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Supplementary Figures and Tables
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Figure S1. Muscle atrophy proceeds much more rapidly than muscle hypertrophy and is related to the
change in muscle protein synthesis, related to Figure 2.

(A) Percentage change in mid-thigh vastus lateralis cross sectional area (VLCSA) following 10 weeks of resistance
training (RT) and 2 weeks of unloading (UL); n=12.

(B) Percentage change in quadriceps volume following 10 weeks of RT and 2 weeks of UL, n=12.

(C) Percentage change in peak-quadriceps CSA following 10 weeks of RT and 2 weeks of UL, n=12.

(D) The linear relationship between changes in iMyoPS in response to 2 weeks of UL and the corresponding
reduction of VLCSA in the same limb (Pearson’s r=0.8, p<0.05, caveat with small sample size acknowledged
despite the high probability of a causal relationship between these two variables); n=12.

(E) Average deuterium enrichment in saliva during the periods over which iMyoPS was assessed. The horizontal
dotted line shows the global average from day 1 (i.e. after loading) until day 20; n=12.

For box and whisker plots, the boxes include the 25", 50™ and 75™ quartiles and whiskers represent the maximum
and minimum values. The mean value is depicted by the ‘+’ symbol.

*denotes statistically different from Pre; # statistically different from RT value (p<0.05).
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Figure S2. HypAt-regulated genes form functional networks in a large human muscle tissue biobank, related
to Supplemental Data S1 and Figure 3.

Using the HypAT FL-ENST regulated transcripts (FDR <5%) as input into Megena (FDR <1% spearman
correlation; p<0.01 for module significance, p<0.01 for network connectivity and 10,000 permutations for
calculating FDR and connectivity p-values), top distinct planar filtered networks were identified that centered
around NDUFS3 (top panel; enriched in genes relating to mitochondrial biology) and around DOCK1 (bottom



panel, enriched in genes related to extracellular matrix remodeling) using a large independent skeletal muscle data
set (n=187).
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Figure S3. Proteome constrained network modeling reveals growth regulating pathways, related to Figure 3
and Table S2.

HypAT genes that correlated with lean mass gains in independent cohorts were used as input to characterize tissue-
specific protein-protein interactions (PPI) using www.networkanalyst.ca and a 10th percentile threshold. A first-
order network of protein-protein interactions is presented. FOXO3 was negatively correlated with leg lean mass
changes and the PPI contained 45 FOXO signaling pathway members (Kegg database), 1x10™"° FDR. Green circles
represent negatively- and red, positively-correlated genes. Grey genes are members of the protein-protein
interactome acting on the 141 HypAT genes regulated in proportion to gains in lean mass. Inset: bar graph
generated using Metascape showing top enrichment clusters derived from the list of growth correlated genes. GO
Terms: GO:0009167, Purine ribonucleoside monophosphate metabolic process; GO:0007005, Mitochondrion




organization; GO:0010035, Response to inorganic substance. Color of bars indicates the level of significance of the
corresponding cluster. Genes related to muscle growth in independent data sets were found to be dominated by
proteins related to mitochondrial biology and ribonucleoside monophosphate synthesis.
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Figure S4. RNAI effectively reduced RNA expression of selected growth-correlated target genes by >90% in
differentiated myotubes, related to Figure 4.

Normalized gene expression data from myotubes after knockdown with siRNA species against: FKBP1, BCAT?2,
MBNL1 and NID2. Cells were either untreated (set to 100%), treated with IGF-1 only, or treated with IGF-1 and

with a pool of siRNA targeted against the gene listed. n=4; one-way ANOVA (*P<0.05, **P<0.01, ***P<0.001
versus IGF-1)
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Figure S5. Representative western blots of protein signaling data, related to Figure 4.

Lane order (n=4): basal (untreated), IGF-1, IGF-1/FOXO KD, IGF-1/BCAT2 KD, IGF-1/FKBP1a KD. Note: the
RNAI tool against FOXO3 was inactive and so we did not, as originally planned, study FOXO3 as a control.
However, western analyses were carried out prior to the discovery that FOXO3 siRNA was defective and thus
included in the original gels.
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Figure S6. Total protein, RNA and DNA content after myotube treatment with or without IGF-1 and siRNA

against selected gene targets, related to Figure 4.
Total protein (A), RNA (B) and DNA (C) after myotube treatment with IGF-1 in isolation or combined with siRNA

against BCAT2, FKBP1A, NID2 or MBNLI. n=5; one-way ANOVA (*P<0.05, versus IGF-1).
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Figure S7. Knockdown of growth-correlated genes in myotubes alters protein synthesis and regulates
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(A — D) The effects of targeting NID2 with siRNA on NID2 mRNA expression (A), 4hr puromycin signal (B), 48hr
total protein (C) and protein content of various proteins thought to be involved in muscle growth.

(E — H) The effects of targeting BCAT2 with siRNA on BCAT2 mRNA expression (A), 4hr puromycin signal (B),
48hr total protein (C) and protein content of various proteins thought to be involved in muscle growth.



Supplementary Tables

Table S1. HypAt Participant Characteristics, related to Figure 1, 2, S1 and STAR Methods.

Parameter Baseline Week 5 Week 10
Age,y 2043 - -

Height, m 1.7£0.1 - -

Mass, kg 71.2+12.2 71.2+11.4 70.8+11.2
BMI, kg-m™ 23.8+3.1 23.9+2.9 23.742.8
Leg Ext 1-RM, kg 53+12 - 77+£12%
Leg Press 1-RM, kg 120432 - 190+35*
Daily Steps 9900+5100 9100+2800 8000+3600
Activity, keal-d” 1012+477 970+403 965+437
Dietary Protein, g-kg-d”' 1.5+0.9 1.4+0.7 1.6+0.9
En% Protein 17+6 1945 18+4
En% CHO 49+15 52+7 54+10
En% Fat 32+12 3147 28+10

Abbreviations: BMI, body mass index; 1-RM, one-repetition maximum; En%, energy percentage. CHO,
carbohydrates. * significantly different from baseline, p<0.05. All data are presented as mean£SD.



Table S2. Steps for generating a proteome-constrained network plot, related to Table 1, STAR Methods, Figure S3 and Supplemental Data S2.

Steps

Link/File

Get list of genes for uploading to web-site
Browse to network tool home page
Select ‘Gene List Input’ option

Select ‘Human’ and Official Gene Symbol
Open file containing gene list

Upload gene list
Choose Tissue-Specific PPI
Define Network

Define network structure
View 3D network

Explore pathway biology

URL to Supplemental Data S2

www.networkanalyst.ca

https://www.networkanalyst.ca/NetworkAnalyst/uploads/ListUploadView.xhtml

Pull-down lists

Browse to location of ‘Supplementary Data S2’ file on your computer and open in text editor or Excel - then
copy both columns

Paste gene list and press upload and then press proceed
Select ‘skeletal muscle’ from the pull-down menu and set the filter to 10
Press proceed https://www.networkanalyst.ca/NetworkAnalyst/Secure/network/NetworkBuilder.xhtml)

Press 3D option within network plotting window. Then set ‘view’ to ‘expression’ and ‘shading’ = ‘none’.
Place mouse cursor on any black space, hold-down mouse button and drag to rotate. Type any gene name
into the ‘search’ function to highlight that gene. Zoom in and out to view network connections.

Select database to query from top right-hand side of web page. E.g. Kegg. Choose all nodes and press submit

A step by step guide to generating a 3-dimentional plot of the 141 HypAT genes that correlated with lean mass gains across independent cohorts within the
context of a muscle tissue-specific protein-protein interactions (PPI) network. Note, in November 2019, the analysis indicates FOXO3 was negatively correlated
with leg lean mass changes and the PPI contains 45 FOXO signaling pathway members (Kegg database, 1x10™> FDR). Green represents negatively and red
positively correlated genes with in vivo changes in lean mass. Grey circles are members of the protein-protein interactome, acting on the 141 HypAt genes
regulated in proportion to gains in lean mass, but themselves were not regulated at the RNA level in the present analysis. Any regulated gene, from the 141
identified, that was not part of the protein-protein interactome would not appear in this analysis as evidence for protein level interaction was a prerequisite for

inclusion.



