Supporting Information

Insight into the loading and release properties of exfoliated kaolinite/cellulose composite (EXK/CF) as a carrier for Oxaliplatin drug; cytotoxicity and release kinetics

Lijun Tian†, Mostafa R. Abukhadra*‡.§, Aya S. Mohamed§, §, Ahmed Nadeem*, Sheikh F. Ahmad*, Khalid E. Ibrahim&

Deputy Chief Physician, Shanxi Provincial People's Hospital, Taiyuan City, Shanxi Province, China

Content

1.	Table.S1. the	representative	equations	of	the	studied	kinetic	and	isotherm	model	and	their
	parameters											S2

[‡]Geology Department, Faculty of Science, Beni-Suef University, Beni -Suef city, Egypt

Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt.

Expansion of Environment and Industrial Development, Faculty of postgraduate studies for advanced sciences

^{*}Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia

[&]amp;Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia

1. Representative equation of kinetic and equilibrium models

Table S1. the representative equations of the studied kinetic and isotherm model and their parameters

	Kinetic models	
Model	Linear equation	Parameters
Pseudo-first-order	$\ln\left(q_e - q_t\right) = \ln\ q_e - k_1 t$	q_t (mg/g) is the adsorbed drug at time (t), and K_1 is the rate constant of the first-order adsorption (min ⁻¹)
Pseudo-second-order	$\frac{t}{q_t} = \frac{1}{K_2 q_e^2} + \frac{t}{q_e}$	qe is the quantity of adsorbed drug after equilibration (mg/g), and $\rm K_2$ is Lagergren model rate constant (g/mg min).
	Isotherm models	
Model	Equation	Parameters
Langmuir	$\frac{C_e}{q_e} = \frac{1}{bq_{max}} + \frac{C_e}{q_{max}} (Linear)$	$C_{\rm e}$ is the rest drug concentrations (mg/L), $q_{\rm max}$ is the theoritical maximum ibuprofen drug capacity (mg/g), and b is the Langmuir constant (L/mg)
Freundlich	$q_e = rac{q_{max} b C_e}{(1 + b C_e)} \; (Nonlinar)$ $Log \; qe \; = \; (1/n) \; log \; Ce + log \; K_f \; (Linear)$ $q_e = K_f C_e^{1/n} \; \; (Nonlinear)$	K_{F} is the constant of Freundlich model related to the adsorption capacity and n is the constant of Freundlich model related to the adsorption intensities
Dubinin–Radushkevich	$\ln{(qe)} = \ln{(q_m)} - \beta \varepsilon^2$ (Linear) $q_e = q_m e^{-\beta \varepsilon^2}$ (Nonlinear)	β (mol²/KJ²) is the D-R constant, ϵ (KJ²/mol²) is the polanyil potential, and q_m is the adsorption capacity