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1. Effect of adsorbent dosage 
The preliminary experiments of adsorbent dosage was carried out at pH = 7, C0 = 40 mg/L and 

contact time of 12 h. The adsorbent dosage was 0.05, 0.08, 0.1, 0.12 and 0.15 g/L, respectively. The 

results are shown in the following figure. 

 

Fig. S1. Effect of adsorbent dosage. 

From the above figure, it can be seen that the adsorption capacity of PPy-Fe3O4/Kaolin for 

mercury was reducing with the increase of addition amount. And the adsorption capacity varied 

between 220 mg/g and 255 mg/g. The maximum capacity was reached at 0.05 g/L. In addition, it can 

be known that the removal rate was increased with the increasing dosage. Comprehensively, 

dosage of 0.05 g/L was selected as the optimal preliminary parameter in the subsequent studies. 

2. Sample characterizations 

The values of surface area (BET) were decided by N2 adsorption-desorption instrument 

(Micromeritic TriStarII 3020, Norcross, GA, USA). The morphology was observed by scanning 

electron microscope (SEM, FEI, Phenom, Hillsboro, TX, USA) and transmission electron microscopy 

(TEM, JEM-2100F, Tokyo, Japan). X-ray Diffraction analysis (XRD, Bruker D8 Advance Bruker, 

Karlsruhe, Germany) was applied to investigate the crystallization and phase. Functional groups 

were identified by Fourier transform infrared spectrophotometer (FT-IR, Thermo, Nicolet-6700, 

Thermo Scientific, Waltham, MA, USA). Magnetic strength was compared by vibrating sample 

magnetometer (VSM, Quantum design, PPMS-9, Quantum Design, San Diego, CA, USA). Elements 

compositions were confirmed by energy-dispersive spectrometer (EDS) and X-ray photoelectron 

spectroscopy (XPS, Thermo Scientific, 250Xi, Thermo Scientific, Waltham, MA, USA). The 

concentration of Hg2+ ions at any time t (min) was quantified using ICP-OES. The solution of 

ultrasonic dispersion used an ultrasonicator (SB-5200DT, SCIENTZ, China). 
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3. SEM-mapping 
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Fig. S2. (a) SEM micrograph with X-ray elemental area scanning, (b) EDS mapping of 

PPy-Fe3O4/Kaolin (c) O, (d) N, (e) Si, (f) Al and (g) Fe; (g) distribution of elements. 

 

Table 1. N2 adsorption-desorption isothermal data of samples. 

Samples BET (m2/g) 

Total pore volume 

(cm3/g) 

Pore diameter

（nm） 

Kaolin 10.30 0.03 11.53 

Fe3O4/Kaolin 39.92 0.07 6.65 

PPy-Fe3O4/Kaolin 84.19 0.17 8.31 

 

4. XRD 

XRD spectra of Kaolin, Fe3O4/Kaolin and PPy-Fe3O4/Kaolin are shown in Fig. S3. It can be seen 

from the XRD spectrum that the diffraction peaks of kaolin (2θ = 26.69°, 34.98°, 35.40°, 35.96°, 36.68°, 

37.70°, 68.42°, 39.96°, 54.98° and 62.23°) show the crystallinity of kaolin [1]. In the XRD spectrum of 

Fe3O4/Kaolin, the peaks at 2θ of 30.50°, 35.42°, 43.22°, 53.62°, 57.12° and 62.63° can be ascribed to 

(220), (311), (400), (422), (511) and (440) of Fe3O4 (JCPDS No. 19-0629) [2]. Compared with 

Fe3O4/Kaolin, the spectrum of PPy-Fe3O4/Kaolin has a broad peak between 15° and 30°, which may 

be caused by the typical characters of the amorphous polymers [3]. Due to the coating of polypyrrole, 

the characteristic peak of Fe3O4/Kaolin is weakened. The above results suggest that polypyrrole is 

successfully synthesized onto Fe3O4/Kaolin. 
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Fig. S3. XRD of Kaolin, Fe3O4/Kaolin, PPy-Fe3O4/Kaolin. 

Table S2. Mass percentage of each element in PPy-Fe3O4/Kaolin. 

Name Start B.E. Peak B.E. End B.E. Wt. (%) 

C 1s 297.98 284.06 279.18 63.9 

O 1s 542.18 530.81 525.08 12.8 

Si 2p 107.38 102.62 96.08 1.3 

Al 2p 84.98 80.87 65.18 2.5 

N 1s 406.98 399.07 392.68 16.9 

Fe 2p 739.98 710.4 700.18 2.6 
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Table S3. CCD matrix and running results obtained by PPy-Fe3O4/Kaolin. 

Std. Run 
Variables Response 

pH (A) T (B) C0 (C) Dosage (D) (qe) 

16 1 8 40 50 0.06 301 

5 2 6 30 50 0.04 185 

2 3 8 30 30 0.04 225 

19 4 7 25 40 0.05 245 

20 5 7 45 40 0.05 318 

22 6 7 35 60 0.05 361 

26 7 7 35 40 0.05 287 

14 8 8 30 50 0.06 284 

7 9 6 40 50 0.04 186 

18 10 9 35 40 0.05 274 

21 11 7 35 20 0.05 215 

24 12 7 35 40 0.07 251 

13 13 6 30 50 0.06 217 

27 14 7 35 40 0.05 252 

9 15 6 30 30 0.06 208 

10 16 8 30 30 0.06 235 

28 17 7 35 40 0.05 287 

8 18 8 40 50 0.04 316 

29 19 7 35 40 0.05 281 

1 20 6 30 30 0.04 175 

17 21 5 35 40 0.05 112 

4 22 8 40 30 0.04 283 

6 23 8 30 50 0.04 282 

12 24 8 40 30 0.06 268 

30 25 7 35 40 0.05 251 

11 26 6 40 30 0.06 203 

25 27 7 35 40 0.05 253 

3 28 6 40 30 0.04 193 

15 29 6 40 50 0.06 197 

23 30 7 35 40 0.03 231 

 

 



 

 

Table S4. Results of ANOVA of Quadratic mode. 

Terms Sum of square df Mean square F-values p-values 
 

Mode 69260.83 14 11626.84 4981 < 0.0001 Significant 

A-(pH) 36955.19 1 93001.5 37209 < 0.0001 
 

B-(T) 1783.82 1 7490.67 1796 < 0.0001 
 

C-(C0) 2972.64 1 6800.67 1563 < 0.0001 
 

D-(Dosage) 507.40 1 3360.67 510 < 0.0001 
 

AB 1438.95 1 3721 1448 < 0.0001 
 

AC 1712.47 1 4692.25 633 < 0.0001 
 

AD 629.01 1 1936 252 < 0.0001 
 

BC 308.21 1 702.25 172.49 < 0.0001 
 

BD 509.50 1 1369 126.85 < 0.0001 
 

CD 2.46 1 42.25 0.149 0.704 Insignificant 

A² 15493.46 1 32725.76 1560 < 0.0001 
 

B² 1145.90 1 6309.33 1153 < 0.0001 
 

C² 4499.61 1 8928.05 4530 < 0.0001 
 

D² 3885.31 1 1943.05 3912 < 0.0001 
 

Residual 17.88 18 0.99 
   

Lack of Fit 2674.08 10 1.57 5.75 0.069 Insignificant 

Pure Error 2.18 8 0.27 
   

Cor Total 69278.72 32 
    

 



 

 

5. Models of adsorption kinetics 

Three kinetic models were adopted to fit the experimental data: pseudo-first-order model [Eq. 

(S1)], pseudo-second-order model [Eq. (S2)] and intra-particle diffusion model [Eq. (S3)].
 

1

1
(1 )t ek t

q q
e

                            (S1) 

2

2

21

e
t

e

k tq
q

k tq



                          (S2) 

1

2
t d i iq k t C                            (S3) 

where, qt (mg/g) represents instantaneous adsorption capacity; k1 (min-1), k2 (g/mg/min) and kd-i 

(min-1) are all rate constants; Ci (mg/g) is the boundary layer thickness. 

Table S5. Comparison of adsorption capacity of mercury by different adsorbents. 

Adsorbents BET (m2/g) pH Fitting models Qm (mg/g) Ref. 

MGO-PAMAM-G3.0 40.93 3 Langmuir 113.71 [4] 

Magnetic Fe3O4 GO 58.6 6 Langmuir 71.3 [5] 

CoFe2O4–rGO 69.9 4.6 Langmuir 157.9 [6] 

Coal based activated carbon 442.3 4 Langmuir 48.9 [7] 

CoFe2O4@SiO2–NH2 17.08 7 Langmuir 149.3 [8] 

Modified nanoporous 1198.4 6 Langmuir 8.9 [9] 

N-donor arranged SBA15 715.4 2.5 Langmuir 8.8 [10] 

Polypyrrole/SBA-15 97.6 8 Langmuir 200 [11] 

PPy/SH-Beta/MCM-41 - 8 Freundlich 157.4 [12] 

Magnetic CNTs/Fe3O4 97.163 6.5 Langmuir 65.52 [13] 

MBT-GO - 6.9 Langmuir 107.52 [14] 

Diatom silica-SH 19.3 6 Langmuir 131.7 [15] 

SBA-15-SH 50.94 8 Freundlich 195.6 [16] 



 

 

Adsorbents BET (m2/g) pH Fitting models Qm (mg/g) Ref. 

PPy-Fe3O4/Kaolin 84.19 7 Langmuir 471.2 This work 

 

6. Adsorption isotherm models 
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where, Qm (mg/g) is the maximal single layer adsorption capacity. KL (L/mg), KF, qmax (mg/g) 

and KT (L/mg) are Langmuir, Freundlich, Temkin and Dubinin-Radushkevich constants. 1/nF is the 

uneven factor. T (K) represents thermodynamic temperature. R is gas constant (8.314 J/mol/K). β is 

activity coefficient associated with adsorption energy. RL is the separation constant of the Langmuir 

isotherm model. E (KJ/mol) is the average adsorption free energy. 

 



 

 

7. Effect of coexisting ions 
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Fig. S4.  Effect of coexisting ions (pH = 7, C0 = 40 mg/L, T = 273 K, t = 420 min and dosage of 0.05 

g/L). 

In this experiment, six common types of ions were selected to evaluate the effect of coexisting 

ions on the adsorption of mercury ions by PPy-Fe3O4/Kaolin, which are Na+, K+, Ca2+, Cl-, NO3-, and 

SO42-, respectively. The above six ions are separately added to the mercury solutions whose 

concentrations at 40 mg/L and pH = 7. Subsequently, 0.05 g/L of adsorbent was added to the 

solution, and the solution was shaken for 7 h at 298 K.  

Nature water often contains different ions, which may affect the adsorption of mercury ions by 

PPy-Fe3O4/Kaolin. Thus, three cations (Na+, K+, Ca2+) and three anions (Cl-, NO3-, SO42-) were used to 

study the effect of ions on the adsorption effect. 

As can be seen from Fig. S4, with the increasing ion concentration, the ability of 

PPy-Fe3O4/Kaolin to adsorb mercury decreases. Among the three anions, SO42- has the greatest 

influence on the adsorption performance of PPy-Fe3O4/Kaolin. When the concentration is 10 mM 

and 100 mM, the adsorption capacity of PPy-Fe3O4/Kaolin for mercury is reduced by 13.7% and 

25.4%, respectively, compared with the concentration of 0 mM. 

Among the three cations, Ca2+ has the greatest influence on the adsorption performance. At a 

concentration of 10 mM and 100 mM, the adsorption capacity for mercury is reduced by 15.6% and 

33.7%, respectively. This may be because Ca2+ is bivalent and can occupy two active adsorption 

sites. 

8. Model of thermodynamics 
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where, Kd is a constant and can be calculated from qe/Ce; ΔH0 and ΔS0 are the slope and intercept of 

the lnKd vs. 1/T, respectively. 
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