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Additional model comparisons. 

 

  

 

All the models were compared against the CI model presented in the Main Text. Positive values denote 

a CI win. Differences above 2 are considered as positive; differences above 6 are considered as strong. 

Error-bars (Jackknife resampling method; see Main Text) correspond to standard deviations of the 

Jackknife estimates. M1: Model assuming different effects of priors in the case of the tilted cube. 

In the main text, we assumed that 𝑤𝑃 =  0.5 when the cube is tilted, since the prior becomes 

uninformative and thus irrelevant in this case. An alternative would be that the prior weight remains 

greater than 0.5 (as in the case of the normal cube), and that only the log-prior ratio becomes equal to 

zero. The 2 alternatives are unable to be differentiated by the NB and WB models, but they result in 

different predictions when the CI model is used, in which a reverberating likelihood term appears inside 

the prior term. This reverberating term disappears completely if we assume that 𝑤𝑃 =  0.5, whereas it 

remains if we assume that 𝐿𝑃 =  0. M2: Circular inference models with fixed and optimized loops. 

In a previous study, Jardri and colleagues considered a CI model in which the strength of climbing loops 

(reverberation of sensory evidence, 𝑎𝑆) and the strength of descending loops (reverberation of priors, 



𝑎𝑃) were considered free parameters and were optimized (Jardri et al., 2017). The predictions of the 

model were summarized by the following equation: 𝐿𝐶 = 𝐹(𝐿𝑆 + 𝐹(𝑎𝑐𝐿𝑆 , 𝑤𝑆) + 𝐹(𝑎𝑑𝐿𝑃 , 𝑤𝑃), 𝑤𝑆) +

𝐹(𝐿𝑃 + 𝐹(𝑎𝑐𝐿𝑆 , 𝑤𝑆) + 𝐹(𝑎𝑑𝐿𝑃 , 𝑤𝑃), 𝑤𝑃). In the current study, we fixed the values of these 2 extra 

parameters to 1, obtaining equation (1) (Main Text). The two models make the same qualitative 

predictions, as they both contain reverberating terms that render likelihood and prior inseparable. M3: 

WB model in which the instructions are likelihood-dependent. A likelihood-dependent effect of the 

instructions may constitute an alternative explanation for the interaction observed between the effect of 

the visual cues and that of the instructions/priors. In our framework, such an interpretation can be 

implemented as follows: 𝐿𝑅𝑃 = 𝐹(𝐿𝑆 , 𝑤𝑆) + 𝐹(𝐿𝑖𝑚𝑝𝑙 , 𝑤𝑃,𝑖𝑚𝑝𝑙) + 𝐹(𝐿𝑒𝑥𝑝𝑙 , 𝑤𝑃,𝑒𝑥𝑝𝑙(𝐿𝑆)), where the weight 

attributed to the instruction is likelihood-dependent. Despite its plausibility, such an implementation 

drastically increases the complexity of the model, since it comprises 9 free parameters (instead of 𝑤𝑃  , 

we now have [𝑤𝑃,𝑖𝑚𝑝𝑙 , 𝑤𝑃,𝑒𝑥𝑝𝑙 (𝐿𝑆,𝑎𝑚𝑏), 𝑤𝑃,𝑒𝑥𝑝𝑙(𝐿𝑆,𝑆𝑡𝑟), 𝑤𝑃,𝑒𝑥𝑝𝑙(𝐿𝑆,𝑤𝑒𝑎𝑘)]). M4: WB model in which the 

instructions directly affect the reliability of the visual cue. The observed interaction between visual 

cues and priors could be explained by assuming that the instructions do not act as a prior but instead 

change the reliability of the sensory evidence. In our framework, such an interpretation could be 

implemented as follows: 𝐿𝑅𝑃 = 𝐹(𝐿𝑆 , 𝑤𝑆(𝐼𝑛𝑠𝑡𝑟)) + 𝐹(𝐿𝑖𝑚𝑝𝑙 , 𝑤𝑃 ), where the sensory weight depends on 

the instructions. This model comprises 7 free parameters. M5 - M6: Models (NB, WB) with 

asymmetrical instructions. In the Main Text we made the assumption that instructions are 

symmetrical (𝐿𝑒𝑥𝑝𝑙,𝑆𝐹𝐴 = −𝐿𝑒𝑥𝑝𝑙,𝑆𝐹𝐵). As a control, we also fitted models with asymmetrical instructions 

(different free parameters for SFA and SFB instructions). M7 – M8: Models (NB, WB) with a Softmax 

decision criterion (parameter 𝛽 was fixed across groups). M9: WB with Softmax, with different 𝜷 

parameters across groups (4 additional free parameters). It is worth noting that if instructions (and 

tilting) had an effect on 𝛽, the interaction could exist even without circularity. A NB model (with Softmax; 

different 𝛽)outperformed a CI model using Probability Matching (our baseline model in this study), but 

not more complex CI models (with Softmax etc. – not shown here). 


