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Computational Modeling 

 

 The 3 models discussed in the Main Text (Naïve Bayes, Weighted Bayes and Circular 

Inference) were first introduced in this form in a previous study (Jardri, Duverne, Litvinova, & Denève, 

2017). They assume that the brain is an “inference machine” whose goal is to combine new sensory 

information (sensory inputs) with accumulated knowledge from past experiences (priors) to make 

optimal predictions about the state of the world (Knill & Richards, 1996; Von Helmholtz, 1866) (optimality 

is not always achieved; see for example (Drugowitsch, Wyart, Devauchelle, & Koechlin, 2016) and the 

present CI model). Those inferences are largely based on internal, hierarchical representations of the 

causal structure of the world, which are called generative models (see for example Figure 3A in the 

Main Text). Generative models describe different hypotheses about the causes of the sensory input 

(bottom level). Higher levels correspond to more abstract and complex causes/variables.  

 The 3 models presented here describe different ways to implement hierarchical inference (or 

different ways to combine sensory inputs and priors). All are based on a powerful and general message-

passing algorithm called Belief Propagation (BP; Bishop, 2006): Probabilistic messages are 

propagated locally between connected variables (nodes) in both directions, while posterior probabilities 

are computed by integrating all the available (at each level) information (the details are described in 

various textbooks). BP in a pairwise graph (all the variables have 1 parent at most) with binary variables 

is formalized using the following equations (see Supplementary Materials in (Jardri & Denève, 2013) 

for a detailed derivation):       

 

𝐿𝑖 =  ∑ 𝑀𝑗→𝑖                                                                                                                                          (𝑆1)

𝑗

 

𝑀𝑗→𝑖 =  𝐹(𝐿𝑗 − 𝑀𝑖→𝑗, 𝑤𝑗𝑖
1 , 𝑤𝑗𝑖

0)                                                                                                           (𝑆2) 

 

𝛭𝑗→𝑖 is the probabilistic message from node j to node i (expressed as a log-ratio) and 𝐿𝑖 is the belief 

(log-posterior ratio) about node (variable) i. 𝐹() on the other hand corresponds to a sigmoid function that 

is defined as follows: 
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𝐹(𝐿, 𝑤1 , 𝑤0)  =  𝑙𝑜𝑔 (
𝑤1𝑒𝐿  + 𝑤0

(1 −  𝑤1)𝑒𝐿  + (1 −  𝑤0)
)                                                                           (𝑆3) 

 

𝑤𝑗𝑖
1 and 𝑤𝑗𝑖

0 correspond to the strength of the (𝑗 → 𝑖) connection and are defined as the following 

conditional probabilities: 

 

𝑤𝑗𝑖
1  =  𝑃(𝑥𝑖  =  1|𝑥𝑗  =  1), 𝑤𝑗𝑖

0  =  𝑃(𝑥𝑖  =  1|𝑥𝑗 =  0)                                                                        (𝑆4) 

 

and are equivalent to 𝑤𝑃  (when j is above i) and 𝑤𝑆 (when j is below i), which are used in the Main Text. 

Thus, this algorithm distinguishes between information (expressed in the form of the beliefs 𝐿) and the 

reliability of this information (the weights 𝑤). Strong evidence that is not trusted (as in the case of the 

disambiguated Necker cube; see also Supplementary Figure S1B and C) may exert a weaker effect 

on inferences compared to weak information that is highly trusted (e.g., a blurred image of a Necker 

cube in which some of the edges are missing and consequently it’s compatible only with one 

interpretation). 

 NB and WB models are directly derived from equations S1 and S2, when assuming a generative 

model with 3 levels (variables), in which level 1 (bottom level) and level 3 (top level) correspond to 

observed variables (in our case, the visual cues and IB/Instructions, respectively) while level 2 (middle 

level) corresponds to a latent (unobserved) variable (the variable whose value we are trying to infer, 

namely, the interpretation of the cube). A graphical description of this generative model is presented in 

Figure 3A. Because top and bottom variables are observed, no messages are sent from the middle 

variable to them (𝑀2→3 = 𝑀2→1 =  0). Consequently, the belief about the 3D interpretation is expressed 

in the following equation: 

 

𝐿2 = 𝑀1→2 + 𝑀3→2 = 

          𝐹(𝐿1, 𝑤𝑆)  +  𝐹(𝐿3, 𝑤𝑃)  =  𝐹(𝐿𝑆, 𝑤𝑆)  +  𝐹(𝐿𝑚𝑝𝑙  +  𝐿𝑒𝑥𝑝𝑙 , 𝑤𝑃)              (𝑆5)                               

 

where 𝑤𝑃
1  =  1 −  𝑤𝑃

0 and 𝑤𝑆
1  =  1 − 𝑤𝑆

0. 

Equation S5 corresponds to the WB model and is based on the assumption  that the brain uses 

probability matching to make decisions based on posterior probabilities (𝐿𝑅𝑃 = 𝐿2) (see the next section 

for a similar derivation of the more general case of a Softmax decision criterion).  

  In the NB model, the 2 weights are equal to 1. Thus, the information is perfectly trusted. 

Replacing 𝑤 = 1 in equation S3, we obtain the following formula: 
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𝐹(𝐿, 1,0)  =  𝑙𝑜𝑔(𝑒𝐿)  =  𝐿                                                                                                                    (𝑆6) 

 

Equation S6 shows that the model becomes linear in the case of very reliable information. By 

incorporating equation S6 into equation S5 we obtain the NB equation that was presented in the Main 

Text: 

 

𝐿2 = 𝐿𝑆 +  𝐿𝑖𝑚𝑝𝑙 +  𝐿𝑒𝑥𝑝𝑙                                                                                                                   (𝑆7)    

 

Notably, equation S7 is the Bayes theorem expressed in log-ratios, indicating that when 𝑤 = 1, the 

hierarchy is reduced to a single connection. 

 According to equation S2, messages (and consequently beliefs) depend not on beliefs of 

neighboring nodes per se, but on a rectified version of those beliefs (belief minus the message sent in 

the opposite direction). This rectification is crucial. Without it (or when it’s partial), information has the 

tendency to be counted multiple times (Figure 3B), a form of suboptimal inference called CI (see 

(Deneve & Jardri, 2016; Jardri & Denève, 2013; Leptourgos, Denève, & Jardri, 2017) for more details). 

In CI, beliefs are computed using eq. (𝑆1), while messages adopt the following form (Jardri & Denève, 

2013): 

𝑀𝑗→𝑖 =  𝐹(𝐿𝑗  −  𝑎𝑀𝑖→𝑗 , 𝑤𝑗𝑖
1 , 𝑤𝑗𝑖

0)                                                                                                        (𝑆8) 

 

in which 𝑎 has values ranging from 0 (no correction) to 1 (optimal inference, as in eq. S2). 

 In CI, beliefs (and messages) are calculated recursively (using eqs. S1 and S8), but these 

schemes are unable to be reduced to a simple equation, similar to eq. S5 (WB) or S7 (NB). For that 

reason, in our previous study, we considered an approximation of the CI algorithm, which is written as 

follows (Jardri et al., 2017): 

 

𝐿2 =  𝐹(𝐿1 +  𝐹(𝑎𝑆𝐿1, 𝑤𝑆)  +  𝐹(𝑎𝑃𝐿3, 𝑤𝑃), 𝑤𝑆) 

     +  𝐹(𝐿3  +  𝐹(𝑎𝑆𝐿1, 𝑤𝑆)  +  𝐹(𝑎𝑃𝐿3 , 𝑤𝑃), 𝑤𝑃)  =  𝑆 +  𝑃                                                             (𝑆9)  

 

𝑎𝑆 and 𝑎𝑃 represent the amount of overcounting of information (sensory inputs and priors, respectively) 

and can have any positive value (in the Main Text, the 2 terms are taken equal to 1). Equation S9 is 

structurally similar to eq. S5. The belief in level 2 is the sum of 2 non-linear terms, a sensory term (S) 

and a prior term (P). In contrast to eq. S5, both S and P also contain 2 additional terms, one that depends 
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on the belief of the level below (𝐿1) and another that depends on the belief of the level above (𝐿3). Those 

terms correspond to the reverberations (and reverberations of the reverberations) of information that 

result from the insufficient control of the propagated messages. Sensory inputs penetrate into and 

corrupt the feedback stream (the opposite for priors), resulting in aberrant correlations between sensory 

and prior effects (Figure 3C). Overall, eq. S9 maintains the main qualitative characteristics of CI (i.e., 

the amplification of information and the aberrant correlations between sensory inputs and priors), while 

it also contains a minimal number of free parameters. 

 

 

Softmax Decision Criterion 

 

 In the case of the Softmax Decision Criterion, the probability of choosing the SFA (or SFB) 

interpretation is given by the following equations: 

𝑃(�̂� = 𝑆𝐹𝐴) =
𝑒𝛽𝐿2

1 + 𝑒𝛽𝐿2
                                                                                                                 (𝑆10) 

𝑃(�̂� = 𝑆𝐹𝐵) =
1

1 + 𝑒𝛽𝐿2
                                                                                                                 (𝑆11) 

 

where 𝛽 is the temperature and controls the steepness of the curve (𝛽 = 1 corresponds to probability 

matching). 

Because RP is by definition equal to 𝑃(�̂� = 𝑆𝐹𝐴), we get: 

 

𝐿𝑅𝑃 = log (
𝑅𝑃

1 − 𝑅𝑃
) = log(𝑒𝛽𝐿2) = 𝛽𝐿2                                                                                     (𝑆12) 

 

As a result, the 3 models (NB, WB and CI respectively) are written as follows:  

 

𝐿𝑅𝑃 = 𝛽(𝐿𝑆 + 𝐿𝑖𝑚𝑝𝑙 + 𝐿𝑒𝑥𝑝𝑙)                                                                                                         (𝑆13) 

𝐿𝑅𝑃 = 𝛽 (𝐹(𝐿𝑆, 𝑤𝑆) + 𝐹(𝐿𝑖𝑚𝑝𝑙 + 𝐿𝑒𝑥𝑝𝑙 , 𝑤𝑃))                                                                            (𝑆14) 

𝐿𝑅𝑃 = 𝛽(𝐹(𝐿𝑆 + 𝐹(𝐿𝑆, 𝑤𝑆) + 𝐹(𝐿𝑃𝑟 , 𝑤𝑃), 𝑤𝑆)

+  𝐹(𝐿𝑃𝑟 + 𝐹(𝐿𝑆, 𝑤𝑆) + 𝐹(𝐿𝑃𝑟 , 𝑤𝑃), 𝑤𝑃))                                                        (𝑆15) 

 

Although a Softmax criterion can generate curves with slopes larger than 1, it cannot generate cue-prior 

interactions (see Supplementary Figure S2). 
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