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1. Laser type: continuous wave vs pulsed for plasmonic photothermal therapy1

There are broadly two categories of lasers used for photothermal therapy: pulsed (PW) and2

continuous wave (CW). CW lasers emit a continuous beam of light that generally lasts seconds or3

longer. The laser medium is continuously pumped by another light-source (usually another laser)4

resulting in the continual excitation of atoms within the lasing medium and the emission of photons5

[1]. CW lasers are also relatively inexpensive compared with most pulsed laser systems, while also6

having the advantage of compactness and portability.7

High power pulsed lasers (PW), in contrast, are usually complex, bulky systems with multiple8

components such as gas tanks, movable crystals, and liquid cooling units, requiring longer, more9

sophisticated calibration and installation times. Unlike CW lasers that have a steady, constant power10

output, PW lasers frequently have intra-cavity delays that are built into the laser system to enable the11

build-up and ‘storage’ of energy in the lasing medium until it is released as a high-intensity burst of12

light [2]. Since there is a delay between exciting the lasing medium and a light pulse being emitted13

from the shutter, high power PW lasers can usually only achieve pulse repetition frequencies (PRFs) of14

around 10 − 20 Hz. The process of rapid accumulation and release of energy in very short, nano- or15

femto-second pulses is termed “Q-switching" and facilitates the lasers ability to generate extremely16

high peak powers in the order of 106 to 109 Watts. This is because the peak power, Ppeak, is the energy17

transfer of a single laser pulse, given by,18

Ppeak(W) =
Epulse

τp
(1)

where Epulse is the energy of a single pulse, and τp is the duration of the pulse. The average power,19

Pave, of a pulsed laser takes into account the time between each pulse by the following equation,20

Pave(W) =
Epulse

τT
= Epulse × PRF(Hz) (2)

where τT = 1/PRF is the time-period of the pulses. This means for a single, 7 ns pulse with an21

energy of 1 J and PRF = 10 Hz, the peak power is 143 × 106 W and the average power is only 10 W.22

Using equation 2 gives an Pave = 160 mW for the PW laser and 950 mW for the CW laser.23

The fundamental differences between CW and PW lasers lead to significant differences in the way24

they interact with materials. When a laser interacts with a material, and is absorbed, the energy first25

excites the conduction electrons and sets them oscillating [3]. This energy is then transferred to the26

surrounding electrons via femtosecond electron-electron relaxations, before being further transferred27

to the lattice, via electron-phonon collisions on a picosecond time-scale. When a material absorbs light28

from a CW laser, the heat is spread out over a much larger volume since the continuous nature of29

the incoming light allows for the heat to diffuse radially [4]. If the absorbing material is a solution of30

AuNRs, then this effect will be significantly enhanced as the AuNRs efficiently convert the laser energy31

into heat [5]. Conversely, under pulsed laser illumination, the short (< 10 ns) high intensity laser pulses32

induce a higher initial peak temperature in the absorbers, compared with that of CW lasers. However,33

due to the time period between laser pulses, the absorbing region has time to cool sufficiently before34

each consecutive pulse. If AuNRs are the absorbing medium, then they will experience extremely high35

peak temperatures (and the emission of PA signals if the stress confinement condition is met), before36

rapidly cooling ahead of the next pulse (supplementary figure S1). Thus, two distinct mechanisms37
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Figure S1. Under pulsed laser illumination, the AuNRs located in a tumour will experience a
rapid increase in temperature that likely causes an expansion of both the AuNR and the localised
surroundings, resulting in the emission of an ultrasonic wave. Conversely, under continuous wave
laser illumination, the same AuNRs will continuously radiate heat to the surroundings, causing bulk
heating of the environment.

exist depending on the type of laser employed: highly localised heating when PW lasers are used,38

and bulk, volumetric heating when CW lasers are used. There are also differences in the guidelines39

for the maximum exposure limit for skin. The maximum permissible exposure (MPE) is governed by40

the optical wavelength, λ, and duration of the laser exposure, t(s) [6]. Within the wavelength range41

700 nm ≤ λ ≤ 1400 nm, the MPE for skin is determined by the following,42

MPEskin =


2 × 1011 C4 (W m−2), if t(s) < 10−9

200 C4 (J m−2), if 10−9 ≤ t(s) ≤ 10−7

1.1 × 104 C4 t(s)0.25 (J m−2), if 10−7 ≤ t(s) ≤ 10

2000 C4 (W m−2), if 10 ≤ t(s) ≤ 30000

(3)

where C4 is a wavelength-dependent constant given by,

C4 =

{
100.002(λ−700), for 700 nm ≤ λ ≤ 1050 nm

5, for 1050 nm ≤ λ ≤ 1400 nm
(4)

This relationship between laser wavelength and exposure duration gives rise to a different MPE43

depending on the laser employed. As the length of laser exposure is increased from a nanosecond44

pulse (10−9) to a duration of 10 s, the MPE for skin increases from approximately 400 to 38 000 J m−2
45

(using equations 3 and 4 with a laser wavelength = 850 nm). This suggests that short pulses of light46

are more damaging to skin than a prolonged energy deposition. For exposures longer than 10 s, the47

defining limit changes from the total energy per unit area delivered to the skin (J m−2) to the total48

power per unit area (W m−2), and becomes a function of wavelength only. As the wavelength is49

increased from 700 to 1400 nm, the MPE for skin increases from approximately 2010 to 10 000 W m−2,50

for exposures lasting more than 10 s, indicating that the longer NIR optical wavelengths are less51
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damaging to skin. Since CW lasers are predominately used on the order of minutes (for example in52

photothermal therapy), their MPE limits are measured in terms of the total power per unit area, with53

a limit of MPEskin = 4000 W m−2 (λ = 850). However, a PW laser employed for photoacoustics will54

operate with a pulse length on the order of a few nanoseconds and therefore its MPE is measured55

in terms of the total energy per unit area. For a 7 ns pulse at 850, its MPEskin = 400 J m−2. While56

these guidelines provide a potential upper limit on the safe exposure for skin, they do not cover other57

biological tissues (other than ocular exposure) that may be exposed during therapy, such as lung tissue,58

and therefore they should be taken as a reference guideline only for future therapeutic development.59

PPTT is conventionally administered with CW lasers to induce hyperthermia via bulk heating60

of a target region. This volumetric elevation in temperature can lead to the death of cells via two61

basic pathways: apoptosis and necrosis. Necrosis is the death of cells related to injury, disease, or low62

blood supply, and typically results in the loss of membrane integrity and the uncontrolled release of63

intracellular material into the surroundings [7]. Apoptosis differs from necrosis in that it is a form of64

controlled cell death, where a series of specific cellular biochemical and morphological events occur65

that ultimately lead to the ‘programmed’ elimination of ageing, superfluous, or damaged cells [8].66

This method for cell death is a natural way for the body to eliminate unwanted or unneeded cells that67

are no longer operating as normal. If cells experience an apoptotic death, then no immunogenic or68

inflammatory response will be observed [9]. Conversely, if cells are destroyed via a necrotic pathway,69

then the release of cellular contents will initiate an inflammatory response. The cellular mechanisms70

and processes that govern necrosis and apoptosis have been discussed in great detail in the literature71

and so will not be discussed here [10,11].72

With regards to laser-based therapies, the conditions that influence whether cells undergo either73

necrosis or apoptosis vary based on the laser exposure parameters and whether absorbing agents,74

such as AuNRs, are used. It has been shown that the threshold for apoptosis and necrosis of human75

prostate cancer cells is between 44 ◦C or 45 ◦C when maintained at this temperature for 120 min [12].76

However, this study was not performed using a laser as the heating source and instead was conducted77

by placing a 96-well plate onto a pre-heated hotplate for heating. This method for applying heat78

may result in a different temperature profile compared with that of a laser, and so comparisons must79

be made with caution. Another more recent study investigated CW laser-induced cell-death of a80

murine melanoma cell line that was incubated with AuNRs and exposed to 15 min laser irradiation81

[13]. It was found that, when heated to a maximum of 43 ◦C after 15 min laser exposure, the majority82

of the cells survived. However, when temperatures between 43 − 49 ◦C were reached, significant83

cell death was observed (approximately 80 %) and the primary mechanism was apoptosis. Above84

49 ◦C, necrosis became the leading cause of cell death. This study was consistent with previous85

reports on temperature thresholds, where temperatures above 50 ◦C were shown to induce necrosis,86

and temperatures below this threshold primarily induced apoptosis [14,15]. The strong temperature87

dependence on the mechanisms for cell-death give rise to the ability for CW lasers to selectively destroy88

tissues via either the necrotic or apoptotic pathways, by simply controlling laser exposure parameters.89

Unlike CW lasers, PW lasers do not induce bulk temperature changes in an absorbing region, and90

therefore the mechanisms for destroying tissue are different. The absorption of high-intensity light91

pulses likely result in the destruction of tissue via mechanical stresses and bubble cavitation [16,17].92

As a result of this, pulsed-wave plasmonic photothermal therapy (PW-PPTT) (a.k.a. photoacoustic93

therapy) can only induce necrotic cell-death, since the mechanical stresses destroy the cells likely by94

disrupting the cell membrane and releasing the intracellular contents into the surroundings.95

Although apoptosis is generally preferred over necrosis, due to the lack of immunogenic or96

inflammatory response, cell-death via necrosis has its potential benefits, such as the immediacy of the97

killing effect, no risks associated with cancer cells developing resistance to the therapy [18], increased98

selectivity as a result of no heat conducting from the target site and damaging surrounding healthy99

tissues, potentially lower laser powers compared with CW lasers, and the ability for the generated PA100

signals to provide simultaneous imaging during treatment [19]. Furthermore, PW-PPTT may enable101
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the ability to combine PAI with PPTT through the use of PW lasers, and incorporate a single laser102

system into already existing medical technologies [20], ultimately improving patient outcome and103

treatment efficiency.104
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