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SUPPLEMENTAL MATERIALS 40 

 41 

Table S1. Effect of sunlight on decay of indicator microorganisms and pathogens in marine and freshwater. + denotes greater decay 42 

rate in the presence of sunlight; 0 denotes no effect of sunlight on decay rate. 43 

 44 

Organism Effect of 

sunlight 

on decay 

Spike 

Source 

Water Type Method Comment Other 

factors 

contributing 

to decay 

Reference 

FIB        

Fecal coliforms + b 

 

Raw sewage 

and effluent 

from meat-

processing 

facility 

Seawater Membrane filtration 

on mE/esculin-iron 

agar (enterococci) or 

mFC agar (fecal 

coliforms) 

Field study. Fecal 

coliforms inactivated 

more rapidly 

compared to 

enterococci 

Temperature (1) 

Enterococci + b 

Fecal coliforms + b Raw sewage Seawater Membrane filtration 

on mFC agar 

Field study. Fecal 

coliforms inactivated 

more rapidly 

compared to 

coliphages 

Temperature, 

seasonality 

(2) 

Enterococci + b 

 

Waste 

stabilization 

pond 

Freshwater 

(river)  

Membrane filtration 

on mE/esculin-iron 

agar (enterococci) or 

mFC agar/nutrient 

agar supplemented 

with MUG (E. coli) 

Field study. 

Enterococci and E. 

coli inactivated more 

rapidly compared to 

coliphages 

Seasonality, 

salinity 

(3) 

E. coli + b 



 

E. coli + a Raw sewage, 

final sewage 

effluent 

Seawater and 

freshwater 

(creek) 

Colilert (MPN) Field study. 

Enterococci decayed 

significantly faster 

compared to E. coli 

Temperature (4) 

Enterococci + a Enterolert (MPN) 

E. coli + b Waste 

stabilization 

pond  

Seawater and 

freshwater 

(river) 

Membrane filtration 

on mFC agar/nutrient 

agar supplemented 

with MUG (E. coli) 

 

Field study. Faster 

inactivation in 

seawater compared to 

freshwater 

Seasonality (5) 

Enterococci 

 

+ a 

 

Human, 

cattle and 

dog feces 

 

Seawater Membrane filtration 

on mEI (enterococci) 

and by qPCR 

(Entero1a) 

Field study. Intact 

cells (as determined 

by the PMA 

treatment) and DNA 

persisted longer 

None 

reported 

(6) 

Enterococcus qPCR 0 a 

E. coli + a Human and 

cattle feces 

Freshwater 

(river) 

Colilert (MPN) Field study. Exposure 

to sunlight affected 

culturable E. coli 

from cattle feces, but 

not human. 

None 

reported 

(7) 

 Enterococci 0 b Enterolert (MPN) 



E. coli + a Raw sewage Freshwater 

(river) 

Colilert (MPN) Lab study. Culturable 

E. coli inactivated 

more rapidly than any 

of the qPCR markers 

tested 

Biotic 

interactions, 

sediment 

(8) 

Enterococci 

 

+ b 

 

Raw sewage Seawater and 

freshwater 

(creek) 

Enterolert (MPN) and 

by qPCR (Entero1a) 

Field study. Decay 

rate of DNA 

significantly lower 

compared to 

culturable 

enterococci.  

 

Water type (9) 

Enterococcus qPCR 0 b 

E. coli + a Strains 

isolated from 

cattle manure 

Freshwater 

(pond) 

Colilert (MPN) Field study. Effect of 

sunlight appeared to 

be seasonal (not 

observed during the 

winter months) 

Temperature, 

biotic 

interactions 

(10) 

Enterococci + a Enterolert (MPN) 

E. coli + b Human, 

cattle and 

dog feces 

Groundwater Membrane filtration 

on mEI (enterococci) 

and by qPCR 

(Entero1a), membrane 

filtration on mTEC (E. 

coli) 

Field study. Intact 

cells (as determined 

by the PMA 

treatment) and DNA 

persisted similarly in 

light and dark 

treatments 

None 

reported 

(11) 

Enterococci 

 

0 a 

 

Enterococcus qPCR 0 a 

E. coli 0 a Raw sewage 

and cattle 

feces 

Freshwater 

(lake)  

Colilert (MPN) Field study. Water 

temperature had 

Temperature (12) 

Enterococci 0 a Membrane filtration 

on Slanetz& Bartley 



agar, followed by Bile 

Esculin Azide Agar 

significant impact on 

decay 

Enterococci 

 

+ a 

 

Laboratory 

grown strain 

Seawater Enterolert (MPN), 

membrane filtration on 

mEI, spread plating on 

TSA and by qPCR 

(Entero1a) with and 

without PMA 

Field study. Under 

anoxic conditions, 

sunlight did not affect 

decay of culturable 

enterococci when 

enumerated by 

Enterolert and TSA, 

but it was a 

significant factor 

when enterococci 

when enumerated 

using mEI 

Oxidative 

stress 

(13) 

Enterococcus qPCR 0 a 

Enterococci + a Cattle 

manure, 

primary 

treated 

sewage 

Seawater and 

freshwater 

(river) 

Membrane filtration 

on mEI (enterococci) 

and mTEC (E. coli) 

Field study. Sunlight 

significantly affected 

only decay of 

sewage-borne 

enterococci.  

Biotic 

interactions, 

fecal source 

(14) 

E. coli 0 a 

Enterococci 

 

+ a 

 

Primary 

treated 

sewage 

Freshwater 

(river)  

Membrane filtration 

on mEI (enterococci) 

and by qPCR 

(Entero1a) 

Field study. Sunlight 

exposure was more 

important for 

culturable E. coli 

compared to 

enterococci. There 

was no statistically 

significant correlation 

in decay of culturable 

enterococci compared 

Biotic 

interactions 

(15) 

Enterococcus qPCR + a 

E. coli + a Membrane filtration 

on mTEC 



to the corresponding 

qPCR signal. 

Enterococci 

 

+ a 

 

Raw sewage, 

human feces 

Seawater Membrane filtration 

on mEI (enterococci) 

and by qPCR 

(Entero1a) 

Field study. 

Culturable 

enterococci and E. 

coli decayed faster 

than their molecular 

counterparts and were 

affected by sunlight 

more. 

 

Biotic 

interactions, 

fecal source 

(16) 

Enterococcus qPCR + a 

E. coli 

 

+ a 

 

Membrane filtration 

on mTEC and by 

qPCR (EC23S857) 

E. coli qPCR + a 

Enterococci + b Raw sewage Seawater, 

brackish 

water, 

freshwater 

(lagoon) 

Enterolert (MPN) Field study. 

Generally faster 

decay in clear 

(seawater) and 

shallow waters. 

None 

reported 

(17) 

E. coli + b Colilert (MPN) 

Enterococci 

 

+ a 

 

Raw sewage Seawater Enterolert (MPN) and 

by qPCR (Entero1a) 

Field study. 

Enterococci (culture 

and qPCR) decayed 

faster in summer than 

in the winter under 

the same sunlight 

intensity, while the 

opposite was the case 

for E. coli. 

Seasonality (18) 

Enterococcus qPCR + a 

E. coli + a Colilert (MPN) 



E. coli qPCR 0a Cattle feces Freshwater 

(river) and 

seawater 

 

qPCR Field study. 

Enterococcus qPCR 

signal decayed 

significantly faster 

than E. coli. 

Culturable 

enterococci and E. 

coli decayed faster 

than their molecular 

counterparts. 

 

Water type (19) 

Enterococcus qPCR 0a 

Bacterial Pathogens        

Salmonella enterica + b Laboratory 

grown strains  

Seawater and 

freshwater 

(river)  

Preston broth/ Exeter 

agar (MPN, 

Campylobacter), 

membrane filtration on 

XLD agar 

(Salmonella) 

Field study. 

Campylobacter and 

Salmonella 

inactivated more 

rapidly compared to 

E. coli 

Seasonality (5) 

Campylobacter jejuni + b 

E. coli O157:H7 + b Laboratory 

grown strain 

Freshwater 

(pond) 

Lauryl tryptose broth 

(LTB) enrichment 

combined with qPCR 

for confirmation 

(MPN) 

Field study. Decayed 

significantly slower 

compared to FIB 

None 

reported 

(10) 

Salmonella enterica 0 a Laboratory 

grown strains 

Groundwater qPCR Field study. Intact 

cells (as determined 

by the PMA 

treatment) but not 

DNA (no PMA) of C. 

jejuni decayed faster 

when exposed to 

None 

reported 

(11) 

Campylobacter jejuni 0 a 



sunlight compared to 

dark treatments.  

Campylobacter jejuni +b Laboratory 

grown strains 

Freshwater 

(river) 

Preston broth 

enrichment, followed 

by sub-culturing on 

Karmali agar (MPN) 

Lab and field study. 

No correlation 

between decay and 

pH, oxygen 

concentrations or 

conductivity 

Temperature (20) 

Coliphage        

Somatic coliphage + b Raw sewage Seawater Double agar layer 

and/or membrane 

filtration-swirling 

elution method 

Field study. F-RNA 

coliphage more 

susceptible to longer 

solar wavelengths 

than somatic 

coliphage 

Temperature, 

seasonality 

(2) 

F-RNA coliphage + b 

Somatic coliphage + b Waste 

stabilization 

pond 

Freshwater 

(river)  

Double agar layer 

and/or membrane 

filtration-swirling 

elution method 

Field study. Somatic 

coliphage persisted 

longer than F-RNA 

coliphage 

Seasonality, 

salinity 

(3) 

F-RNA coliphage + b 

F-specific coliphage +a Raw sewage, 

final sewage 

effluent 

Seawater and 

freshwater 

(creek) 

Double agar layer Field study. 

Coliphage decayed 

significantly slower 

than FIB 

Temperature (4) 

Somatic coliphage + b Laboratory 

grown strains 

Seawater Double agar layer Lab study. Somatic 

coliphage more 

sensitive to light 

None 

reported 

(21) 

F-specific coliphage + b 



compared to F-RNA 

coliphage 

Somatic coliphage 0 a Raw sewage 

and cattle 

feces 

Freshwater 

(lake)  

Double agar layer Field study. 

Persistence 

significantly lower in 

August compared to 

March and November 

Temperature (12) 

F-specific coliphage + b Laboratory 

grown strain 

Seawater, 

brackish, 

freshwater 

(lagoon, 

wetland) 

Double agar layer Lab study. 

Exogenous sunlight 

damage caused by 

external reactive 

species was more 

important than the 

direct (endogenous) 

damage 

Water 

composition 

(22) 

F-specific coliphage + b Laboratory 

grown strain 

Freshwater 

(wetland) 

Double agar layer Lab and field study. 

No significant 

difference in decay at 

two different depths 

(5 cm and 20 cm) 

None 

reported 

(23) 

Somatic coliphage + a Raw sewage Seawater Double agar layer Field study. Somatic 

coliphage more 

sensitive to light 

compared to F-

specific coliphage 

Biotic 

interactions 

(16) 

F-specific coliphage 0 a 

Viral Pathogens        

Adenovirus 2 + a Seawater (21) 



Poliovirus 3 + a Laboratory 

grown strains 

Mammalian cell 

culture 

Lab study. MS2 

coliphage and 

Adenovirus2 more 

resistant to sunlight 

compared to other 

coliphages and 

Poliovirus 

None 

reported 

Adenovirus 2 0 a Laboratory 

grown strain 

Ground water qPCR Field study. No 

significant difference 

in decay compared to 

C. jejuni and S. 

enterica with respect 

to dark and sunlight 

exposed treatments  

None 

reported 

(11) 

Poliovirus 3 + b Laboratory 

grown strain 

Seawater, 

brackish, 

freshwater 

(lagoon, 

wetland) 

Mammalian cell 

culture 

Lab study. Generally, 

Poliovirus decayed 

faster than 

Adenovirus or F-

specific (MS2) 

coliphage 

Water 

composition 

(22) 

Adenovirus 2 + b 

Poliovirus 3 + b Laboratory 

grown strain 

Freshwater 

(wetland) 

Mammalian cell 

culture 

Lab and field study. 

Inactivated slower 

compared to the F-

specific (MS2) 

coliphage 

None 

reported 

(23) 

Protozoan Pathogens 



C. parvum +a Cattle feces Freshwater 

(lake, 

reservoir) 

Mammalian cell 

culture combined with 

qPCR 

Field study. Increased 

dissolved organic 

carbon reduced 

inactivation 

Water type (24) 

MST Markers        

Human-associated 

(HF183, HF134) 

0 a Human and 

cattle feces 

Freshwater 

(river) 

qPCR Field study. 

Persistence of cells 

(as determined by 

RNA quantification) 

was significantly 

affected by sunlight 

only for the human-

associated MST 

markers. 

None 

reported 

(7) 

Ruminant-associated 

(CF193) 

0 a 

Ruminant-associated 

(CF128) 

+ a 

General marker of 

fecal pollution 

(BacUni-UCD) 

0 a Human, 

cattle and 

dog feces 

Seawater qPCR Field study. 

Detection of intact 

cells (as determined 

by the PMA 

treatment) and DNA 

differed significantly 

in both light exposed 

and dark treatments 

None 

reported 

(6) 

Human-associated 

(BacHum-UCD) 

0 a 

Dog-associated 

(BacCan-UCD) 

0 a 

Cow-associated 

(BacCow-UCD) 

+ a 

General marker of 

fecal pollution 

(AllBac) 

+ a Raw sewage Freshwater 

(river) 

qPCR Lab study. Decay of 

human-associated 

Biotic 

interactions, 

sediment 

(8) 



Human-associated 

(HF183 and 

BacHum) 

+ a MST markers was 

similar 

General marker of 

fecal pollution 

(GenBac3) 

0 a Raw sewage Seawater and 

freshwater 

(creek) 

qPCR Field study. 

Persistence longer in 

seawater compared to 

freshwater 

Water type (9) 

Human-associated 

(BsteriF1, BuniF2, 

HF183, HF124, 

HumM2) 

0 a 

General marker of 

fecal pollution 

(BacUni-UCD) 

0 a Human, 

cattle and 

dog feces 

Groundwater qPCR Field study. Intact 

(PMA) treated cells 

persisted significantly 

longer than the (non-

PMA treated) DNA. 

Cow associated MST 

marker decayed more 

rapidly than others. 

None 

reported 

(11) 

Human-associated 

(BacHum-UCD) 

0 a 

Dog-associated 

(BacCan-UCD) 

0 a 

Cow-associated 

(BacCow-UCD) 

0 a 

Human-associated 

(BacH) 

0 a Raw sewage 

and cattle 

feces 

Freshwater 

(lake)  

qPCR Field study. 

Persistence of MST 

markers not 

significantly different 

from FIB and 

coliphage 

Temperature (12) 

Ruminant associated 

(BacR) 

0 a 



General marker of 

fecal pollution 

(GenBac3) 

+ a Primary 

treated 

sewage 

Freshwater 

(river)  

qPCR Field study. More 

pronounced effect of 

sunlight in the early 

stages of decay (< 72 

hours) compared to 

subsequent time 

points 

Biotic 

interactions 

(15) 

Human-associated 

(HF183 and HumM2) 

+ a 

General marker of 

fecal pollution 

(GenBac3) 

0a Cattle feces Freshwater 

(river) and 

seawater 

qPCR Field study. Sunlight 

affected the decay of 

CowM2 and 

Rum2Bac, but not 

CowM3 

Water type (19) 

Cattle/ruminant 

associated (CowM2, 

CowM3, Rum2Bac) 

+/0a 

Human-associated 

(HF183 and HumM2) 

+ a Raw sewage, 

human feces 

Seawater qPCR Field study. The 

magnitude of the 

effect varied across 

different time points 

and pollution sources 

Biotic 

interactions, 

fecal source 

(16) 

General marker of 

fecal pollution 

(GenBac3) 

+ a 

General marker of 

fecal pollution 

(GenBac3) 

0 a Raw sewage Seawater qPCR Field study. When 

exposed to sunlight, 

culturable FIB 

decayed significantly 

faster than the MST 

markers 

None 

reported 

(18) 

Human-associated 

(HF183, HumM2 and 

BacHum) 

0 a 

 45 

aStatistical significance reported 46 



bStatistical significance not reported 47 

 48 
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