
Supplementary Material

Relationship of noise estimates between
MLDS and MLCM

The statistical models in MLDS and MLCM take the
stochasticity of observers’ judgments into account.
Their parametrizations place an additive and Gaus-
sian noise source at the decision stage.

In MLDS the stimulus triad x1, x2 and x3 evokes
a deterministic perceptual response Ψ(x1), Ψ(x2),
Ψ(x3) and the observer compares the two perceptual
intervals with a differencing rule expressed in the de-
cision variable ∆:

∆MLDS =
[
Ψi(x3)−Ψi(x2)

]
−

[
Ψi(x2)−Ψi(x1)

]
+ ε

(S1)

where Ψi(x) is the perceptual scale in the i-th con-
text, ε ∼ N(0, σ2), and σ2 is the decision noise vari-
ance. The observer responds that the pair (x2, x3) is
perceived as having the biggest perceptual difference
if ∆MLDS > 0, (x1, x2) otherwise.

Similarly, for MLCM we consider all possible
paired comparisons of context and luminance. Thus
we have that the decision variable is

∆MLCM =
[
Ψj(x2)−Ψi(x1)

]
+ ε (S2)

where the observer compares the luminances x1
and x2 in contexts i and j, respectively, and ε ∼
N(0, σ2). The observer responds that x2 is perceived
as lighter if ∆MLCM > 0, x1 otherwise.

Using a binomial generalized linear model (GLM),
MLDS and MLCM find the values of Ψ(x) that max-
imize the likelihood given the observers’ responses.
Importantly, they also provide an estimate of the de-
cision noise parameter, σ̂.

We can parametrize the model differently by shift-
ing the noise from the decision stage to the percep-
tual stage. This parametrization is motivated by the
potential comparison of this class of scaling methods
with performance-based methods, as they instantiate
the same assumptions taken in the simplest version of
signal detection theory (equal-variance, independent,
Gaussian distributed variables), and thus perceptual
scales can be expressed in “d’ units” (see applica-
tions in e.g. Devinck & Knoblauch, 2012; Aguilar,
Wichmann, & Maertens, 2017).

We reparametrize the models by assuming that the
noise comes only from the internal dimension Ψ(x)
and that there is no decision noise. Each perceptual
response is an equal variance, Gaussian distributed

random variable with mean equal to the deterministic
Ψ(x),

ψi(x) ∼ N(Ψi(x), σ2P ) (S3)

where σ2P is the noise variance at the perceptual
level. Then we can rewrite the decision variables for
MLDS and MLCM as follows

∆MLDS =
[
ψi(x3)− ψi(x2)

]
−
[
ψi(x2)− ψi(x1)

]
(S4)

∆MLCM =
[
ψj(x2)− ψi(x1)

]
(S5)

MLDS and MLCM provide a noise estimate σ̂ that
reflects the noise of the entire decision model. The
next step is to express σ̂ as a function of the per-
ceptual noise σ2P . The decision variables are a linear
combination of Gaussian random variables. The vari-
ance always adds when linearly combining Gaussian
random variables. Thus, the variance of the decision
variables is

σ̂2MLDS = 4σ2P (S6)

σ̂2MLCM = 2σ2P (S7)

as in the decision variable for MLDS there are four
terms, and in the decision variable for MLCM only
two terms. Assuming that MLCM and MLDS probe
the same internal dimension Ψ(x), we can now put
these last two equations together, and we obtained
the noise relationship between MLCM and MLDS

σ̂MLCM =

√
2

2
σ̂MLDS (S8)

Goodness of fit

Evaluating the goodness-of-fit (GoF) of general lin-
ear models (GLMs) with binomial responses (as in
MLDS and MLCM) is not as straightforward as with
Gaussian data. We followed the approach suggested
by Knoblauch and Maloney (2012) and Wood (2006)
to analyze the appropriateness of our scale estimates.
The procedures are implemented in the MLDS and
MLCM R packages (Knoblauch & Maloney, 2012).
Using bootstrapping we generated responses from
the empirically estimated scales. We then fit scales
to these simulated data and calculated the deviance
residuals for each of the bootstrapped datasets. Fi-
nally we compared the actual deviance residuals to
the distribution of the simulated residuals. There
are two ways to check goodness of fit.
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In the first comparison, the cumulative distribution
of empirically observed residuals is plotted together
with a 95 % confidence envelope which is obtained
from the simulated residuals (Fig. S1A). If our dis-
tributional assumption is correct, then the envelope
represents the residual distribution. For a satisfac-
tory goodness of fit the empirical scale should fall
inside the envelope. We quantified this GoF test by
calculating the percentage of trials (Pin) in which the
empirical residuals were located inside the envelopes.
Additionally, the plotting routine detects and visual-
izes individual trials with high residuals which may
point to outliers (see below).
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Figure S1: Example of goodness of fit evaluation for one per-
ceptual scale. (A) Cumulative distribution of residuals for the
actual data (black dots) and its 95 % confidence envelope (blue
lines) calculated from bootstrap simulation. (B) Number of
zero-crossings (‘runs’) for the observed data (black line) and
distribution of zero-crossings from bootstrap simulation (blue
histogram).

The second comparison tests for systematic pat-
terns in the residuals. In a simple linear model
(y = ax+b+ε ε,∼ N(0, σ2)) the residuals (y−ŷ) are
plotted against the predicted values (ŷ) to check that
the residuals scatter randomly around zero. Analo-
gously, for binomial GLMs we sort the residuals ac-
cording to the fitted values and check for sequences
of only positive or only negative deviance residuals.
Practically we calculate the number of times that ad-
jacent residuals cross zero. To put the empirically ob-
served number of zero-crossings into perspective we
compare it with the distribution of zero- crossings in
the simulated data (Fig. S1B). The observed value
should be within the probability mass of the simu-
lated distribution, i.e. their p-value is not less than
0.01, indicating a random distribution of residuals
and hence a satisfactory goodness-of-fit.

On a first evaluation we found that 91 % (29 out
of 32) of the cases scales in variegated checkerboards
had an satisfactory goodness of fit, against 41 % (13
out of 32) of the cases for the center-surround stim-
ulus (see Suppl. Tables S1 and S2 for details). As
many scales did not have a satisfactory goodness of

fit, we employed an outlier removal procedure. The
procedure is described in Knoblauch and Maloney
(2012, pp. 219-222) and it consists of removing the
trials which are flagged as having a deviance resid-
ual higher than an arbitrary threshold (set to ±2 in
our case). The trials flagged as ‘outliers’ can be seen
in the first comparison plot (Fig. S1A) as datapoints
with x-values to the extreme left or right, correspond-
ing to a deviance residual outside the range [−2, 2].

We identified outlier trials in all scaling data us-
ing the same criterion as described above, we re-
moved them from their respective datasets, and refit-
ted the models (MLDS or MLCM) to find new scale
estimates. These newly estimated scales passed the
goodness of fit test in 100 % of the cases for varie-
gated checkerboards, and in 94 % (30 out of 32) of the
cases for center-surround stimuli (scales for observers
O4 and O5 in ‘plain view’ did not pass). These up-
dated scales are the ones reported in all results in the
main text.

Independent, additive and saturated mod-
els in MLCM

MLCM includes three different statistical models:
the independent, the additive, and the saturated
model. The independent model considers that per-
ceptual judgments can be explained by only one of
the stimulus dimensions. The additive model con-
siders that judgments can be explained by a sum of
the effects from each stimulus dimension. And finally
the saturated model is the most general and it con-
siders the contribution of each stimulus combination
presented to the observer, thus allowing interactions
that are more complex than a sum among stimu-
lus dimensions. The model is ‘saturated’ as it has
the maximum number of possible parameters. These
three models are nested, being the saturated the most
general, followed by the additive and finally the inde-
pendent model. Model selection among these three
options is done using the nested likelihood ratio test.
More details can be found in Knoblauch and Mal-
oney (2012) and in Gerardin, Devinck, Dojat, and
Knoblauch (2014).

For our current use of MLCM we considered all
three models. As a reminder, the two stimulus di-
mensions in our study were luminance and a cat-
egorical dimension for viewing context (plain, dark
transparency, light transparency). And we eval-
uated three observer models: lightness constant,
luminance-based and contrast-based models.

MLCM with the independent model is appropri-
ate only for the luminance-based observer, as judg-
ments would only depend on one stimulus dimension,
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Figure S2: (A) An hypothetical observer model for which addi-
tive conjoint measurement would be appropriate. The context
dimension (C1-C3) modulates the effect of the other dimension
(luminance, x) by an additive factor. (B) Contrarily, lumi-
nance range is reduced by the introduction of a transparency
(Fig. 2B main text) and the lightness constant observer model
expands this range using a multiplicative factor which cannot
be captured by the additive model.

i.e. luminance. It is however not appropriate for any
other observer model or any other case that we can
consider. Thus, we evaluated the next more general
model, the additive model.

The additive model would be appropriate if the
judgments would depend on the luminance dimension
plus an additive offset due to context. An additive
offset is however not enough in capturing the interac-
tion of the luminance dimension with the context di-
mension. In fact, for the lightness constant observer,
luminance is transformed to perceived lightness by a
multiplicative factor. This multiplicative factor can-
not be modeled with additive conjoint measurement
(see Fig. S2 for an illustration). Consequently we
used MLCM with the saturated model. In this way
we cover all scenarios using the most general model.

Estimation issues in MLCM

During our use of MLCM we encountered technical
issues worth of mentioning. The general linear model
(GLM) - the model underlying the scales’ estimation
in MLCM and MLDS - often outputs a ‘complete
separation’ warning, which indicate that the model
is ill-constrained, having parameters that completely
determine the outcome variable. This is not an un-
common occurance in binomial regression (Kosmidis
& Firth, 2009). In both MLCM and MLDS the prob-
lem can arise when measured proportions of observers
judgments are either all 0% or 100%. That could oc-
cur when the stimulus spacing is too coarse relative to
the observer’s internal noise, and thus all judgments
are too easy for the observer.

In the present study the ‘complete separation’
problem did not affect the point estimates of the
scales, but it became problematic when calculating

confidence intervals using bootstrap. It led to un-
stable bootstrap estimates and a multi-modal boot-
strap distribution, which in turn led to highly skewed
confidence intervals. We overcame the problem by
setting a coarser stopping rule in the optimization
algorithm underlying the GLM fitting routine, in
this way avoiding the multi-modality. Alternatively
other GLM fitting methods that tackle specifically
the problem of ‘complete separation’ could be used,
for example the bias reduction methods implemented
in the package brglm2 (Kosmidis, Pagui, & Sartori,
2018).
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Variegated checkerboards

dataset before outlier removal after outlier removal
observer experiment context GoF measure GoF measure

Pin p Pin p

O1
MLDS

plain 96.5 0.54 99.4 0.94
dark 93.9 0.27 97.5 0.56
light 89.8 0.08 99.2 0.79

MLCM all 97.1 0.06 95.5 0.71

O2/MM
MLDS

plain 99.3 0.57 99.6 0.69
dark 96.1 0.09 99.1 0.51
light 99.4 0.95 98.1 0.99

MLCM all 99.7 0.71 99.2 0.89

O3/GA
MLDS

plain 45.17 0.27 63.74 0.41
dark 24.75 0.20 58.35 0.54
light 22.58 0.02 46.53 0.11

MLCM all 94.33 0.04 94.25 0.72

O4/MK
MLDS

plain 99.08 0.05 99.75 0.36
dark 99.33 0.71 99.92 0.94
light 99.42 0.54 97.63 0.78

MLCM all 96.54 < 0.01 * 98.92 0.80

O5
MLDS

plain 98.83 0.14 99.58 0.58
dark 99.08 0.10 98.04 0.40
light 99.17 0.04 99.58 0.12

MLCM all 99.64 0.44 99.67 0.77

O6
MLDS

plain 52.67 0.05 68.22 0.27
dark 97.25 0.03 96.27 0.65
light 69.58 0.01 76.63 0.20

MLCM all 96.72 < 0.01 * 99.43 0.85

O7
MLDS

plain 94.33 < 0.01 * 99.25 0.51
dark 98.83 0.22 99.16 0.725
light 99.08 0.69 98.90 0.95

MLCM all 96.93 0.85 61.30 0.95

O8
MLDS

plain 98.67 0.15 99.75 0.63
dark 98.92 0.32 97.02 0.58
light 99.00 0.29 97.02 0.76

MLCM all 99.46 0.10 99.85 0.93

Table S1: Goodness of fit measures for scales in variegated checkerboards before and after outlier removal. Pin: percentage of
residuals inside envelope (see Fig. S1A), p: p-value statistic of zero-crossings distribution (see Fig. S1B). Asterisks mark the
cases with inappropriate goodness of fit. Detailed description can be found in the text.
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Center-surround stimuli

dataset before outlier removal after outlier removal
observer experiment context GoF measure GoF measure

Pin p Pin p

O1
MLDS

plain 98.83 0.32 98.73 0.73
dark 85.17 0.06 70.55 0.42
light 96.25 0.09 99.40 0.43

MLCM all 88.48 < 0.01 * 98.70 0.91

O2/MM
MLDS

plain 99.25 0.01 99.07 0.25
dark 99.25 0.21 98.24 0.54
light 98.42 0.14 99.16 0.67

MLCM all 99.22 0.43 99.49 0.65

O3/GA
MLDS

plain 92.17 < 0.01 * 97.05 0.04
dark 95.33 0.02 97.72 0.22
light 99.50 0.06 99.41 0.39

MLCM all 96.51 < 0.01 * 99.67 0.58

O4/MK
MLDS

plain 97.58 < 0.01 * 98.82 < 0.01 *
dark 93.17 < 0.01 * 98.57 0.22
light 96.00 < 0.01 * 97.81 0.08

MLCM all 93.16 < 0.01 * 99.40 0.34

O5
MLDS

plain 87.08 < 0.01 * 98.30 < 0.01 *
dark 96.50 < 0.01 * 94.59 0.05
light 93.67 < 0.01 * 97.80 0.03

MLCM all 99.76 0.28 99.46 0.95

O6
MLDS

plain 83.08 < 0.01 * 95.47 0.04
dark 96.75 0.01 98.82 0.51
light 71.67 0.02 90.14 0.30

MLCM all 96.63 < 0.01 * 99.61 0.76

O7
MLDS

plain 99.25 0.03 99.16 0.16
dark 97.83 < 0.01 * 98.82 0.15
light 99.25 0.01 98.31 0.01

MLCM all 94.27 < 0.01 * 95.46 0.61

O8
MLDS

plain 96.33 < 0.01 * 96.93 0.04
dark 53.25 < 0.01 * 67.52 0.22
light 84.42 < 0.01 * 93.32 0.06

MLCM all 97.34 < 0.01 * 96.83 0.45

Table S2: Goodness of fit measures for scales in center-surround stimili, same presentation format as Table S1.
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Figure S3: Consistency between matching data and prediction from MLDS perceptual scales in variegated checkerboards, for
each observer individually. Datapoints represent mean ± 95 % C.I.
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Figure S4: Individual observer data. Consistency between matching data and prediction from MLCM perceptual scales in
variegated checkerboards, for each observer individually. Datapoints represent mean ± 95 % C.I.
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Figure S5: Similar to S3 but for center-surround stimuli.
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Figure S6: Similar to S4 but for center-surround stimuli.
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r Luminance [cd/m2]

plain
dark

transparency
light

transparency

0.06 15 18 69
0.11 25 22 73
0.19 40 28 79
0.31 60 36 87
0.46 89 48 99
0.63 120 60 111
0.82 155 74 125
1.05 199 92 144
1.29 242 108 159
1.50 281 125 176
1.67 312 137 188
1.95 365 157 209
2.22 415 177 229

mean 174 83 135

Table S3: Target luminance values in different viewing condi-
tions. The first column contains the 13 target reflectance val-
ues (r, in povray units). The next three columns contain the
corresponding luminance values (in cd/m2) for each viewing
condition. Reflectances from 0.11 to 1.67 were used as targets
in both experiments.
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