0.4  
RSeQC v2.3.3  
HTSeq-count v0.5.4  
R v3.0.0 
edgeR v3.4.2  
RSEM v1.2.1  
Bowtie v1.0.0 
 
Data Analysis  
Limma v3.18.13 
edgeR v3.4.2 
sva v3.6.0 
GSVA v1.10.3 
 
Gene expression-based prediction of smoking status 
Microarray data from Beane et al. (1) Gene Expression Omnibus [GEO] (2)  Accession Number 
GSE7895) was re-analyzed using Robust Multi-array Average (RMA) (3) and the Ensembl CDF 
file v16.0.0 file 
(http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.asp). The R 
package was used to identify genes differentially expressed between current (n=52) and never 
(n=21) smokers, using the linear model presented in the paper additionally correcting for quality 
covariates (NUSE and RLE). Ninety-four genes (FDR<0.001) were differentially expressed 
between current and never smokers. The weighted voting algorithm (4) was trained on z-score 
normalized microarray data (n=73) across the 94 genes and used to predict smoking status in z-
scored log2-transformed counts per million (cpm) from the 82 mRNA-Seq samples. 
 
Processing of Publically Available Datasets  
Cancer Cell Line Compendium (CCLE). The Entrez ID gene expression file labeled 10/18/2012 
and the sample information file were downloaded from CCLE website 
(http://www.broadinstitute.org/ccle/home). After matching the sample annotation to the expression 
file, we used ComBat (5) to adjust the data for batch effects (n=14 batches across 1019 samples). 
After batch correction, the lung cell lines (n=186) were selected and GSVA was used to calculate 
a pathway enrichment score for each lung cell line for the following pathways: KEGG oxidative 
phosphorylation, KEGG glycolysis gluconeogenesis, BioCarta glycolysis, and Reactome 
glycolysis. The GSVA scores for the glycolysis pathways were averaged per sample.  
 
The Cancer Genome Atlas (TCGA). RSEM gene-level (Entrez IDs) counts derived from RNA-
Seq data were downloaded from the TCGA data portal on August 27, 2013 for lung squamous cell 
carcinomas and adjacent matched control tissue (n=100 samples from n=50 subjects). After 
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applying the mixture model referenced in the paper, 14,178 out of 20,531 genes were expressed as 
signal in at least 15% of samples (n=15). Differential gene expression between tumor and adjacent 
normal tissue was determined using limma and voom-transformed data (6, 7)  via a linear model 
with cancer status as the main effect and a random patient effect modeled using the 
duplicateCorrelation function. Gene sets containing the top 200 up- and down-regulated 
differentially expressed genes associated with cancer status were used as input for GSEA.  
 
Microarray Data. CEL files for GSE19188 and GSE18842 were downloaded from GEO and 
processed using Robust Multi-array Average (RMA) (3)  and the Ensembl Gene CDF v16.0.0 file 
(http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.asp). 
Samples with a median RLE greater than 0.1 or a median NUSE greater than 1.05 were excluded, 
yielding n=146 samples for GSE19188 and n=82 samples for GSE18842. For GSE19188, 
differential gene expression between squamous cell tumors (n=23) and normal lung tissue (n=64) 
was conducted using limma and a linear model that included RLE and NUSE covariates. For 
GSE18842, paired normal and tumor tissue from the same subjects (n=37 subjects, n=74 samples) 
were selected, and differential gene expression was conducted in an analogous manner as 
described above for TCGA, additionally correcting for RLE and NUSE metrics.  
 
CEL files for GSE4115 were processed using RMA and the CDF file above. The n=164 samples 
described in Spira et al. (8), were used to determine genes differentially expressed in airway 
brushings from subjects with and without lung cancer, using limma and a linear model with terms 
for cancer status, RLE, NUSE, smoking status, and pack-years. Gene sets containing the top 200 
up- and down-regulated differentially expressed genes associated with cancer status were used as 
input for GSEA.  
 
Biomarker Development 
Upstream gene filtering. In order to provide cross-platform compatibility, we ran the biomarker 
discovery and validation pipelines using 11,926 genes commonly present on the RNA-Seq 
platform (Illumina HiSeq 2500 used with Ensembl v64 GTF) and two microarray platforms 
(Affymetrix GeneChip Human Gene 1.0 ST Array used with custom ENSG Homo sapiens CDF 
from Brainarray v11 and Affymetrix Human Genome U133A Array used with custom ENSG 
Homo sapiens CDF from Brainarray v16). 
 
Data generation and summarization. Samples (n=75) were run across 4 flow cells (4 batches), 
and samples run in batches 1, 2, and 3 (n=58) were assigned to a discovery set, while the 
remaining samples (n=17) were used as an independent validation set and not included in the 
biomarker development. Alignments and gene level summarization were conducted as described 
in the paper methods. Alignment and quality metrics were calculated using RSeQC (v2.3.3) (9). 
Using the gene body measure computed by RSeQC, a ratio between the average read coverage at 
80% of the gene length and the average coverage at 20% of the gene length was derived as an 
additional quality metric (gb-ratio) to assess 3’ bias per sample. The metric was highly correlated 
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with a surrogate variable applied in the identification of differentially expressed genes, and was 
used as a quality control metric in the biomarker pipeline. 
 
Biomarker discovery pipeline. The biomarker discovery pipeline has been outlined generally in 
the main text. A graphical representation of data flow as well as processing and analysis steps is 
provided in Supplementary Figure 3. Each computational step outlined is detailed in the following 
sections. 
 
Balancing signature. We tested gene signatures consisting either of an equal or unequal number 
of genes up- and down-regulated in subjects with dysplastic lesions. 

 
Input data preprocessing. We tested 3 input data types. HTSeq-count (v0.5.4) (10) was used to 
derive gene count estimates (raw counts). In addition, Cufflinks (v2.0.2) (11) was used to derive 
reads per kilobase per million mapped reads (RPKM) using BAM files containing only properly 
paired reads. We also calculated log2-transformed counts per million (CPM) by applying edgeR 
(v3.8.6) (12) to raw counts using the “TMM” method (weighted trimmed mean of M-values (13)).  

 
Gene filtering. Signal-based gene filtering was conducted as described in detail in the Methods. 
In short, a gene was included in downstream analyses if the mixture model classified it as “on” in 
at least 1%, 5%, 10% or 15% of the samples. For CPM input data type, we recalculated CPM 
values using raw counts after filtering out genes. 

 
Feature selection. To identify genes differentially expressed (DE) between samples with and 
without premalignant lesions (PMLs), we applied several algorithms to our filtered dataset. The 
algorithms used were as follows:  

1. edgeR: We applied the edgeR package (v3.8.6) (12) to raw counts only. After calculating 
normalization factors (calcNormFactors) and estimating common 
(estimateGLMCommonDisp) and tagwise (estimateGLMTagwiseDisp) dispersion factors, 
we identified DE genes associated with the presence of PMLs using a generalized linear 
model, correcting for sex, COPD status, and smoking status covariates. For balanced 
signatures, the sign of the log2-fold change of expression between conditions determined 
gene directionality. For all models regardless of balancing, gene importance was defined 
by FDR-adjusted p-value from likelihood ratio tests (glmLRT). 

2. edgeRgb: We used the edgeR package as described in #1, additionally correcting for gb-
ratio (described in Data generation and summarization section).  

3. lm: We applied the limma package (v3.22.7) (6) to CPMs, RPKMs, or voom-transformed 
raw counts (7). Voom transformation was applied using a linear model, adjusting for sex, 
COPD status, and smoking status covariates, after calculating normalization factors. We 
used the same model to identify DE genes associated with the presence of PMLs. For 
balanced signatures, the sign of the moderated t-statistic obtained via eBayes and topTable 
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determined gene directionality. For all models regardless of balancing, gene importance 
was defined by the magnitude of the t-statistic. 

4. lmgb: We used the limma package as described in #3, additionally correcting for gb-ratio 
(described in Data generation and summarization section). 

5. glmnet: We applied the glmnet package (v1.9-8) (14) to CPMs, RPKMs, or voom-
transformed raw counts (as in #3) to identify DE genes associated with the presence of 
PMLs. For balanced signatures, gene directionality was determined by the sign of the t-
statistic obtained via limma by running a linear model described in #3. We carried out the 
following series of steps using all genes for unbalanced signatures and separately using up- 
and down-regulated genes for balanced signatures: First, RPKMs and CPMs were z-score 
normalized, while raw counts were voom-transformed. Then, due to the binary character of 
our response variable (dysplasia status), a logistic regression model was fit using the 
binomial distribution family and elastic net mixing parameter α = 0.5 (indicating a tradeoff 
between ridge and lasso regressions). The standardize option was set to FALSE, causing 
the coefficients to be returned on the original scale, thus allowing their magnitude to be 
interpreted as gene importance. Next, a range of regularization parameters λ was generated 
via leave-one-out cross-validation (nfolds = 46), and the λ giving the minimum mean 
cross-validated error (lambda.min) was chosen to estimate the coefficients. Finally, DE 
genes were defined as having non-zero coefficients and then sorted by importance based 
on the coefficients’ magnitude. 

6. randomForest: We applied the randomForest package (v4.6-12) (15) to CPMs, RPKMs, and 
voom-transformed raw counts (as in #3), setting the number of trees (ntree) to 100 and 
importance to TRUE. For balanced signatures, the sign of the t-statistic as described in #5 
determined gene directionality. For all models regardless of balancing, gene importance 
was determined by the magnitude of the importance variable, defined as the mean decrease 
in accuracy over both conditions. 

7. DESeq: We applied the DESeq package (v1.18.0) (16) to unmodified raw counts only. DE 
analysis to find genes associated with the presence of PMLs included data normalization 
(estimation of the effective library size), variance estimation, and inference for two 
experimental conditions, as outlined in the DESeq package vignette 
(https://www.bioconductor.org/packages/3.3/bioc/vignettes/DESeq/inst/doc/DESeq.pdf). 
For balanced signatures, the sign of the log2-fold change of expression between the two 
conditions determined gene directionality. For all models regardless of balancing, gene 
importance was defined by FDR. 

8. SVA: We applied the sva package (v3.12.0) (17) to CPMs, RPKMs, or voom-transformed 
raw counts. Raw counts were voom-transformed using a linear model including only 
dysplasia status as the predictor variable. The number of surrogate variables (SVs) not 
associated with dysplasia status was estimated using the default approach of Buja and 
Eyuboglu (18) (“be” method). SVs were then identified using the empirical estimation of 
control probes (“irw” method), and up to 5 were added as covariates in the linear model 
(limma package). The adjusted model was then used to once again voom-transform raw 
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counts, and subsequently fitted to identify DE genes associated with the presence of PMLs. 
For balanced signatures, the sign of the moderated t-statistic obtained via topTable 
determined gene directionality. For all models regardless of balancing, gene importance 
was defined by the magnitude of the t-statistic. 

9. pAUC (partial AUC) (19) : We applied the rowpAUCs function in the genefilter package 
(v1.48.1) (20)  to CPMs, RPKMs, or voom-transformed raw counts (as in #3). We used 10 
class label permutations and a sensitivity cutoff of 0.1 for a specificity range of 0.9-1. For 
balanced signatures, the sign of the moderated t-statistic obtained via limma’s topTable 
determined gene directionality. For all models regardless of balancing, gene importance 
was defined by the magnitude of the t-statistic. 
 

 
Gene signature size. After the feature selection step, we selected the top scoring 10, 20, 40, 60, 
80, 100, or 200 genes, making sure that for balanced signatures, half originated from an ordered 
list of up-regulated genes, and half from an ordered list of down-regulated genes. 

 
Prediction method. For each set of genes, we applied multiple prediction methods to predict 
dysplasia status (presence of PMLs) in a training set of 46 samples and a test set of 12 samples. 
These training and test set samples differed in each iteration, which resulted from randomly 
splitting the 58 discovery set samples (Supplementary Figure 3). The following prediction 
methods were used: 
 

1. glmnet: We used glmnet (v1.9-8) (14) to first estimate a range of penalty parameters λ in 10-
fold cross validation using the binomial distribution family parameter and α = 0 to ensure 
all feature-selected genes were included in predictions. Dysplasia status was then predicted 
as a binary class, using lambda.min penalty.  

2. wv (weighted voting) (4): We used the weighted voting algorithm to predict dysplasia 
status. 

3. svm (Support Vector Machine) (21): We used the svm function in the e1071 package (v1.6-
7) (21) with linear kernel and 5-fold cross validation for class prediction. 

4. rf (random forest): We used the randomForest package (v4.6-12) (15)  with 1000 trees, 
requesting a matrix of class probabilities as output. 

5. nb (Naïve Bayes): We used the naiveBayes function in the e1071 package (v1.6-7) with 
default parameters. 

 
Each of the prediction algorithms generated a vector of predicted scores and a vector of predicted 
labels for all samples in the training and test sets. 

 
Performance metrics. We considered 6,160 statistically and computationally viable combinations 
of the above parameters. The predicted class labels calculated for each model (i.e., a combination 
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of parameters), coupled with true class labels were then used to calculate performance metrics for 
the biomarker as follows: 
 

Accuracy 
!"	 + 	!%

!"	 + 	!%	 + 	&"	 + 	&%
 

Sensitivity 
!"

!" + &%
 

Specificity 
!%

&" + !%
 

Positive Predictive Value 
!"

!" + &"
 

Negative Predictive Value 
!%

!% + &%
 

Matthew's Correlation Coefficient (MCC) 
(!" × !%) − (&" × &%)

+(!" + &")(!" + &%)(!% + &")(!% + &%)
 

AUC for ROC (Receiver Operating Characteristic) 

MAQCII metric 0.5	 × /01 + 0.25	 × (311 + 1), 

where TP = true positives; FP = false positives; TN = true negatives; FN = false negatives; MCC 
= Matthews’s Correlation Coefficient; and AUC = Area Under the Curve. 

 
For each model, we calculated these metrics for each of the 500 iterations (different training and 
test sets assembled from the discovery set samples) and then averaged over all iterations. In 
addition to the standard performance metrics, we calculated model overfitting and gene selection 
consistency. The overfitting metric was calculated as the difference between the train set AUC and 
the test set AUC. Specifically, a model performing well on the training set but poorly on the test 
set would achieve a high overfitting score. For each model, the gene selection consistency metric 
was calculated as the average (“normalized” to biomarker size in a given model) percentage of 
genes passing the gene filter, that were selected into the final gene committee in all 500 iterations: 
 

567898:;75< = 1 −
#	?79@?;	A;7;8	97	BCC	9:;DB:9678 − E96FBDG;D	89H;
(E96FBDG;D	89H;	 × 	#	9:;DB:9678) − E96FBDG;D	89H;

 

 
For example, a model requiring a 10-gene biomarker would have the highest consistency (1) if it 
selected the same 10 genes in all 500 iterations (10 unique genes selected altogether). The same 
model would have the lowest consistency (0) if it selected a different set of 10 genes in all 
iterations (10 genes x 500 iterations = 5000 unique genes altogether). 
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Selection of best model. In selecting the best model from among the 6,160 we tested, we 
considered the degree of model overfitting, model gene selection consistency and test set AUC. 
First, we identified top 10% (n=616) least overfitting models. Simultaneously, we identified top 
10% (n=616) most consistent models. Finally, the model with the highest test set AUC among 
models fulfilling both criteria (n=121) was chosen as the final model. 
 
Selection of final gene signature. The biomarker genes selected may differ between iterations 
due to changes in the training set. Therefore, to generate a final gene signature, we trained the 
biomarker using all 58 discovery set samples and best model parameters. 
 
Positive and negative controls. The biomarker discovery pipeline was also used to develop 
control biomarkers. As positive controls, we used smoking status and sex phenotypes to identify 
biomarkers that could successfully distinguish former from current smokers (AUC=0.99), and 
females from males (AUC=0.96). As negative controls, we used randomly shuffled labels for 
dysplasia status (AUC=0.48), smoking status (AUC=0.52), and sex (AUC=0.51). Label shuffling 
was conducted preserving the association between gene expression profiles and remaining 
phenotypes; i.e., in the case of shuffled dysplasia status, only dysplasia status was shuffled while 
other phenotypes and the corresponding gene expression profile remained unchanged and linked to 
the same sample ID. 
 
Validations. We tested the performance of the final biomarker using the biomarker discovery 
pipeline in validation mode. In this mode, the pipeline takes in the entire discovery set (n = 58) as 
the training set, and an external validation set as the test set. The test set is first corrected for gb-
ratio (RNA-Seq quality metric) using limma, and the residual data is used as input. Both training 
and test sets are then z-score normalized. The pipeline is run using only the final model to generate 
prediction labels and prediction scores for the test set samples. Finally, pROC package (v1.8) (22) is 
used to visualize and quantify biomarker performance by plotting a ROC curve using prediction 
scores as the response and the dichotomous phenotype as the predictor, and extracting the AUC 
value from the resulting ROC object. 
 
Detecting PML presence in validation set samples 
In order to validate the biomarker’s ability to detect the presence of PMLs, we tested the 
performance of the biomarker in smokers with and without PMLs (n=17 samples) left out of the 
biomarker discovery process. To assess the robustness of the results, we randomly permuted 
dysplasia status labels 100 times, obtaining biomarker scores for all 17 samples in each of the 
iterations. We then concatenated the 100 newly generated biomarker score sets for randomized 
labels, creating a predictor vector consisting of 1700 scores. Similarly, we concatenated 100 
identical copies of biomarker score sets for true labels, creating a response vector of the same 
length. This allowed us to visualize the performance of the biomarker on true and randomized 
labels in a single ROC curve (Figure 5). 
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Predicting PML progression in longitudinally-collected samples 
In order to validate the biomarker’s ability to predict sample progression/regression, we first used 
the biomarker to score the longitudinally collected RPCI samples (n=51). Next, we calculated the 
difference in scores between two consecutive time points for each patient (later time point 
biomarker score - earlier time point biomarker score). For example, a subject with 3 samples from 
3 different time points would have 3 scores, and thus two score differences could be calculated; a 
subject with 2 samples from 2 time points would have 2 scores, and thus 1 score difference.  
 
Each pair of samples was assigned a “progressing/stable” or “regressing” phenotype. A 
“progressing/stable” phenotype indicated that the worst histological grade of PMLs sampled 
during the baseline procedure increased in severity or remained unchanged at follow-up; while a 
“regressing” phenotype indicated that the worst histological grade of PMLs sampled at baseline 
decreased in severity at follow-up.  
 
We quantified the ability of the score difference to predict the “progression/regression” phenotype 
by plotting a ROC curve, using the vector of score differences as the predictor variable, and the 
progression/regression phenotype as the response variable.  
 
Implementation of the method. The framework and structure of this pipeline are based on 
principles outlined by Joshua Campbell, PhD for microarray data applications. The pipeline 
outlined in this paper was substantially modified to accommodate RNA-Seq data as well as RNA-
Seq-specific methods.  
 
Subject inclusion/exclusion criteria for samples from the British Columbia Cancer Agency 
(BCCA) 
The samples with normal/hyperplasia histology are part of the Pan-Canadian Study and included 
subjects between 50 and 75 years old, current or former smokers who have smoked cigarettes for 
20 years or more, and that had an estimated 3-year lung cancer risk of greater than or equal to 2%. 
Exclusion criteria included medical conditions, such as severe heart disease, that would jeopardize 
the subject’s safety during participation in the study, previously diagnosed lung cancer, ex-
smokers of greater than or equal to 15 years, anti-coagulant treatment, and pregnancy. The 
subjects with airway dysplasia were participants in three different chemoprevention studies for 
green tea extract (n=27 samples), sulindac (n=4 samples), and myo-inositol (n=13 samples) or 
from the Pan-Canadian Study described above (n=6). All samples were collected at the BCCA at 
baseline prior to administration of therapeutic interventions. Inclusion criteria for these 
chemoprevention trials can be summarized as subjects between 40 and 79 years of age, current or 
former smokers with at least 30 pack-years, no lung cancer history or stage 0/I curatively treated 
NSCLC either at least 1 year or 6 months prior to the trial (depending on trial). Exclusion criteria 
varied by trial but included medical conditions that would jeopardize the subject’s safety during 
participation of the study and pregnancy. See details below: 
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Green Tea: 
Inclusion Criteria  
• Women or men age 45 to 74 years of age 
• Current or former smokers who have smoked at least 30 pack-years, e.g. 1 pack per day for 

30 years or more (a former smoker is defined as one who has stopped smoking for one or 
more years) 

• ECOG performance status 0 or 1  
• C-Reactive Protein >1.2 mg/L 
• One or more areas of dysplasia with a surface diameter larger than 1.2 mm on 

autofluorescence bronchoscopy 
• Willing to take Polyphenon E/placebo twice a day regularly 
• Since it is unknown if Polyphenon E or EGCG will cause fetal harm when administered 

during pregnancy, women subjects must be postmenopausal (no menstrual periods > 1year or 
elevated FSH > 40 mIU/ml), surgically sterile, or using birth control pill. Women of 
childbearing age must have normal b-HCG within 14 days to exclude pregnancy. 

• Normal renal and liver function defined as serum creatinine bilirubin, AST, ALT or alkaline 
phosphatase levels below the upper limit of normal 

• Agreeing to sign, on initial interview, informed consent forms for screening procedures 
(sputum cytometry analysis, fluorescence bronchoscopy, and low dose spiral thoracic CT 
scan). Once eligibility has been determined for the chemoprevention trial participation, 
agreeing to sign a study- specific treatment informed consent form.  
 

Exclusion Criteria  
• Consumption of more than 7 cups of tea a week 
• Use of other natural health products containing green tea compounds 
• Chronic active hepatitis/liver cirrhosis 
• Severe heart disease, e.g. unstable angina, chronic congestive heart failure, use of 

antiarrhythmic agents 
• Ongoing gastric ulcer 
• Have on-going rectal bleeding 
• Have a history of chronic diverticulitis and/or colitis 
• Experiencing symptoms of gastritis or hemorrhoids in which medical treatment is required 
• Experiencing any symptomatic gastrointestinal condition that may predispose the individual 

to gastrointestinal bleeding  
• Acute bronchitis or pneumonia within one month 
• Carcinoma in-situ or invasive cancer on bronchoscopy or abnormal spiral chest CT suspicious 

of lung cancer  
• Known reaction to Xylocaine salbutamol, midazolam, and alfentanil 
• Known allergy to green tea and/or corn starch, gelatin, or other nonmedicinal ingredients 
• Any medical condition, such as acute or chronic respiratory failure, or bleeding disorder, that 

in the opinion of the investigator could jeopardize the subject’s safety during participation in 
the study 

• On anti-coagulant treatment such as warfarin or heparin 
• Breastfeeding 
• Pregnancy 
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• Unwilling to have a bronchoscopy 
• Unwilling to have a spiral chest CT  
• Unwilling to sign a consent  

 
Sulindac: 
Inclusion Criteria 
• Men and women 40 through 79 years of age 
• Current or former smokers with a ≥ 30 pack-year smoking history and (a) no prior lung 

cancer, (b) stage I NSCLC resected at least one year prior to Registration/Randomization, or 
(c) stage I Non-Small Cell Lung Cancer (NSCLC) with a > 1 year interval since adjuvant 
chemotherapy conclusion 

• Women of childbearing potential and men must agree to use adequate contraception 
(hormonal or barrier method of birth control; abstinence) prior to study entry and for the 
duration of study participation. Should a woman become pregnant or suspect she is pregnant 
while participating in this study, she should inform her treating physician immediately. 

• A negative (serum or urine) pregnancy test done ≤ 7 days prior to 
• Registration/Randomization, for women of childbearing potential only 
• Willingness to provide tissue blocks and sputum samples for research purposes 
• Participants must have normal organ and marrow function as defined below and obtained ≤ 

45 days prior to Registration/Randomization: 
• Hemoglobin ≥ lower limit of institutional normal (LLN) 
• Leukocytes ≥ 3,000/μL 
• Absolute neutrophil count ≥ 1,500/μL 
• Platelets ≥ 100,000/μL 
• Direct bilirubin ≤ 1.5 x institutional upper limit of normal (ULN) 
• ALT (SGPT) ≤ 1.5 x institutional ULN 
• Creatinine ≤ 1.5 x institutional ULN or calculated creatinine clearance ≥ 30 ml/min 

• ≥ 1 site of histologically-confirmed bronchial dysplasia 
• ECOG performance status ≤ 1 
• Negative chest x-ray 
• Negative electrocardiogram 

 
Exclusion Criteria 
• Prior history of cancer (within the previous 3-years). Exception: Stage I NSCLC as outlined 

above, nonmelanomatous skin cancer, localized prostate cancer, carcinoma in situ (CIS) of 
cervix, or superficial bladder cancer with conclusion of treatment > 6 months prior to 
Registration/Randomization. 

• Prior pneumonectomy 
• Solid organ transplant recipients 
• History of GI ulceration, bleeding or perforation 
• Uncontrolled intercurrent illness including, but not limited to: ongoing or active infection, 

symptomatic congestive heart failure, unstable angina pectoris, cardiac arrhythmia, recent (≤ 
6 months) history of MI, chronic renal disease, chronic liver disease, difficult to control 
hypertension or psychiatric illness/social situations that would limit compliance with study 
requirements. 

• Recent (≤ 6 months) participation in another chemoprevention trial 
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• Participant currently receiving any other investigational agents 
• Any supplemental oxygen use (continuous or intermittent use) or documented 
• Room Air (RA) SaO2 < 90% 
• Pregnant women. Note: because there are no adequate, well-controlled studies in pregnant 

women and sulindac is absolutely contraindicated in the 3rd trimester. 
• Breastfeeding women. Note: because there is an unknown but potential risk for adverse 

events in nursing infants secondary to treatment of the mother with sulindac, women who are 
breast-feeding will be excluded. 

• Individuals who are known to be HIV positive. Note: HIV positive individuals are excluded 
for the following two reasons: 
• First, HIV positive individuals are known to have altered immune function. Since one of 

the potential mechanisms of action of sulindac is proposed to be enhancement of immune 
function in preventing lung cancer progression, it is not known how the presence of HIV 
infection would alter this enhancement of immune function as compared to non- HIV 
infected individuals. 

• Second, individuals with HIV are also known to be at higher risk for lung cancer then 
non-HIV infected individuals which would alter the risk/incidence of lung cancer in our 
study population. 

• Regular NSAID or corticosteroid use during the 6-month period prior to intervention (may be 
eligible after washout period of 12 weeks for NSAIDs and 
• 6 weeks for corticosteroids) 

• Regular aspirin use. Exception: Aspirin can be used if prescribed by a physician for 
prevention. Maximum of one aspirin (81mg) per day allowed. 

• History of allergic reactions or hypersensitivity to sulindac or other NSAIDS, including 
aspirin-sensitive asthma 

• Women of childbearing potential who are unwilling to employ adequate contraception 
(hormonal or barrier method of birth control; abstinence) prior to study entry and for the 
duration of study participation. Note: Effects of sulindac on the developing human fetus at the 
recommended therapeutic dose are fetal harm early in pregnancy. However, there are known 
harmful adverse events in the third trimester of pregnancy. Should a woman become pregnant 
or suspect she is pregnant while participating in this study, she should inform her treating 
physician immediately. 

• Current use of methotrexate, corticosteroids, (anti-platelet agents) warfarin, ticlopidine, 
clopidogrel, aspirin, abciximab, dipyridamole, eptifibatide, tirofiban, lithium, cyclosporine, 
hydralazine, ACE inhibitors 

 
Myo-inositol: 
Inclusion Criteria 
• Ability to understand and willingness to sign a written informed consent document 
• Age ≥45 to ≤79 
• ECOG performance status (PS) 0 or 1 (see Appendix A) 
• One or both of the following: 

• Stage 0/I curatively treated non-small cell lung cancer (NSCLC) with a ≥30 
pack-year smoking history (surgery, adjuvant chemotherapy or radiotherapy 
must be completed ≥ 6 months prior to screening); OR 

• Current or former smokers with a ≥ 30 pack-year smoking history without a 
history of lung cancer. Pack-years is determined by multiplying the number of 
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packs smoked per day by the number of years smoked. 
• Women of childbearing capacity who agree to use an acceptable form of birth control for the 

duration of the study (e.g. condom, oral contraceptives, etc.) 
 

Exclusion Criteria 
• Prior history of cancer, with the following exceptions: 
• ≥ 3-year disease free interval (with the exception of stage I NSCLC as described above) 
• Non-melanomatous skin cancer 
• Localized prostate cancer with conclusion of treatment > 6 months prior to screening 
• Carcinoma in situ (CIS) of cervix with conclusion of treatment > 6 months prior to 

screening 
• Superficial bladder cancer with conclusion of treatment > 6 months prior to screening 

• Prior pneumonectomy 
• Solid organ transplant recipients 
• Uncontrolled intercurrent illness including, but not limited to: ongoing or active 

infection, symptomatic congestive heart failure, unstable angina pectoris, cardiac 
arrhythmia, severe chronic obstructive pulmonary disease requiring supplemental 
oxygen, difficult to control hypertension, or psychiatric illness/social situations that would 
limit compliance with study requirements. 

• Schizophrenia 
• Bipolar disorder 
• Lithium treatment 
• Carbamazepine treatment 
• Valproate treatment 
• Diabetes 
• Currently using other natural health products containing inositol 
• Anticoagulant use such as Coumadin or heparin. Exception: participant is off those drugs for 

≥ 7 days prior to pre-registration. 
• Recent (≤ 6 months) participation in another chemoprevention trial 
• Participant currently receiving any other investigational agents 
• Any supplemental oxygen use (continuous or intermittent use) or documented Room Air 

(RA) SaO2 < 90% 
• Pregnant women. (Excluded because the effects of high doses of myo-inositol on the fetus or 

newborn are not known.) 
• Breastfeeding women. (Excluded because the risk for adverse events in nursing infants 

secondary to treatment of the mother with high doses of myo-inositol are not known.) 
• History of allergic reactions attributed to myo-inositol 
• History of allergies to any ingredient in the study product or placebo 

Early Detection of Lung Cancer – A Pan-Canadian Study: 

Inclusion Criteria  
• Women or men age 50 to 75 years 
• Current or former smokers who have smoked cigarettes for 20 years or more (a former 

smoker is defined as one who has stopped smoking for one or more years) 
• An estimated 3-year lung cancer risk of ≥2% based on the risk prediction model. 
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• ECOG performance status 0 or 1 
• Capable of providing, informed consent for screening procedures (low dose spiral CT, AFB, 

spirometry, blood biomarkers)  

Exclusion Criteria  
• Any medical condition, such as severe heart disease (e.g. unstable angina, chronic congestive 

heart failure), acute or chronic respiratory failure, bleeding disorder, that in the opinion of the 
investigator could jeopardize the subject’s safety during participation in the study or unlikely 
to benefit from screening due to shortened life-expectancy from the co-morbidities 

• Have been previously diagnosed with lung cancer 
• Have had other cancer with the exception of the following cancers which can be included in 

the study: non-melanomatous skin cancer, localized prostate cancer, carcinoma in situ (CIS) 
of the cervix, or superficial bladder cancer. Treatment of the exceptions must have ended >6 
months before registration into this study.  

• Ex-smoker for ≥ 15 years 
• On anti-coagulant treatment such as warfarin or heparin 
• Known reaction to Xylocaine, salbutamol, midazolam, and alfentanil 
• Pregnancy 
• Unwilling to have a spiral chest CT  
• Chest CT within 2 years 
• Unwilling to sign a consent  
 

Subject inclusion/exclusion criteria for samples from RPCI 
Subjects met the following high-risk lung screening criteria: 1) Personal cancer history of the lung, 
bronchus, head/neck, and/or esophagus and no evidence of disease at the time of enrollment, or 2) 
No personal history of upper aerodigestive cancer, age 50+, and a current smoker or a former 
smoker with 20+ pack years. In addition, subjects in the second group had to have one or more 
risk factors including chronic lung disease such as emphysema, chronic bronchitis, or chronic 
obstructive pulmonary disease, occupationally related asbestos disease, or a family history of lung 
cancer in a first degree relative. 
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Supplemental Table 1. ANOVA derived p-values for the association between the surrogate 
variables and demographic/phenotypic variables 

 
 
 

Variable SV1 SV2 SV3 SV4 SV5 SV6 SV7 SV8 SV9 
Presence of premalignant 
lesion (2-level) 

0.549 0.376 0.964 0.500 0.118 0.481 0.046 0.166 0.652 

Smoking status 0.000 0.655 0.191 0.084 0.689 0.804 0.308 0.719 0.761 
Smoking status by Gene 
Expression 

0.000 0.363 0.801 0.045 0.819 0.780 0.130 0.827 0.663 

Sex  0.961 0.058 0.000 0.032 0.492 0.801 0.433 0.884 0.991 
COPD status  0.612 0.866 0.047 0.161 0.973 0.129 0.083 0.007 0.592 
Pack-years 0.398 0.293 0.523 0.576 0.845 0.399 0.875 0.428 0.178 
Age 0.300 0.153 0.562 0.845 0.166 0.618 0.037 0.050 0.528 
FEV1 0.050 0.391 0.046 0.009 0.123 0.150 0.171 0.028 0.691 
FEV1/FVC ratio 0.023 0.670 0.172 0.056 0.491 0.107 0.028 0.011 0.708 
Barcode 0.870 0.605 0.006 0.500 0.745 0.444 0.695 0.119 0.187 
Lane 0.335 0.748 0.682 0.351 0.037 0.792 0.402 0.996 0.549 
Batch 0.676 0.730 0.474 0.426 0.861 0.037 0.145 0.688 0.261 
GC content 0.599 0.886 0.057 0.902 0.257 0.157 0.001 0.416 0.210 
Genebody 80/20 ratio 
(gb-ratio) 

0.000 0.245 0.633 0.271 0.000 0.736 0.015 0.319 0.048 

Number of Uniquely 
Aligning Reads 

0.302 0.154 0.726 0.948 0.055 0.120 0.036 0.163 0.586 

Number of Reads 
Aligning to Splice 
Junctions 

0.545 0.605 0.498 0.442 0.000 0.383 0.170 0.745 0.942 

Z-score (sample mean of 
z-score normalized data 
by gene) 

0.514 0.371 0.238 0.595 0.024 0.031 0.005 0.353 0.021 

Relative Expression 
(sample median of ratios 
computed for each gene 
by dividing the 
expression by the median 
expression) 

0.814 0.615 0.996 0.740 0.918 0.887 0.214 0.274 0.111 
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Supplemental Table 2.  Phenotypic information about the human biopsy cell cultures used in 
the bioenergetics and mitochondrial enumeration (MitoTraker Green FM) experiments. 
 

 
  

Histology Gender Smoking Status Bioenergetics MitoTrackerFM 
Normal F Current X  

Normal M Current X  

Normal F Former X  

Normal M Former X  

Normal F Current X X 

Normal  F Current X X 

Moderate Dysplasia M Current X  

Severe Dysplasia M Former X  

Severe Dysplasia M Current X  

Low grade dysplasia M Former X  

Severe Dysplasia M Current X X 

Low grade dysplasia M Former X X 
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Supplemental Table 3.  Phenotypic information about the human biopsies used in the IHC 

experiments.   
(*CS refers to current smoker and FS to former smoker) 

Stain PtID 
Smoking 

Status Worst Histology Description 
TOMM22 Pt 3 FS 0 Normal, Negative, Benign Mucosa 
COX4I1 Pt 3 FS 0 Normal, Negative, Benign Mucosa 

TOMM22 Pt 4 FS 23 Squamous Metaplasia (non-specific), Mature Metaplasia, 
Squamous Hyperplasia 

COX4I1 Pt 4 FS 23 Squamous Metaplasia (non-specific), Mature Metaplasia, 
Squamous Hyperplasia 

TOMM22 Pt 3 FS 25 Moderate Dysplasia, Squamous Pre-invasive 
COX4I1 Pt 3 FS 25 Moderate Dysplasia, Squamous Pre-invasive 

TOMM22 Pt 1 CS 27 CIS Squamous Carcinoma In-Situ 
Cox-IV Pt 1 CS 27 CIS Squamous Carcinoma In-Situ 
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Data	are	means	(SD)	for	continuous	variables	and	proportions	(%)	dichotomous	variables.		Reads	are	expressed	in	millions	denoted	by	M.		P*	
values	are	for	the	comparison	of	subjects	with	and	without	premalignant	 lesions.	 	Two	sample	t-tests	were	used	for	continuous	variables;	
Fisher’s	exact	test	was	used	for	factors. 
 

Supplemental Table 4. Demographic and clinical characteristics of the British Columbia Lung Health Study stratified by 
premalignant lesions status 
  

 Discovery Set Validation Set 
Factor Overall (n=58) No Lesions (n=20) Lesions (n=38) P* Overall 

(n=17) 
No 

Lesions 
(n=5) 

Lesions 
(n=12) 

P* 

Age 62.7 (7.1) 64.1 (5.8) 61.9 (7.6) 0.24 63.9 
(8.6) 

66 (5.8) 63 (9.7) 0.45 

Male 37/58 (63.8) 12/20 (60) 25/38 (65.8) 0.78 14/17 
(82.4) 

4/5 (80) 10/12 
(83.3) 

1 

Current smoker 28/58 (48.3) 9/20 (45) 19/38 (50) 0.79 8/17 
(47.1) 

2/5 (40) 6/12 
(50) 

1 

Pack-years 48.2 (16.9) 49.4 (18.9) 47.5 (15.9) 0.71 44.6 
(12.9) 

40.5 
(11.6) 

46.3 
(13.5) 

0.39 

FEV1% Predicted 86.5 (17.7) 87.8 (16.7) 85.7 (18.5) 0.66 69.5 
(16.2) 

71 (17.7) 68.9 
(16.3) 

0.83 

FEV1/FVC Ratio 72.1 (7.7) 75.1 (6.3) 70.4 (8) 0.02 67 (8.1) 66.8 
(8.5) 

67.1 
(8.3) 

0.95 

COPD (FEV1%<80 & FEV1/FVC<70) 11/58 (19) 2/20 (10) 9/38 (23.7) 0.3 11/17 
(64.7) 

3/5 (60) 8/12 
(66.7) 

1 

Histology 
   

<0.001    <0.001 
Normal 11/58 (19) 11/20 (55) 

  
1/17 
(5.9) 

1/5 (20)   

Hyperplasia 9/58 (15.5) 9/20 (45) 
  

4/17 
(23.5) 

4/5 (80)   

Metaplasia 0/58 (0) 
   

0/17 (0)    
Mild Dysplasia 29/58 (50) 

 
29/38 (76.3) 

 
6/17 

(35.3) 
 6/12 

(50) 
 

Moderate Dysplasia 6/58 (10.3) 
 

6/38 (15.8) 
 

6/17 
(35.3) 

 6/12 
(50) 

 

Severe Dysplasia 3/58 (5.2) 
 

3/38 (7.9) 
 

  0/12 (0)  
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Data	are	means	(SD).		Reads	are	expressed	in	millions	denoted	by	M.		P*	values	are	for	two	sample	t-tests	for	comparison	of	subjects	with	
and	without	premalignant	lesions.	 
 

 
 

Supplemental Table 5.  Alignment statistics of the British Columbia Lung Health Study Discovery and the Roswell Park Cancer 
Institute cohort 

 BC-LHS Discovery Set  BC-LHS Validation Set RPCI 

Factor Overall (n=58) No Lesions (n=20) Lesions (n=38) P* Overall  
(n=17) 

No 
Lesions 
(n=5) 

Lesions  
(n=12) P* Overall 

(n=51) 

Total Alignments 90M (16M) 98M (15M) 91M (17M) 0.67 93M 
(22M) 

94M 
(18M) 

92M 
(24M) 0.86 95M 

(15M) 

Unique Alignments 83M (15M) 82M (13M) 83M (16M) 0.65 85M 
(20M) 

86M 
(16M) 

84M 
(22M) 0.85  

Properly Paired Alignments 66M (1.2M) 65M (11M) 67M (12M) 0.63 68M 
(16M) 

69M 
(13M) 

67M 
(17M) 0.86 65M 

(9.6M) 

Genebody 80/20 Ratio 1.3 (0.2) 1.3 (0.1) 1.3 (0.2) 0.39 1.3 
(0.3) 

1.2 
(0.1) 1.4 (0.3) 0.15 1.8 

(0.2) 

Mean GC Content 48.1 (3.4) 47.5 (2.7) 48.4 (3.6) 0.33 47.4 
(3.8) 

46.9 
(3.8) 

47.6 
(3.9) 0.74 49.2 

(1.4) 
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Supplemental Table 6.  Demographic and clinical characteristics of the Roswell Park Cancer 

Institute Cohort (n=51 samples from n=23 subjects) 
 

Factor Overall Regressing 
Progressing 

P* Stable 
No. Samples 51 34 22   
No. Sample Pairs 28 17 11   
No. Patients** 23 16 10   
Time between Procedures (Days) 343.8 (171.9) 350.9 (199.6) 332.8 (125.9) 0.77 
Histological Grade Change  -0.9 (1.7) -1.9 (1.0) 0.7 (1.3) <0.001 
Worst Histological Lesion Observed      

Normal 5/51 (9.8) 4/34 (11.8) 2/22 (9.1) 0.038 
Hyperplasia 6/51 (11.8) 5/34 (14.7) 1/22 (4.5)   
Metaplasia 9/51 (17.6) 8/34 (23.5) 1/22 (4.5)   

Mild Dysplasia 3/51 (5.9) 3/34 (8.8) 0 (0)   
Moderate Dysplasia 20/51 (39.2) 9/34 (26.5) 15/22(68.2)   

Severe Dysplasia 8/51 (15.7) 5/34 (14.7) 3/22 (13.6)   
Age at Baseline 58.1 (6.5) 58.4 (6.9) 57.6 (6.1) 1 
Male 13/28 (46.4) 7/17 (41.2) 6/11 (54.5) 0.7 
Ever smoker at Baseline 27/28 (96.4) 17/17 (100) 10/11 (90.9) 0.39 
Pack-years at Baseline 48.1 (22) 49.8 (24.8) 45.4 (17.6) 1 

 
  

Data	are	means	(SD)	for	continuous	variables	and	proportions	(%)	for	dichotomous	variables.		P*	
values	are	for	the	comparison	of	samples,	sample	pairs,	or	patients	classified	as	having	regressing	
or	 progressing/stable	 PMLs.	 	 Two	 sample	 t-tests	were	 used	 for	 continuous	 variables;	 Fisher's	
exact	test	was	used	for	factors.	**Among	the	23	patients,	3	patients	had	2	sample	pairs	where	one	
pair	was	classified	as	regressing	and	the	other	as	progressing/stable.		These	patients	are	counted	
in	both	the	regressing	and	progressing/stable	columns. 
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Supplemental Figure 1. Unsupervised hierarchal clustering of genes associated with smoking 

status. The weighted voting algorithm was trained on z-score normalized microarray data 

(GSE7895) across 94 genes differentially expressed between current and never smokers and used 

to predict smoking status in log2-transformed counts per million (cpm) that were z-score 

normalized from the 82 mRNA-Seq samples.  The heatmap shows the results of unsupervised 

Ward hierarchal clustering across the 82 mRNA-Seq samples and the 94 genes.  The row color 

label indicates if genes were up-regulated (red) or down-regulated (green) in current smokers 

compared to never smokers in GSE7895. The lower column color labels indicate the smoking 

status in the clinical annotation (self-report) with light gray indicating former smokers and dark 

gray indicating current smokers.  The upper column color labels indicate the predicted class of the 

samples based on the 94 genes with white indicating former smokers and black indicating current 

smokers.  Log2-cpm mRNA-Seq data was z-score normalized prior to clustering. 
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Supplemental Figure 2. Biomarker discovery flowchart. Samples (n=75) were split into a 

discovery set (n=58) and a validation set (n=17). The pipeline was run 500 times, and each time 

the discovery set was randomly split into training (80% of samples, n=46) and test (20% of 

samples, n=12) sets. The training set samples were used to train the biomarker using all 

combinations of pipeline parameters, including: 1. Up- / down-regulation ratio: TRUE or FALSE 

(see Balancing signature). 2. Data type: raw counts, RPKM or CPM (see Input data 

preprocessing). 3. Gene filter: genes with signal in at least 1%, 5%, 10%, or 15% of samples (see 

Gene filter). 4. Feature selection: edgeR, edgeR correcting for gb-ratio, limma, limma correcting 

for gb-ratio, glmnet, random forest, DESeq, SVA, or partial AUC (see Feature selection). 5. Gene 

number: 10, 20, 40, 60, 80, 100, or 200 genes (see Biomarker size). 6. Prediction method: 

weighted voting, random forest, SVM, naïve bayes, or glmnet (see Prediction method). 

x500 iterations

BC-LHS cohort 
(n = 75)

Validation set 
(n = 17)

Discovery set 
(n = 58)

Random split
20 : 80

Test set 
(20%, n = 12)

Up / Down
regulation ratio

Data type

Prediction method Gene number

Feature selection

Train set 
(80%, n = 46 )

Individual performance
on train and test sets

Accuracy, etc per iteration

Average 
performance 

(500 iterations)
per model
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Supplemental Figure 3. Cellular metabolism in cancer cell lines and in the airway field 

associated with premalignant lesions (A) GSVA scores were calculated based on genes in 

KEGG OXPHOS pathway and KEGG, Biocarta, and Reactome Glycolysis pathways in the CCLE 

cell lines highlighting the H1229 (green) (high OXPHOS and moderate glycolysis), SW900 (red) 

(moderate OXPHOS and low glycolysis) and H2805 (blue) ((low OXPHOS and moderate 

glycolysis).  (B) Baseline OCR/ECAR ratio values for the cancer cells lines demonstrating the 

relationship between elevated OXPHOS GSVA scores and oxygen consumption. (C) Elevation of 

respiratory capacity associated with high OXPHOS gene score in response to mitochondrial 

perturbation. (D) Elevated ECAR response in the H1299 and H205 is associated with the moderate 

glycolysis GSVA score, however, although the SW900 glycolysis GSVA scores agree with 

baseline ECAR, in the state of repressed OXPHOS, glycolysis is activated.  (E) Enumeration of 

mitochondria within each cancer cell suggests that increased GSVA scores for OXPHOS or 

glycolysis did not correlate with mitochondrial number. H2085 cells had the lowest OXPHOS 

GSVA score, the lowest basal OCR, and the lowest respiratory capacity, but their mitochondrial 

content was significantly greater that H1299 and SW900 (p=0.03). (F) Cell area (FSC-A) is 

correlated with mitochondrial number (fluorescence of MitoTracker Green FM). (G) GSVA scores 

were calculated based on genes in KEGG OXPHOS pathway.  The GSVA scores for OXPHOS 

activity were significantly elevated in the airway field of subjects with PMLs compared to subjects 

without PMLs (p<0.01). (H) GSVA scores were calculated based on genes in the KEGG, 

Biocarta, and Reactome Glycolysis pathways.   The mean GSVA scores were moderately elevated 

in the airway field of subjects with PMLs compared to subjects without PMLs.  
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