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1. Effect of adsorbent dosage

The preliminary experiments of adsorbent dosage was carried out at pH =7, Co =40 mg/L and
contact time of 12 h. The adsorbent dosage was 0.05, 0.08, 0.1, 0.12 and 0.15 g/L, respectively. The
results are shown in the following figure.
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Fig. S1. Effect of adsorbent dosage.

From the above figure, it can be seen that the adsorption capacity of PPy-Fe304/Kaolin for
mercury was reducing with the increase of addition amount. And the adsorption capacity varied
between 220 mg/g and 255 mg/g. The maximum capacity was reached at 0.05 g/L. In addition, it can
be known that the removal rate was increased with the increasing dosage. Comprehensively,
dosage of 0.05 g/L was selected as the optimal preliminary parameter in the subsequent studies.

2. Sample characterizations

The values of surface area (BET) were decided by N2 adsorption-desorption instrument
(Micromeritic TriStarll 3020, Norcross, GA, USA). The morphology was observed by scanning
electron microscope (SEM, FEI, Phenom, Hillsboro, TX, USA) and transmission electron microscopy
(TEM, JEM-2100F, Tokyo, Japan). X-ray Diffraction analysis (XRD, Bruker D8 Advance Bruker,
Karlsruhe, Germany) was applied to investigate the crystallization and phase. Functional groups
were identified by Fourier transform infrared spectrophotometer (FT-IR, Thermo, Nicolet-6700,
Thermo Scientific, Waltham, MA, USA). Magnetic strength was compared by vibrating sample
magnetometer (VSM, Quantum design, PPMS-9, Quantum Design, San Diego, CA, USA). Elements
compositions were confirmed by energy-dispersive spectrometer (EDS) and X-ray photoelectron
spectroscopy (XPS, Thermo Scientific, 250Xi, Thermo Scientific, Waltham, MA, USA). The
concentration of Hg? ions at any time ¢ (min) was quantified using ICP-OES. The solution of
ultrasonic dispersion used an ultrasonicator (SB-5200DT, SCIENTZ, China).



3. SEM-mapping
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Fig. S2. (a) SEM micrograph with X-ray elemental area scanning, (b) EDS mapping of
PPy-FesOs/Kaolin (c) O, (d) N, (e) Si, (f) Al and (g) Fe; (g) distribution of elements.

Table 1. N2 adsorption-desorption isothermal data of samples.

Total pore volume Pore diameter
Samples BET (m?/g)

(cm?/g) (nm)
Kaolin 10.30 0.03 11.53
FesO4/Kaolin 39.92 0.07 6.65
PPy-FesOs/Kaolin ~ 84.19 0.17 8.31
4. XRD

XRD spectra of Kaolin, FesOs/Kaolin and PPy-FesOs/Kaolin are shown in Fig. S3. It can be seen
from the XRD spectrum that the diffraction peaks of kaolin (26 = 26.69°, 34.98°, 35.40°, 35.96°, 36.68°,
37.70°, 68.42°, 39.96°, 54.98° and 62.23°) show the crystallinity of kaolin [1]. In the XRD spectrum of
FesOs/Kaolin, the peaks at 20 of 30.50°, 35.42°, 43.22°, 53.62°, 57.12° and 62.63° can be ascribed to
(220), (311), (400), (422), (511) and (440) of FesOs (JCPDS No. 19-0629) [2]. Compared with
FesOs/Kaolin, the spectrum of PPy-FesOs/Kaolin has a broad peak between 15° and 30°, which may
be caused by the typical characters of the amorphous polymers [3]. Due to the coating of polypyrrole,
the characteristic peak of FesOs/Kaolin is weakened. The above results suggest that polypyrrole is
successfully synthesized onto FesOs/Kaolin.
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Fig. 3. XRD of Kaolin, FesOs/Kaolin, PPy-Fe:Os/Kaolin.

Table S2. Mass percentage of each element in PPy-FesOs/Kaolin.

Name Start B.E. Peak B.E. End B.E. Wt. (%)
Cls 297.98 284.06 279.18 63.9
O1ls 542.18 530.81 525.08 12.8
Si2p 107.38 102.62 96.08 1.3
Al2p 84.98 80.87 65.18 2.5

N 1s 406.98 399.07 392.68 16.9

Fe 2p 739.98 710.4 700.18 2.6




Table S3. CCD matrix and running results obtained by PPy-FesOs/Kaolin.

Variables Response

Std. Run
pH (A) T (B) Co(C) Dosage (D)  (ge)
16 1 8 40 50 0.06 301
2 6 30 50 0.04 185
3 8 30 30 0.04 225
19 4 7 25 40 0.05 245
20 5 7 45 40 0.05 318
22 6 7 35 60 0.05 361
26 7 7 35 40 0.05 287
14 8 8 30 50 0.06 284
7 9 6 40 50 0.04 186
18 10 9 35 40 0.05 274
21 11 7 35 20 0.05 215
24 12 7 35 40 0.07 251
13 13 6 30 50 0.06 217
27 14 7 35 40 0.05 252
9 15 6 30 30 0.06 208
10 16 8 30 30 0.06 235
28 17 7 35 40 0.05 287
8 18 8 40 50 0.04 316
29 19 7 35 40 0.05 281
1 20 6 30 30 0.04 175
17 21 5 35 40 0.05 112
22 8 40 30 0.04 283
6 23 8 30 50 0.04 282
12 24 8 40 30 0.06 268
30 25 7 35 40 0.05 251
11 26 6 40 30 0.06 203
25 27 7 35 40 0.05 253
3 28 6 40 30 0.04 193
15 29 6 40 50 0.06 197
23 30 7 35 40 0.03 231




Table S4. Results of ANOVA of Quadratic mode.

Terms Sum of square df Mean square F-values p-values

Mode 69260.83 14 11626.84 4981 <0.0001 Significant
A-(pH) 36955.19 1 93001.5 37209  <0.0001

B-(T) 1783.82 1 7490.67 1796 <0.0001

C-(C0) 2972.64 1 6800.67 1563 <0.0001

D-(Dosage) 507.40 1 3360.67 510 <0.0001

AB 1438.95 1 3721 1448 <0.0001

AC 1712.47 1 469225 633 <0.0001

AD 629.01 1 1936 252 <0.0001

BC 308.21 1 70225 172.49  <0.0001

BD 509.50 1 1369 126.85 <0.0001

CD 2.46 1 4225 0.149 0.704 Insignificant
A? 15493.46 1 32725.76 1560 <0.0001

B2 1145.90 1 6309.33 1153 <0.0001

C? 4499.61 1 8928.05 4530 <0.0001

D? 3885.31 1 1943.05 3912 <0.0001

Residual 17.88 18 0.99

Lack of Fit 2674.08 10 1.57 5.75 0.069 Insignificant
Pure Error 2.18 8 0.27

Cor Total ~ 69278.72 32




5. Models of adsorption kinetics

Three kinetic models were adopted to fit the experimental data: pseudo-first-order model [Eq.
(S51)], pseudo-second-order model [Eq. (52)] and intra-particle diffusion model [Eq. (S3)].

1
qt = (1_ E)Qe

_ ktog
1+Kk,tq,

t

1

Q = kd-itE +Ci

(ST)

(S2)

(S3)

where, gt (mg/g) represents instantaneous adsorption capacity; ki (min?), k2 (g/mg/min) and kd-i

(min™) are all rate constants; Ci (mg/g) is the boundary layer thickness.

Table S5. Comparison of adsorption capacity of mercury by different adsorbents.

Adsorbents BET (m¥g) pH Fitting models Om (mg/g) Ref.
MGO-PAMAM-G3.0 40.93 3 Langmuir 113.71 [4]
Magnetic FesOs GO 58.6 6 Langmuir 71.3 [5]
CoFe20s—rGO 69.9 4.6  Langmuir 157.9 [6]
Coal based activated carbon 442.3 4 Langmuir 48.9 [7]
CoFe20:@Si0>-NH2 17.08 7 Langmuir 149.3 [8]
Modified nanoporous 1198.4 6 Langmuir 8.9 [9]
N-donor arranged SBA15 7154 2.5 Langmuir 8.8 [10]
Polypyrrole/SBA-15 97.6 8 Langmuir 200 [11]
PPy/SH-Beta/MCM-41 - 8 Freundlich 157.4 [12]
Magnetic CNTs/FesOq 97.163 6.5 Langmuir 65.52 [13]
MBT-GO - 6.9 Langmuir 107.52 [14]
Diatom silica-SH 19.3 6 Langmuir 131.7 [15]
SBA-15-SH 50.94 8 Freundlich 195.6 [16]



Adsorbents BET (m?/g) pH Fitting models Om(mg/g)  Ref.

PPy-FesOs/Kaolin 84.19 7 Langmuir 471.2 This work

6. Adsorption isotherm models
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where, OQm (mg/g) is the maximal single layer adsorption capacity. Kt (L/mg), K¢, gmax (mg/g)

and Kr(L/mg) are Langmuir, Freundlich, Temkin and Dubinin-Radushkevich constants. 1/nr is the
uneven factor. T (K) represents thermodynamic temperature. R is gas constant (8.314 J/mol/K). f is

activity coefficient associated with adsorption energy. Rt is the separation constant of the Langmuir
isotherm model. E (KJ/mol) is the average adsorption free energy.



7. Effect of coexisting ions
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Fig. S4. Effect of coexisting ions (pH =7, Co=40 mg/L, T =273 K, t = 420 min and dosage of 0.05

g/L).

In this experiment, six common types of ions were selected to evaluate the effect of coexisting
ions on the adsorption of mercury ions by PPy-FesOs/Kaolin, which are Na*, K*, Ca%, Cl;, NOs, and
SOs%, respectively. The above six ions are separately added to the mercury solutions whose
concentrations at 40 mg/L and pH = 7. Subsequently, 0.05 g/L of adsorbent was added to the
solution, and the solution was shaken for 7 h at 298 K.

Nature water often contains different ions, which may affect the adsorption of mercury ions by
PPy-FesOs/Kaolin. Thus, three cations (Na*, K*, Ca?*) and three anions (Cl;, NOs, SO4) were used to
study the effect of ions on the adsorption effect.

As can be seen from Fig. S4, with the increasing ion concentration, the ability of
PPy-FesOs/Kaolin to adsorb mercury decreases. Among the three anions, SO« has the greatest
influence on the adsorption performance of PPy-FesOs/Kaolin. When the concentration is 10 mM
and 100 mM, the adsorption capacity of PPy-FesOs/Kaolin for mercury is reduced by 13.7% and
25.4%, respectively, compared with the concentration of 0 mM.

Among the three cations, Ca?" has the greatest influence on the adsorption performance. At a
concentration of 10 mM and 100 mM, the adsorption capacity for mercury is reduced by 15.6% and
33.7%, respectively. This may be because Ca? is bivalent and can occupy two active adsorption
sites.
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8. Model of thermodynamics

AG°=-RTInK, (S10)
0 0
nk, - 25" a8 s

where, Kq is a constant and can be calculated from ge/Ce; AH® and AS° are the slope and intercept of
the InKa vs. 1/T, respectively.
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