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A Asymptotic theory and proofs

In this section, we provide proofs for the results stated in Section 5 of the main paper.
We first present proofs for consistency and normality for the ordinary calibration, and
then for risk-set calibration. The proofs for the RSC estimator are similar to those
of the OC estimator, and are included here for completeness.

A.1 Ordinary calibration

We first show that θ̂ → θ?. We repeat the notions from Section 5 of the main
paper and add more notations. Denote νθ,ηi (t) = EPη [exp(βXi(t))|Git] and ν0

i (t) =
EP0 [exp(β0Xi(t))|Git], where for any η, EPη is the expectation under the PH model
for V , Equation (4.7) in the main paper, and EP0 is the expectation under the true
distribution. Denote also

S(m)(θ,η, t) =
1

n

n∑
i=1

[
Yi(t) exp(γTZi)ν

θ,η
i (t)ai(θ,η, t)

⊗m
]

s(m)(θ,η, t) = E[S(m)(θ,η, t)]

s(m)(η, t) = E

[
1

n

n∑
i=1

(
Yi(t)λ0(t) exp(γT0Zi)ν

0
i (t)ai(θ,η, t)

⊗m
)]

where ai(θ,η, t) =

(
exp(β)Pη [Xi(t)=1|Git]

1+(exp(β)−1)Pη [Xi(t)=1|Git]
Zi

)
and where for any vector x, x⊗0 =

1,x⊗1 = x, and x⊗2 = xxT . Observe that λ0(t) exp(γT0Zi)ν
0
i (t) is the true hazard

function (conditionally on Git). Define also uGθ(θ;η) =
τ∫
0

s(1)(η, t)dt−
τ∫
0

s(1)(θ,η,t)

s(0)(θ,η,t)
s(0)(η, t)dt,
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and let IGθ(θ,η) = ∇θuGθ(θ;η) and IGη(θ,η) = ∇ηuGθ(θ;η). We impose the following
standard regularity assumptions:

(A1) The number of knots K does not grow with the sample size n.

(A2) η̂
p−→ η?, for some η?.

(A3) s(m)(θ,η, t),m = 0, 1, 2 are continuous and bounded functions of θ, for any θ
and η in the neighborhoods Θ and H of θ? and η?, respectively, and for all
t ∈ [0, τ ]. Furthermore, s(0)(θ?,η?, t) is bounded away from zero.

(A4) The components of Zi are bounded for all i.

(A5) The matrix IGθ(θ,η?) is continuous in θ and positive definite at θ?.

Assumption (A1) could be relaxed, see Wang et al. (2016). But for simplicity, we
consider (A1) as given above. By the Weak Law of Large Numbers,

supt∈[0,τ ],θ∈Θ,η∈H |S(m)(θ,η, t)− s(m)(θ,η, t)| p−→ 0.
By the assumptions above and using arguments similar to those of Andersen &

Gill (1982) as implemented by Lin & Wei (1989), it follows that for any θ ∈ Θ and

η ∈ H, UGθ(θ;η)
p−→ uGθ(θ;η). Recall that θ̂ is the solution of UG(θ; η̂) = 0 and

observe that

UGθ(θ; η̂) = UGθ(θ;η?) + (UGθ(θ; η̂)−UGθ(θ;η?)) = UGθ(θ;η?) + op(1)

where the last equality holds by Assumption (A2) and since ai is bounded for finite
values of β. Let θ? be the solution of uGθ(θ;η?) = 0. By the assumptions above, and

specifically Assumption (A5), θ̂
p−→ θ?. In particular, β̂

p−→ β?.
Regrading asymptotic normally, by a Taylor expansion

0 = UGθ(θ̂; η̂) = UGθ(θ?;η?)+[∇θUGθ(θ?;η?)](θ̂−θ?)+[∇ηUGθ(θ?;η?)](η̂−η?)+op(n−1/2)

which can be rearranged as
√
n(θ̂− θ?) = [−∇θUGθ(θ?;η?)]−1

√
n{UGθ(θ?;η?) + [∇ηUGθ(θ?;η?)(η̂−η?)]}+ op(1).

(1)
Similarly to Andersen & Gill (1982) and Lin & Wei (1989), by the assumptions given

above,∇θUGθ(θ?;η?)
p−→ IGθ(θ?,η?), and by invoking similar arguments∇ηUGθ(θ?;η?)

p−→
IGη(θ?,η?). Let N (t) = E[n−1

∑n
i=1Ni(t)]. By arguments similar to those of Lin &

Wei (1989), it can be shown that n1/2UGθ(θ?;η?) = n−1/2
n∑
i=1

bi(θ
?;η?) + op(1), where

bi(θ;η) =

τ∫
0

[
ai(θ,η, t)−

s(1)(θ,η, t)

s(0)(θ,η, t)

]
dNi(t)

−
∫ ∞

0

Yi(t) exp(γTZi)ν
θ,η
i (t)

s(0)(θ,η, t)

[
ai(θ,η, t)−

s(1)(θ,η, t)

s(0)(θ,η, t)

]
dN (t) + op(1).
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Regarding (η̂ − η?), by Assumption (A1), it is a finite-size vector, and as explained
in Wang et al. (2016), it can be treated with the standard tools for parametric mod-
els. Denote `V = logLV . By further incorporating standard theory of misspecified
likelihood-based models and Assumption (A2), we may write

√
n(η̂ − η?) = −

(
1

n

n∑
i=1

∇ηη`Vi (η?)

)−1(
1√
n

n∑
i=1

∇η`Vi (η?)

)
+ op(1).

Substituting this in (1), we get

√
n(θ̂ − θ?) = [−∇θUGθ(θ?;η?)]−1

(
1√
n

n∑
i=1

ri(θ
?,η?)

)
+ op(1)

where

ri(θ,η) = bi(θ,η)− [∇ηUGθ(θ;η)]

(
1

n

n∑
j=1

∇ηη`Vj (η)

)−1

∇η`Vi (η).

Therefore, by the multivariate central limit theorem and Slutsky’s theorem, we con-
clude that

√
n(θ̂−θ?) is asymptotically normally distributed with covariance matrix

[IGθ(θ?,η?)]−1E(ri(θ
?,η?)⊗2)[IGθ(θ?,η?)]−1

which can be consistently estimated by V̂ in Equation (5.8) in the main text, by
replacing parameters with their estimates and expectations with their corresponding
sample version.

A.2 Risk-set calibration

We start by introducing additional relevant notations. Let t?1, ..., t
?
H be the ordered

H event times observed in the data and let η̃ = (η̃(t1), η̃(t2), ...η̃(tH)) be the vec-
tor of the time-dependent calibration parameters. At each observed event time t?,

η̃(t?) is estimated by maximizing the log-likelihood
n∑
i=1

Yi(t
?)`Vi (η̃(t?)). Denote also

νF ,θ,η̃i (t) = EPη̃
[exp(βXi(t))|Fit] and νF ,0i (t) = EP0 [exp(β0Xi(t))|Fit] which are anal-

ogous to νθ,ηi (t) and ν0
i (t) in the theory for the OC estimator.

The RSC estimator maximizes LF(θ, ˆ̃η), or alternatively, solves the estimating
equation UF(θ, ˆ̃η) = 0 where

UF(θ; η̃) =
1

n

n∑
i=1

τ∫
0

[
ãi(θ, η̃(t), t)− S̃

(1)
(θ, η̃(t), t)

S̃(0)(θ, η̃(t), t)

]
dNi(t)
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with

S̃
(m)

(θ, η̃(t), t) =
1

n

n∑
i=1

[
Yi(t) exp(γTZi)ν

F ,θ,η̃(t)
i (t)ãi(θ, η̃(t), t)⊗m

]
s̃(m)(θ, η̃(t), t) = E[S̃

(m)
(θ, η̃(t), t)]

s̃
(m)

(η̃(t), t) = E

[
1

n

n∑
i=1

(
Yi(t)λ0(t) exp(γT0Zi)ν

F ,0
i (t)ãi(θ, η̃(t), t)⊗m

)]

and ãi(θ, η̃(t), t) =

(
exp(β)Pη̃(t)[Xi(t)=1|Fit]

1+(exp(β)−1)Pη̃(t)[Xi(t)=1|Fit]

Zi

)
. Similarly to the OC case, λ0(t) exp(γT0Zi)ν

F ,0
i (t)

is the true hazard function (conditionally on Fit). Define also uFθ (θ; η̃) =
τ∫
0

s̃(1)(η̃(t), t)dt−
τ∫
0

s̃(1)(θ,η̃(t),t)

s̃(0)(θ,η̃(t),t)
s̃(0)(η̃(t), t)dt, and let IFθ (θ, η̃) = ∇θuFθ (θ; η̃) and IFη̃ (θ, η̃) = ∇η̃uFθ (θ; η̃).

The regularity assumptions are slightly adjusted:

(Ã1) The number of knots K does not grow with the sample size n.

(Ã2) ˆ̃η
p−→ η̃?, for some η̃?.

(Ã3) s̃(m)(θ, η̃(t), t),m = 0, 1, 2 are continuous and bounded functions of θ, for any
θ and η̃ in the neighborhoods Θ and H̃ of θ? and η̃?, respectively, and for all
t ∈ [0, τ ]. Furthermore, s̃(0)(θ?,η?, t) is bounded away from zero.

(Ã4) The components of Zi are bounded for all i.

(Ã5) The matrix IFθ (θ, η̃?) is continuous in θ and positive definite at θ?.

As before, Assumption (Ã1) could be relaxed, see Wang et al. (2016). By the Weak
Law of Large Numbers,

sup
t∈[0,τ ],θ∈Θ,η∈H

|S̃(m)
(θ, η̃(t), t)− s̃(m)(θ, η̃(t), t)| p−→ 0.

By the assumptions above and using arguments similar to those of Andersen & Gill
(1982) as implemented by Lin & Wei (1989), it follows that for any θ ∈ Θ and η̃ ∈ H̃,

UFθ (θ; η̃)
p−→ uFθ (θ; η̃). Recall that θ̂ is the solution of UF(θ; ˆ̃η) = 0 and observe that

UFθ (θ; ˆ̃η) = UFθ (θ; η̃?) + (UFθ (θ; ˆ̃η)−UFθ (θ; η̃?)) = UFθ (θ; η̃?) + op(1)

where the last equality holds by Assumption (Ã2) and since ãi is bounded for finite
values of β. Let θ? be the solution of uFθ (θ; η̃?) = 0. By the assumptions above, and

specifically Assumption (Ã5), θ̂
p−→ θ?. In particular, β̂

p−→ β?.
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Regrading asymptotic normally, by a Taylor expansion

0 = UFθ (θ̂; ˆ̃̃η) = UFθ (θ?; η̃?)+[∇θUFθ (θ?; η̃?)](θ̂−θ?)+[∇η̃UFθ (θ?; η̃?)](ˆ̃η−η̃?)+op(n−1/2)

which can be rearranged as

√
n(θ̂−θ?) = [−∇θUFθ (θ?; η̃?)]−1

√
n{UFθ (θ?; η̃?)+ [∇η̃UFθ (θ?; η̃?)(ˆ̃η− η̃?)]}+op(1).

(2)
Similarly to Andersen & Gill (1982) and Lin & Wei (1989), by the assumptions given

above,∇θUFθ (θ?; η̃?)
p−→ IFθ (θ?, η̃?), and by invoking similar arguments∇η̃UFθ (θ?; η̃?)

p−→
IFη̃ (θ?, η̃?). Let N (t) = E[n−1

∑n
i=1 Ni(t)]. By arguments similar to those of Lin &

Wei (1989), it can be shown that n1/2UFθ (θ?; η̃?) = n−1/2
n∑
i=1

bi(θ
?; η̃?) + op(1), where

bi(θ; η̃) =

τ∫
0

[
ãi(θ, η̃(t), t)− s̃

(1)(θ, η̃(t), t)

s̃(0)(θ, η̃(t), t)

]
dNi(t)

−
∫ ∞

0

Yi(t) exp(γTZi)ν
F ,θ,η̃
i (t)

s̃(0)(θ, η̃(t), t)

[
ãi(θ, η̃(t), t)− s̃

(1)(θ, η̃(t), t)

s̃(0)(θ, η̃(t), t)

]
dN (t) + op(1).

Regarding (ˆ̃η − η̃?), by Assumption (Ã1), it is a finite-size vector, and as explained
in Wang et al. (2016), it can be treated with the standard tools for parametric mod-
els. Denote `V = logLV . By further incorporating standard theory of misspecified
likelihood-based models and Assumption (Ã2), we may write

√
n(ˆ̃η − η̃?) = −

(
1

n

n∑
i=1

∇η̃η̃`Vi (η̃?)

)−1(
1√
n

n∑
i=1

∇η̃`Vi (η̃?)

)
+ op(1).

Substituting this into (2), we get

√
n(θ̂ − θ?) = [−∇θUFθ (θ?; η̃?)]−1

(
1√
n

n∑
i=1

ri(θ
?, η̃?)

)
+ op(1)

where

ri(θ, η̃) = bi(θ, η̃)− [∇η̃UFθ (θ; η̃)]

(
1

n

n∑
j=1

∇η̃η̃`Vj (η̃)

)−1

∇η̃`Vi (η̃).

Therefore, by the multivariate central limit theorem and Slutsky’s theorem, we con-
clude that

√
n(θ̂−θ?) is asymptotically normally distributed with covariance matrix

[IFθ (θ?, η̃?)]−1E(ri(θ
?, η̃?)⊗2)[IFθ (θ?, η̃?)]−1
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which can be consistently estimated by

̂̃V = [−∇θUFθ (θ̂RSC , ˆ̃η)]−1

(
1

n

n∑
i=1

r̂i(θ̂RSC , ˆ̃η)r̂Ti (θ̂RSC , ˆ̃η)

)
[−∇θUGθ(θ̂RSC , ˆ̃η)]−1

and replacing parameters with their estimates and expectations with their corre-
sponding sample version.

B Description of the R package ICcalib

In this section, we describe the ICcalib R package and how to use it. Details on
function arguments, returns and syntax are given in the package manual (CRAN or
Github). The functions and scripts that were used in the simulation studies and data
analysis demonstrate how to use the package. In its current version (version 1.0.5)

the ICcalib carries out the analysis by the following steps:

1. Fit a calibration model from the interval-censored data about the binary expo-
sure. The names of these functions start with FitCalib and continues with the
name of the model.

• FitCalibCox fits a PH calibration model (with covariates).

• FitCalibWeibull fits a Weibull calibration model.

• FitCalibNPMLE fits a non-parametric calibration model.

2. Calculate P̂ (Xi(t) = 1|Git) for all i = 1, ..., n and all t for which a main event
was observed. This step is carried out by looping over the event times, and use
one of the following functions to calculate P̂ (Xi(t) = 1|Git).

• CalcCoxCalibP calculates the probability using the results of a PH cali-
bration model fitting (with covariates).

• CalcWeibullCalibP calculates the probability using the results of a Weibull
calibration model fitting.

• CalcNpmleCalibP calculates the probability using the results of a non-
parametric calibration model fitting.

3. Obtain estimates by maximizing the partial likelihood given in Equation (4.3)
of the main paper, using the functions CoxLogLikX or CoxLogLik, the former
when there are no additional covariates in the main model (i.e., no Z) and the
latter in the presence of such covariates.

4. For variance calculation and inference:
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• For PH calibration models, first the function CalcCoxCalibPderiv is called
in a similar manner to CalcCoxCalibP. Then, the function CalcVarParam

calculates the covariance matrix.

• For Weibull calibration models, first the functions CalcWeibullCalibPderivShape
and CalcWeibullCalibPderivScale are called. Then, the function CalcVarThetaWeib

returns the covariance matrix.

• For non-parametric calibration models the bootstrap is used for inference.

Similar procedures can be implemented with modified functions for risk-set calibra-
tions. Please see the package manual and the reproducibility repository ICcalibRe-
produce for details and examples.

C Additional simulation studies

In this section, we present additional results of the simulation study discussed in the
main paper, and description and results of further simulation studies, for when there
are no baseline covariates, and the calibration model is fitted nonparametrically or
parametrically. Table A.2 presents results of the study described in the paper, under
additional scenarios. It extends Table 1 in the main paper by (a) including the MidI
method, (b) considering additional values for β (log(1/7), log(1/5) and log(1/2) and
(c) considering a larger number of potential questionnaire time points (M? = 10).

We also considered a simulation study when the true distribution of V does not
depend on any covariates. Two scenarios were examined: Weibull distribution, and
piecewise exponential distribution. The exact parameter values that were used can
be found in the accompanied R code. We compared between the following methods:
LVCF, MidI, parametric Weibull calibration (WB-OC) and risk-set calibration models
(WB-RSC), and nonparametric calibration (NP-OC) and risk-set calibration models
(NP-RSC). Under the piecewise exponential scenario, using Weibull calibration (or
risk-set calibration) model results in misspecification of the calibration model. We
considered the following values for exp(β0): 0.2, 0.5, 1, 2, 5 and M? = 2, 5, 10 similar
to the main simulation study described in the paper. For the Weibull-based methods,
variance was estimated by the asymptotic variance formula with plugged-in estimates
and confidence intervals were calculated according to the asymptotic normal distri-
bution. For the nonparametric calibration and risk-calibration models, the bootstrap
(with 200 iterations) was used for variance estimation and construction of confidence
intervals. Values of exp(β̂) larger than 150 or smaller than 150−1 were excluded from
the summary, details are available in the R code.

The results, presented in Table A.3, generally agreed with the main simulation
study, which had a PH model for V . In all methods, the bias increased as β0 was
getting away from zero. The MidI method was the only method to produce biased
estimates when β0 = 0. For all β0 values, The bias was attenuated for large M?
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values. The bias of the naive methods was more substantial than the bias of the
calibration methods. For large values of |β0|, the risk-set calibration methods were
less biased than the ordinary calibration methods. The nonparametric calibration
methods performed close to the Weibull-based methods under Weibull distribution for
V , and showed some improvement of the Weibull calibration methods under piecewise
exponential distribution. The difference between the results presented in Tables 1 and
A.2 compared to the results in Table A.3 is that the former present the results when
the data were simulated with the distribution of V depending on covariates and the
latter presents the results when data were simulated without any covariates affecting
the distribution of V (i.e., ψ = 0).
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D Analysis of CMV data

We thank Dr. Dianne Finkelstein for making the data available and direct us where
it could be found. The data were made available by Finkelstein et al. (2002), and
downloaded as a zip file named interval censr data.zip from http://hedwig.

mgh.harvard.edu/biostatistics/node/32. The cmvshedDN.sas read the data and
export it into a cmvshed.csv file. The included SAS file cmvshedDN.sas also contains
the description of the variables in the dataset.

The R file cmvshed.R contains our data analysis. Goggins et al. (1999) reported
results based on N = 212 and 38 events, i.e., 38 diagnosed CMV cases. We identified
n = 221 observations and 37 events in the data, after following exclusion criteria
described in cmvshed.R. Goggins et al. (1999) excluded participants without at least
one urine or blood samples. Our method allows to include these trial participant in
the main model. They do not contribute for the calibration model fitting (they all
have V censored by [0,∞)).

CMV shedding can occur in either blood or urine. Therefore, X(t) could be
defined either using the blood shedding or the urine shedding, which do not occur at
the same time. Following Goggins et al. (1999), we present two separate analyses,
namely for X(t) defined as CMV urine shedding and CMV blood shedding.

The available data contain only [wiL, wiR) for each study participant and unlike
the aspirin and CRC data, it does not include the time points in which measurements
were taken before WiL. Goggins et al. (1999) reported that that urine samples were
taken every 4 weeks and blood samples were taken every 12 weeks. However, we have
decided not to extrapolate beyond the available data, and to use only the data in the
dataset, namely [wiL, wiR).

Table A.4 presents the results of LVCF, MidI, non-parametric calibration (NP-
OC), non-parametric risk-set calibration (NP-RSC) and the results reported by Gog-
gins et al. (1999). The estimated effects are strong, even though the number of events
is low to moderate. We observed a divergence between the OC and RSC estimates,
especially for blood shedding exposure. The confidence intervals (CI) and standard
errors (SE) were calculated by the bootstrap for the NP-OC and NP-RSC, and by
standard software, ignoring the imputation, for LVCF and MidI. The confidence inter-
vals are quite wide, as one may obtain for HR of strong effects dataset with moderate
sample size. The standard errors reported by Goggins et al. (1999) are lower than the
estimated standard errors in the data we used, even for the LVCF and MidI methods.
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Table A.1: Summary of the main variables in the dataset

All Data low CD274 PIK3CA PTGS2
n (No. Events) 1371 (249) 278 (50) 171 (28) 672 (125)

Age at diagnosis: Mean (SD) 69.4 (9.0) 69.4 (9.0) 69.9 (9.0) 68 (8.7)
CRC Stage

I 375 (27%) 74 (27%) 55 (32%) 177 (26%)
II 453 (33%) 99 (36%) 62 (36%) 218 (32%)
III 387 (28%) 74 (27%) 44 (26%) 199 (30%)

Missing 156 (11%) 31 (11%) 10 (6%) 78 (12%)
Pre-diagnosis Aspirin Status

Taking 587 (43%) 118 (42%) 74 (43%) 272 (40%)
Non-taking 784 (57%) 160 (58%) 97 (57%) 400 (60%)

No. Available Questionnaires: Mean (SD) 3 (1.7) 3.1 (1.7) 3.2 (1.7) 3.3 (1.7)
No. Participants with no Questionnaires 113 21 11 47
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Table A.2: . Methods compared are LVCF, MidI, PH calibration model (PH-OC) and PH risk-
set calibration models (PH-RSC). The table presents mean estimates (Mean), empirical standard

deviations (EMP.SE), mean estimated standard errors (ŜE) and empirical coverage rate of 95%
confidence intervals (CP95%) for β.

β0[exp(β0)] M? Method Mean EMP.SE ŜE CP95%
-1.946 2 LVCF -1.658 0.249 0.248 0.761
[0.14] MidI -2.198 0.240 0.244 0.857

PH-OC -2.006 0.269 0.266 0.953
PH-RSC -2.003 0.268 0.266 0.952

5 LVCF -1.848 0.233 0.219 0.901
MidI -2.091 0.227 0.216 0.905

PH-OC -1.968 0.237 0.225 0.938
PH-RSC -1.969 0.237 0.225 0.938

10 LVCF -1.903 0.209 0.211 0.943
MidI -2.034 0.205 0.210 0.947

PH-OC -1.961 0.211 0.214 0.957
PH-RSC -1.962 0.211 0.214 0.957

-1.609 2 LVCF -1.327 0.220 0.217 0.712
[0.20] MidI -1.867 0.206 0.213 0.800

PH-OC -1.638 0.241 0.238 0.953
PH-RSC -1.634 0.240 0.238 0.953

5 LVCF -1.521 0.194 0.195 0.908
MidI -1.771 0.188 0.192 0.897

PH-OC -1.632 0.200 0.202 0.950
PH-RSC -1.633 0.200 0.202 0.951

10 LVCF -1.571 0.192 0.187 0.944
MidI -1.706 0.188 0.185 0.935

PH-OC -1.625 0.195 0.190 0.949
PH-RSC -1.626 0.195 0.190 0.948

-0.693 2 LVCF -0.534 0.162 0.161 0.824
[0.50] MidI -1.081 0.147 0.157 0.279

PH-OC -0.702 0.191 0.193 0.946
PH-RSC -0.701 0.190 0.192 0.949

5 LVCF -0.626 0.142 0.147 0.928
MidI -0.903 0.136 0.143 0.705

PH-OC -0.693 0.152 0.159 0.956
PH-RSC -0.693 0.152 0.158 0.956

10 LVCF -0.666 0.144 0.142 0.938
MidI -0.818 0.139 0.140 0.864

PH-OC -0.699 0.147 0.148 0.949
PH-RSC -0.700 0.147 0.147 0.948
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β0[exp(β0)] M? Method Mean EMP.SE ŜE CP95%
0.000 2 LVCF -0.002 0.141 0.135 0.944
[1.00] MidI -0.554 0.130 0.131 0.011

PH-OC 0.003 0.183 0.178 0.950
PH-RSC 0.004 0.183 0.177 0.952

5 LVCF 0.003 0.122 0.124 0.955
MidI -0.300 0.113 0.121 0.270

PH-OC 0.007 0.138 0.146 0.956
PH-RSC 0.007 0.138 0.142 0.956

10 LVCF -0.004 0.121 0.121 0.960
MidI -0.177 0.116 0.119 0.686

PH-OC -0.003 0.129 0.130 0.954
PH-RSC -0.003 0.129 0.130 0.952

0.693 2 LVCF 0.462 0.119 0.118 0.498
[2.00] MidI -0.097 0.109 0.115 0.000

PH-OC 0.680 0.175 0.179 0.936
PH-RSC 0.684 0.177 0.175 0.938

5 LVCF 0.572 0.107 0.110 0.810
MidI 0.228 0.100 0.107 0.004

PH-OC 0.690 0.132 0.145 0.958
PH-RSC 0.689 0.132 0.137 0.957

10 LVCF 0.627 0.104 0.107 0.910
MidI 0.421 0.099 0.105 0.260

PH-OC 0.694 0.118 0.126 0.962
PH-RSC 0.693 0.117 0.122 0.962

1.609 2 LVCF 0.968 0.110 0.109 0.000
[5.00] MidI 0.368 0.096 0.107 0.000

PH-OC 1.472 0.179 0.210 0.869
PH-RSC 1.516 0.190 0.195 0.897

5 LVCF 1.212 0.096 0.099 0.013
MidI 0.787 0.086 0.097 0.000

PH-OC 1.577 0.139 0.166 0.951
PH-RSC 1.575 0.137 0.151 0.948

10 LVCF 1.365 0.100 0.097 0.277
MidI 1.086 0.092 0.095 0.000

PH-OC 1.598 0.127 0.131 0.949
PH-RSC 1.594 0.125 0.126 0.940

1.946 2 LVCF 1.130 0.112 0.110 0.000
[7.00] MidI 0.501 0.094 0.108 0.000

PH-OC 1.695 0.182 0.230 0.723
PH-RSC 1.773 0.198 0.205 0.816

5 LVCF 1.410 0.097 0.098 0.000
MidI 0.939 0.086 0.096 0.000

PH-OC 1.890 0.148 0.187 0.933
PH-RSC 1.890 0.147 0.158 0.929

10 LVCF 1.600 0.095 0.095 0.050
MidI 1.282 0.087 0.093 0.000

PH-OC 1.927 0.127 0.143 0.946
PH-RSC 1.920 0.124 0.130 0.934
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Table A.3: Simulation study results when the distribution of V does not depend on covariates.
Methods compared are LVCF, MidI, parametric Weibull calibration (WB-OC) and risk-set calibra-
tion models (WB-RSC), and nonparametric calibration (NP-OC) and risk-set calibration models
(NP-RSC). The table presents mean estimates (Mean), empirical standard deviations (EMP.SE),

mean estimated standard errors (ŜE) and empirical coverage rate of 95% confidence intervals
(CP95%) for β.

Weibull distribution for V Piecewise exponential distribution for V
β0

[exp(β0)]
M? Method Mean EMP.SE ŜE CP95% Mean EMP.SE ŜE CP95%

-1.609 2 LVCF -1.495 0.377 0.377 0.917 -1.487 0.407 1.454 0.916
[0.20] MidI -2.130 0.369 0.374 0.819 -2.203 0.396 1.744 0.753

WB-OC -1.659 0.392 0.392 0.972 -1.730 0.433 0.421 0.976
WB-RSC -1.662 0.393 0.393 0.970 -1.731 0.434 0.421 0.972
NP-OC -1.684 0.408 0.445 0.977 -1.708 0.438 0.462 0.973
NP-RSC 1.671 0.405 0.441 0.972 -1.689 0.433 0.458 0.972

5 LVCF -1.572 0.304 0.306 0.946 -1.590 0.325 0.316 0.947
MidI -1.869 0.298 0.304 0.936 -1.899 0.316 0.313 0.916

WB-OC -1.638 0.309 0.312 0.963 -1.677 0.332 0.324 0.959
WB-RSC -1.643 0.310 0.312 0.964 -1.679 0.333 0.325 0.959
NP-OC -1.643 0.312 0.338 0.973 -1.656 0.329 0.346 0.970
NP-RSC -1.640 0.312 0.338 0.976 -1.653 0.328 0.345 0.972

10 LVCF -1.605 0.281 0.287 0.956 -1.612 0.311 0.296 0.946
MidI -1.759 0.277 0.286 0.965 -1.765 0.307 0.294 0.947

WB-OC -1.637 0.283 0.290 0.968 -1.651 0.315 0.299 0.950
WB-RSC -1.640 0.284 0.290 0.969 -1.652 0.315 0.299 0.948
NP-OC -1.637 0.284 0.308 0.975 -1.639 0.313 0.318 0.962
NP-RSC -1.636 0.284 0.308 0.971 -1.638 0.313 0.316 0.961

-0.693 2 LVCF -0.618 0.255 0.254 0.935 -0.619 0.270 0.266 0.928
[0.50] MidI -1.255 0.242 0.250 0.365 -1.338 0.250 0.260 0.239

WB-OC -0.705 0.278 0.278 0.950 -0.745 0.304 0.307 0.950
WB-RSC -0.706 0.279 0.278 0.949 -0.745 0.304 0.307 0.950
NP-OC -0.710 0.285 0.299 0.961 -0.734 0.301 0.320 0.971
NP-RSC -0.703 0.282 0.297 0.955 -0.725 0.298 0.317 0.969

5 LVCF -0.665 0.206 0.211 0.951 -0.659 0.223 0.217 0.932
MidI -0.980 0.198 0.208 0.766 -0.992 0.209 0.213 0.734

WB-OC -0.704 0.213 0.220 0.964 -0.709 0.235 0.230 0.943
WB-RSC -0.706 0.214 0.220 0.964 -0.709 0.235 0.229 0.942
NP-OC -0.704 0.215 0.227 0.968 -0.698 0.231 0.233 0.947
NP-RSC -0.703 0.215 0.227 0.968 -0.696 0.231 0.233 0.945

10 LVCF -0.682 0.201 0.198 0.945 -0.676 0.196 0.203 0.968
MidI -0.848 0.196 0.196 0.901 -0.845 0.189 0.201 0.925

WB-OC -0.701 0.205 0.202 0.940 -0.699 0.201 0.209 0.964
WB-RSC -0.703 0.206 0.202 0.940 -0.699 0.201 0.209 0.964
NP-OC -0.701 0.206 0.206 0.945 -0.692 0.199 0.212 0.966
NP-RSC -0.699 0.206 0.207 0.948 -0.691 0.199 0.211 0.971
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Weibull distribution for V Piecewise exponential distribution for V
β0

[exp(β0)]
M? Method Mean EMP.SE ŜE CP95% Mean EMP.SE ŜE CP95%

0.000 2 LVCF -0.023 0.206 0.204 0.951 -0.008 0.211 0.212 0.953
[1.00] MidI -0.667 0.190 0.200 0.039 -0.733 0.192 0.206 0.022

WB-OC -0.020 0.235 0.234 0.956 0.003 0.253 0.261 0.951
WB-RSC -0.020 0.235 0.234 0.956 0.003 0.252 0.260 0.952
NP-OC -0.021 0.241 0.244 0.960 0.003 0.247 0.262 0.966
NP-RSC -0.019 0.242 0.244 0.960 0.006 0.247 0.262 0.956

5 LVCF -0.003 0.169 0.168 0.958 -0.003 0.170 0.174 0.952
MidI -0.341 0.158 0.166 0.472 -0.366 0.156 0.170 0.415

WB-OC -0.003 0.180 0.180 0.962 -0.003 0.185 0.191 0.961
WB-RSC -0.003 0.181 0.180 0.961 -0.003 0.184 0.190 0.960
NP-OC -0.001 0.181 0.183 0.953 0.000 0.181 0.190 0.955
NP-RSC -0.000 0.181 0.183 0.952 0.001 0.181 0.190 0.956

10 LVCF -0.006 0.162 0.158 0.952 0.005 0.167 0.163 0.944
MidI -0.190 0.155 0.156 0.798 -0.186 0.159 0.161 0.798

WB-OC -0.006 0.168 0.164 0.952 0.005 0.174 0.171 0.947
WB-RSC -0.006 0.168 0.164 0.952 0.005 0.173 0.170 0.946
NP-OC -0.004 0.168 0.166 0.953 0.007 0.172 0.171 0.952
NP-RSC -0.003 0.168 0.166 0.951 0.008 0.172 0.171 0.945

0.693 2 LVCF 0.567 0.178 0.175 0.906 0.551 0.182 0.182 0.881
[2.00] MidI -0.101 0.157 0.172 0.000 -0.188 0.156 0.177 0.000

WB-OC 0.681 0.209 0.211 0.955 0.703 0.229 0.240 0.952
WB-RSC 0.680 0.209 0.211 0.950 0.695 0.226 0.234 0.953
NP-OC 0.674 0.207 0.215 0.958 0.679 0.220 0.229 0.956
NP-RSC 0.684 0.211 0.219 0.959 0.692 0.229 0.237 0.952

5 LVCF 0.630 0.142 0.143 0.929 0.627 0.151 0.149 0.925
MidI 0.248 0.126 0.140 0.072 0.213 0.135 0.145 0.063

WB-OC 0.689 0.157 0.160 0.956 0.701 0.172 0.170 0.943
WB-RSC 0.686 0.156 0.159 0.956 0.691 0.168 0.167 0.946
NP-OC 0.688 0.156 0.161 0.956 0.691 0.169 0.168 0.945
NP-RSC 0.690 0.157 0.161 0.954 0.693 0.170 0.168 0.947

10 LVCF 0.661 0.131 0.133 0.951 0.652 0.139 0.139 0.946
MidI 0.445 0.122 0.132 0.540 0.425 0.128 0.137 0.500

WB-OC 0.695 0.139 0.142 0.952 0.691 0.148 0.150 0.954
WB-RSC 0.692 0.138 0.142 0.954 0.685 0.146 0.148 0.952
NP-OC 0.696 0.139 0.143 0.955 0.689 0.147 0.149 0.949
NP-RSC 0.697 0.140 0.143 0.951 0.690 0.147 0.150 0.955

1.609 2 LVCF 1.339 0.172 0.171 0.640 1.292 0.181 0.177 0.555
[5.00] MidI 0.534 0.136 0.169 0.000 0.452 0.136 0.174 0.000

WB-OC 1.537 0.206 0.206 0.931 1.549 0.230 0.223 0.935
WB-RSC 1.548 0.213 0.210 0.932 1.529 0.226 0.222 0.936
NP-OC 1.497 0.197 0.203 0.929 1.491 0.211 0.214 0.920
NP-RSC 1.554 0.218 0.223 0.952 1.562 0.241 0.240 0.944

5 LVCF 1.444 0.131 0.131 0.759 1.396 0.145 0.137 0.667
MidI 0.932 0.103 0.130 0.000 0.852 0.116 0.134 0.000

WB-OC 1.599 0.152 0.154 0.946 1.574 0.173 0.164 0.923
WB-RSC 1.582 0.149 0.152 0.944 1.538 0.165 0.159 0.918
NP-OC 1.578 0.148 0.153 0.945 1.562 0.169 0.163 0.926
NP-RSC 1.591 0.152 0.157 0.949 1.574 0.172 0.167 0.940

10 LVCF 1.502 0.120 0.119 0.852 1.477 0.131 0.125 0.805
MidI 1.192 0.105 0.118 0.040 1.151 0.115 0.123 0.032

WB-OC 1.605 0.136 0.133 0.946 1.591 0.147 0.141 0.938
WB-RSC 1.589 0.132 0.131 0.943 1.561 0.141 0.137 0.929
NP-OC 1.595 0.134 0.133 0.940 1.591 0.146 0.142 0.938
NP-RSC 1.600 0.135 0.134 0.948 1.597 0.147 0.143 0.939
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Table A.4: CMV data analysis results. We compare LVCF, MidI, NP-OC and NP-
RSC. N = 221, 37 events for our data analysis

Urine shedding Blood shedding

Est HR ŜE(Est) CI for HR Est HR ŜE(Est) CI for HR

LVCF 1.52 4.57 0.431 (1.96, 10.64) 2.64 13.95 0.336 (7.25, 27.07)
MidI 1.46 4.31 0.429 (1.86, 9.98) 2.44 11.51 0.333 (5.97, 22.04)

NP-OC 2.07 7.92 0.78 (1.41, 34.68) 2.27 9.69 0.493 (5.28, 39.18)
NP-RSC 2.15 8.61 0.75 (1.42, 29.03) 2.7 14.82 0.547 (6.5, 59.64)

Goggins et al. 1.95 7.03 0.384 (3.31, 14.92) 2.82 16.77 0.257 (11.02, 29.97)
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