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SUMMARY
Loading of skeletal muscle changes the tissue phenotype reflecting altered metabolic and functional de-
mands. In humans, heterogeneous adaptation to loading complicates the identification of the underpinning
molecular regulators. A within-person differential loading and analysis strategy reduces heterogeneity for
changes in muscle mass by �40% and uses a genome-wide transcriptome method that models each
mRNA from coding exons and 30 and 50 untranslated regions (UTRs). Our strategy detects �3–4 times
more regulated genes than similarly sized studies, including substantial UTR-selective regulation undetected
by other methods. We discover a core of 141 genes correlated to muscle growth, which we validate from
newly analyzed independent samples (n = 100). Further validating these identified genes via RNAi in primary
muscle cells, we demonstrate that members of the core genes were regulators of protein synthesis. Using
proteome-constrained networks and pathway analysis reveals notable relationships with themolecular char-
acteristics of human muscle aging and insulin sensitivity, as well as potential drug therapies.
INTRODUCTION

Increased loading of skeletal muscle induces muscle fiber hy-

pertrophy requiring the remodeling of myofibrillar and extracel-

lular protein lattices. In contrast, unloading (UL) results in fiber

atrophy, reductions in protein content, and a more fatigable tis-

sue phenotype. In humans, voluntary loading (via resistance ex-

ercise training [RT]) leads to a highly heterogeneous physiolog-

ical adaptation across individuals, which is associated with

differential molecular response (Davidsen et al., 2011; Keller et

al., 2011; Timmons et al., 2005). The implications of this hetero-

geneity are substantial, influencing muscle insulin sensitivity and

age-related musculoskeletal frailty (Timmons et al., 2018; von

Haehling et al., 2012) and potentially underpinning the compro-

mised growth response in older individuals (Da Boit et al., 2016;

Kosek et al., 2006). Less appreciated is the fact that the UL of

human muscle also results in highly variable losses of muscle

mass (Glover et al., 2008; Yasuda et al., 2005). The key regula-

tors of heterogeneous muscle remodeling in response to

loading and UL are unknown.

Collapsing data across individuals showing divergent physio-

logical adaptation, as well as the use of small sample sizes, limits

the reliable discovery of molecular regulators (Sweeney et al.,
This is an open access article und
2017; Timmons, 2011). In contrast, accounting for physiological

heterogeneity helps identify genes that regulate exercise adap-

tation in humans (Adami et al., 2018; Peter et al., 2014). Small-

scale human physiology studies that focus on in-depth pheno-

typing limit reliable correlation modeling (Cohain et al., 2017;

Schönbrodt and Perugini, 2013), particularly for genome-wide

omics. The increasing use of omics has advanced our under-

standing of the molecular regulators of loading; however, prote-

omics applied to muscle tissue captures a very limited sample of

the protein-coding genome (Camera et al., 2017), which limits

the validity of pathway analysis (Timmons et al., 2015). Unbiased

transcriptome profiling can be more reliable, and variation in

RNA can explain up to 75% of the variation in protein abun-

dance, with some exceptions (Li and Biggin, 2015). Neverthe-

less, it has been reported that RNA does not reliably predict

changes in protein abundance during muscle loading (Robinson

et al., 2017). Typically, RNA quantification relies on technology

that averages across an otherwise complex set of transcripts

from a gene (Shalek et al., 2013) or uses short-read RNA

sequencing that misses significant proportions of the tissue tran-

scriptome (Sood et al., 2016). Thus, suboptimal RNA profiling

may contribute to a discordance between muscle RNA and pro-

tein abundance (Robinson et al., 2017).
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Figure 1. Experimental Workflow and Analysis Strategy

We used a paired unilateral loading (10 weeks of progressive RT) and unloading (UL; 2 weeks of UL) model in combination with genome-wide transcriptomic

analysis (Timmons et al., 2018) to study differential expression of gene UTRs and protein coding regions. Probes were subjected to extensive filtering before

downstream analysis (see STAR Methods). Significance analysis of microarrays implemented in the R programming environment (SAMR) was used to detect

significantly regulated genes (Tusher et al., 2001), which were then used as an input list for quantitative network analysis using the MEGENA package for R (Song

and Zhang, 2015). We also determined which genes played a role in regulating dynamic lean tissue growth in independent cohorts (total n = 100). Highly co-

regulated genes and growth-correlated gene lists were used as input in metascape.org and https://www.networkanalyst.ca to characterize protein-protein

interaction networks and drug signatures.
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Wehypothesized that amethod that reducedphysiological het-

erogeneity to loading states and improved the fidelity of RNA

quantification (Figure 1) would allow the improved identification

of the molecular regulators of adaptation. We contrasted muscle

subjected to a loading hypertrophic stimulus with the paired

(contralateral) muscle subjected to UL to induce atrophy (amodel

called HypAt). The aim of the HypAt model is to measuremolecu-

lar responses to loading andULwithin an individual to reduce het-

erogeneity and more readily reveal potential regulators. We char-

acterized phenotypic responses to HypAt and implemented an

approach to quantify both full-length mRNA transcripts (FL-

ENST) and the untranslated regions (UTRs) of the same ‘‘gene,’’

as they can regulate translational efficiency (Mayr, 2017). We es-

tablished key genes regulated during gains in lean mass in three

independent cohorts, someofwhichdirectly regulate protein syn-

thesis in vitro. We used proteome-constrained network and

pathway analyses to discover relationships between the trans-

ducers of dynamic muscle remodeling, muscle aging, and insulin

resistance and match molecular signatures to potentially useful

US Food and Drug Administration (FDA)-approved drugs.

RESULTS

Muscle Growth and Integrated Myofibrillar Protein
Synthesis
Participant characteristics for the paired analysis (HypAt) are dis-

played in Table S1 (see STAR Methods for the demographics of
2 Cell Reports 32, 107980, August 4, 2020
the additional clinical studies). Dietary macronutrient intakes

were stable during the study (17% ± 6% protein, 49% ± 15%

carbohydrate, 32% ± 12% fat). The protein consumed was 1.5

± 0.7 g $ kg�1 $ day and 1.7 ± 0.2 g $ kg�1 on training days, suf-

ficient to fully support muscle hypertrophy (Morton et al., 2018).

At baseline, the daily step count averaged 9,900 ± 5,100 steps

per day and remained unchanged throughout the study. The

average changes in function were as expected—isometric

maximal voluntary contraction torque (ISO-MVC) increased by

14% after RT (median: 5.6%; range: �2.5% to 50.1%; p <

0.05) and decreased by �14% following UL (median: �12.7%;

range: �1.3% to �28.3%; p < 0.05). Leg extension strength

increased by 48% (median: 46%; range: 13%–100%) and leg

press by 67% after RT (median: 72%; range: 13%–158%; p <

0.05). Orally administered deuterated water andmuscle biopsies

quantified integrated myofibrillar protein synthesis (iMyoPS)

rates (Wilkinson et al., 2014) (deuterium enrichment in saliva

over time is shown in Figure S1E). Pre-intervention iMyoPS

was 1.37% ± 0.07% day�1, consistent with earlier work (Brook

et al., 2016). iMyoPS increased 12.6% after 10 weeks of RT

and decreased 9.5% with 2 weeks of UL (p < 0.05; Figure 2A).

In HypAt, leg lean mass (LLM; by dual-energy X-ray absorptiom-

etry [DXA]) increased by �5% (median: 4.2%; range: �1.2% to

14.0%; p < 0.05) in response to RT, while the immobilized leg

demonstrated a 3.4% decrease (median: �3.0%; range: 0.5 to

�8.4%; p < 0.05; Figure 2B). In addition, we found, using

magnetic resonance imaging, that mid-thigh vastus lateralis

http://metascape.org
https://www.networkanalyst.ca


A B Figure 2. Dynamic Muscle Loading Alters

Muscle Protein Synthesis (MPS) and Muscle

Size

(A) Absolute change in integrated myofibrillar pro-

tein synthesis rates (n = 12).

(B) Percentage change in leg lean mass (LLM) after

10 weeks of unilateral RT and 2 weeks of UL,

respectively (n = 12). *Statistically different from Pre

(baseline value); #statistically different from RT

value (p < 0.05).

In both panels, the boxes include the 25th, 50th, and

75th quartiles and whiskers represent the maximum

and minimum values. The mean value is depicted

by +.

See also Figure S1.
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cross-sectional area (VLCSA) increased by 8.1% following RT

(median: 8.2%; range: 0.9%–15%; p < 0.05), whereas VLCSA

was reduced in the UL leg by 9.0% (median: �6.8%; range:

0.4 to �18.5%; p < 0.05; Figure S1A). Quadriceps volume (Fig-

ure S1B) and peak quadriceps CSA (Figure S1C) demonstrated

a similar pattern. Calculating the individual physiological re-

sponses, as proposed (HypAt), reduced the inter-subject hetero-

geneity for change in muscle size by almost half (coefficient of

variation [CoV] was 90%, 88%, and 49% for RT, UL, and HypAt,

respectively). Thus, each subject provided amore consistent dif-

ferential change in muscle mass, and hence improved the valid-

ity of any means-based analyses.

Functional RNA Networks Are in High Agreement with
Established Proteome Responses to Exercise
Global muscle transcriptomes were generated from four inde-

pendent clinical studies using the Affymetrix HTA 2.0 array. A

probe set signal, based on ensemble identifiers (Dai et al.,

2005), either represented a FL-ENST or the 50 UTR or the 30

UTR signal from a FL-ENST. For FL-ENST versus 30 UTR com-

parisons, there were 32,307 probe sets, while for FL-ENST

versus 50 UTR, there were 28,291. This resulted in 44,358 largely

protein-coding probe sets, representing 11,628 genes. For FL-

ENST differential analysis, 18% of the 11,628 genes had at least

1 FL-ENST regulated (false discovery rate [FDR] <5%, fold

change [FC] >1.2; 1,435 upregulated and 649 downregulated;

Data S1). There were more genes regulated by measuring their

30 UTR than the FL-ENST (Figure 3A; Data S1). There were

1,162 upregulated and 1,200 downregulated 30 UTR (fewer 50

UTRs were regulated; 553 genes upregulated and 206 downre-

gulated; Data S1). Compared with clinical studies using interven-

tions of similar duration (Damas et al., 2019; Melov et al., 2007;

Phillips et al., 2013; Raue et al., 2012), our approach identified

�4 times more regulated molecular events. The regulated

groups of genes had the expected roles in extracellular matrix re-

modeling, mitochondrial biology, and angiogenic processes

(Figure 3B; Data S1).

The measurement of changes in the UTR signal allows for the

identification of factors, beyond mRNA abundance, that influ-

ence translation. For example, a greater 30 UTR:protein coding

sequence (CDS) ratio can lead to lower protein production (Floor
and Doudna, 2016; Kocabas et al., 2015), presumably reflecting

increasedmiRNA andRNA-binding protein target sites within the

lengthened 30 UTR. For HypAt upregulated genes, the pattern

was >70% consistent between FL-ENST and the UTR signals;

however, this consistency was reduced to 40% for downregu-

lated genes (Data S1). There were >1,000 genes that were statis-

tically ‘‘regulated’’ only at their UTR signal (Figure 3A; Data S1).

We applied a heuristic method (see Method Details) to identify

genes that demonstrated a distinct pattern of regulation across

the 3 signals, revealing a subset of FL-ENST (n = 112 genes),

30 UTR (n = 200 genes), and 50 UTR transcripts (n = 62 genes),

which demonstrated selective differential regulation in vivo

(e.g., FL-ENST upregulated with reduced 50 UTR signals or 30

UTR signals reduced more than the FL-ENST signal, indicating

a shift in the mRNA population; Data S1). For example, seven

genes involved in the repair of double-strand DNA breaks

(HUS1B, LIG3, MRNIP, RAD51C, RIF1, SPIDR, and ZFYVE26)

had unchanged levels of mRNA, yet their 30 UTR signal was sub-

stantially reduced. The 30 UTR of branched-chain amino acid

transaminase 2 (BCAT2), a mitochondrial branched-chain amino

acid catabolism gene, increased on average, indicating that the

BCAT2 population of mRNAs in muscle had longer 30 UTRs dur-
ing gains in leanmass. Furthermore, there were 275 discordantly

regulated genes at the 30 UTR versus 50 UTR (Data S1). The bio-

logical processes carried out by these genes included develop-

mental and peptide or K48-linked de-ubiquitination (Figure 3C).

We used quantitative network modeling (Song and Zhang,

2015) to demonstrate that the HypAt-regulated genes formed

significant gene expression networks (Data S1). This method

identifies groups of co-regulated genes and does so indepen-

dently of any knowledge of gene function (i.e., it is data driven).

The identification of known gene-gene relationships provides in-

ternal validation and a framework to assign genes of unknown

function (van Dam et al., 2015). Analysis of the FL-ENST yielded

networks centered around mitochondrial genes (e.g., NDUFS3,

reflecting tight coordination of the mitochondrial transcriptome;

Figure S2). The significant ontology categories, beyond tissue

bias (Timmons et al., 2015), included Gene Ontology

(GO):0055114 ‘‘oxidation-reduction process’’ (p < 1 3 10�15)

for the NDUFS3 network. Another major network centered

aroundDedicator of Cytokinesis 1 (DOCK1) (a 312-gene network;
Cell Reports 32, 107980, August 4, 2020 3
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Figure 3. The Untranslated Regions (UTRs)

of Genes Are Subject to Extensive Regulation

by Dynamic Muscle Loading States

(A) Venn diagrams show the extent of overlap in FL-

ENST, 30 UTR, and 50 UTR gene expression. More

genes showed regulation at the 30 UTR than at the

FL-ENST level; however, there was substantial

overlap.

(B and C) Heatmaps showing (B) functional pathway

enrichment based on gene region (50 UTR, 30 UTR,
or FL-ENST) and (C) the significance level of

different Gene Ontology pathways by transcript

type: FL-ENST only versus UTR only versus differ-

ential 30 UTR/50 UTR regulation only. The ontology

enrichment scores are relatively modest after

correction for tissue and platform bias. Heatmaps

were generated using Metascape (metascape.org).

The colors indicate the level of significance, with the

darker colors being more significant. The gray

boxes are non-significant results.

Resource
ll

OPEN ACCESS
Figure S2), a Rho guanosine triphosphatase (GTPase)-related

gene regulated by mechanical strain (Copley Salem et al., 2018)

and genetically linked to cachexia (McDonald et al., 2017). The

top ontology category of the DOCK1 network was GO:0040011

‘‘self-propelled movement of a cell’’ (p < 1 3 10�11). These ana-

lyses indicate that the molecules that we identified as regulated

in the HypAt model reflect functional networks central to muscle

tissue physiology, including many of the same features identified

using proteome analysis (Robinson et al., 2017).

Proteome-Constrained Network Modeling Reveals
Growth-Regulating Pathways
Genes regulated in a manner correlated with net muscle growth

may be responsible for inter-subject variation in exercise-induced
4 Cell Reports 32, 107980, August 4, 2020
muscle mass. We used 3 independent

studies (n = 100 individuals, 200 HTA 2.0

gene chips; Data S1), each with DXA-

measured changes in LLM following exer-

cise training (Mitchell et al., 2014; Morton

et al., 2016; Phillips et al., 2017) to establish

which of the �2,000 HypAt-regulated

genes were potential regulators of growth.

For reliable estimates, sample sizes of

R30 are required for correlation analysis

(Gobbi and Jurman, 2015; Schönbrodt

and Perugini, 2013). We calculated pre-

post training differential probe set signal

and Spearman rank correlation across

each study and then aggregated consistent

(directionality) correlation coefficients and

found that 141 genes were correlated in a

consistent manner with muscle mass gains

(either at the FL-ENST, 30 UTR or 50 UTR
level) and were regulated in the HypAt

model. Genes correlating with muscle

growth coded for proteins involved in purine

ribonucleoside monophosphate biosyn-
thesis (e.g., AMP, guanosine monophosphate [GMP], inosine

monophosphate [IMP], and xanthosine monophosphate [XMP]),

mitochondrial biology (Figure S3, inset) and included numerous

positive regulators shown previously, such as the apelin receptor

(APLNR, upregulated in HypAt, correlation coefficient (CC) =

0.34), a known mediator of hypertrophy (Hwangbo et al., 2017;

Vinel et al., 2018). APLNR negatively co-varied with known nega-

tive regulators of hypertrophy (FOXO3, CC �0.4; PRKAA2, CC

�0.3), which were negatively correlated with changes in LLM

(CC �0.33 and �0.21, respectively). These in turn were strongly

co-regulated,during muscle growth,with KDR, TIE1, and NRP1,

which are potent regulators of angiogenesis.

Examination of the relationships between modulation of tran-

script 30 UTR signals and the change in lean mass revealed

http://metascape.org


Table 1. Combining the Skeletal Muscle-Specific Proteome with

theCore Transcriptional Signature fromHypAt that Covariedwith

Gains in Muscle Mass across 3 Independent Studies Identified

the Majority of Known Canonical Regulations of Cell Hypertrophy

from Model Systems

Pathway FDR

FOXO signaling 3E�14

MAPK signaling 3E�10

Neurotrophin signaling 1E�9

Mitophagy 6E�9

HIF-1 signaling 5E�8

Longevity regulating pathway 2E�7

AMPK signaling 3E�7

Hippo signaling 9E�7

PI3K-Akt signaling 1E�6

Apelin signaling 1E�6

Adipocytokine signaling 2E�6

FDR is �log value. FDR, false discovery rate.
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several regulators ofmuscle growth (DataS1). TheBCAT2 30 UTR
signal was strongly correlated (CC = 0.37, n = 100) to an increase

in muscle mass, in which a greater BCAT2 30 UTR signal means

that more individual mRNAs had longer 30 UTRs. This was in

the absence of any relationship between the coding region signal

and change in muscle mass. Another 30 UTR-regulated gene,

TPI1 (triosephosphate isomerase 1), encodes a protein that plays

a role in regulating the cytosolic redox state and is genetically

linked to a muscle-wasting phenotype (Gnerer et al., 2006).

Some 50 UTR signals were also related to muscle growth (Data

S1)—for example, the increase in 50 UTR signal for exostosin gly-

cosyltransferase 1 (EXT1) was strongly related to gain in lean

mass (CC = 0.38, n = 100). EXT1 is required for the biosynthesis

of heparan sulfate, which in turn appears to be an essential factor

for muscle remodeling and growth (Ghadiali et al., 2017).

One way to refine database-driven network analysis is to

constrain the growth-correlated RNA networks by a muscle tis-

sue-enriched proteome and model protein-protein interactions

(PPIs) (https://www.networkanalyst.ca). Tissue-enriched PPI

analysis of the growth-correlated RNAs (Figure S3; Data S1)

yielded a list of pathways with known roles in cellular growth

(Table 1), including ubiquitin protein ligase genes, apoptotic pro-

cesses, and negative regulators of the nitrogen compoundmeta-

bolic process. For example, FOXO3 (negatively correlated with

LLMchanges during exercise training) was part of a PPI that con-

tained 45 other FOXO signaling pathway members (Kyoto Ency-

clopedia of Genes and Genomes [KEGG] database, 1 3 10�14

FDR) and is a known regulator of cell growth (Sandri et al.,

2013). The subset of genes found to be differentially regulated

(Figure 3) and correlated with muscle growth are listed as an

input file (Data S2) to allow for the generation of a 3-dimensional

(3D) version of the proteome-constrained network model in Fig-

ure S3 (see Table S2 for instructions). The present analyses

demonstrate that when measured in a sensitive and sophisti-

cated manner, human muscle growth and dynamic changes in

protein synthesis are accurately reflected in the pattern of re-

sponses observed in the human muscle transcriptome.
Identified Growth-Correlated Network Genes Directly
Regulate Human Myocyte Protein Synthesis
We used puromycin-based measures of myocyte protein syn-

thesis, in the presence of insulin growth factor 1 (IGF-1), with

and without small interfering RNA (siRNA)-mediated downregu-

lation of 4 genes identified from the list of regulated mRNA or 30

UTR ENSTs that correlated with lean mass gains in vivo (NID2,

FKBP1A,BCAT2, andMBNL1). As can be observed in Figure 4A,

RNA interference (RNAi) effectively reduced RNA expression by

>90% in differentiatedmyotubes after 3 days of treatment. There

appeared to be some interaction between the loss of one gene

and the expression of a second candidate regulator of muscle

growth (Figure S4; see Discussion). In our analysis, the 30 UTR
signal of FKBP1A increased 20% in HypAt, and the change in

30 UTR of the transcript variant ENST00000400137 strongly

correlated with gains in lean mass in vivo (R = 0.31, n = 100).

Knockdown (KD) of FKBP1A in vitro resulted in a reduction in pu-

romycin signal, accompanied by an increase in eukaryotic elon-

gation factor 2 (eEF2) phosphorylation (Figures 4B and S5) at

Thr56 (the less active/inactive form), while the mammalian target

of rapamycin (mTOR) Ser2448 (Figure 4B), P70 S6K1 Thr389,

and 4E-BP1 Thr37/46 were not significantly altered (Figures S5

and S6). While the coding region of FKBP1A is clearly the ‘‘func-

tional’’ entity, the importance of its regulation by altered 30 UTR is

further supported by the fact that it strongly covaried, with

changes in >200 genes involved in extracellular matrix remodel-

ing in vivo (bidirectionally), specifically with their 30 UTR signals

and not the signal from the entire mRNA (Data S1).

A core set of genes were both differentially regulated and

quantitatively related to gains in lean mass, and there was evi-

dence that these genes shared a number of common transcrip-

tion factor binding sites (for KLF9, NF1A, and RBPJ) enriched

(Gearing et al., 2019) over and above muscle-expressed genes

or all HypAt-regulated genes (Figure 4C). The additional three

genes chosen for RNAi targeting also validated our in vivo

modeling. The loss of our proposed uncharacterized inhibitor

of lean mass gains, MBNL1, was associated with an increase

in protein synthesis and increased phosphorylation of mTOR

Ser2448 (Figures 4A and 4B) and total protein (Figure S6).

NID2—positively associated with lean mass gains—was effec-

tively knocked down in vitro (Figures 4A and S7A), and this

reduced global protein synthesis at 4 h (Figure S7B) and

modestly suppressed total RNA (presumably rRNA), but not total

protein content. Phosphorylation of p70 S6K1 and 4E-BP1, in

response to IGF-1 treatment, was reduced when the NID2 tran-

script was targeted (Figure S7D). The near-elimination of BCAT2

expression also, as predicted, suppressed IGF-1-mediated

protein synthesis at 4 h (Figures S7E and S7F) and reduced

the phosphorylation of p70 S6K1 (Figure S7H), but it did not alter

the total cell protein. It also resulted in an increase in eEF2 Thr56

phosphorylation (consistent with the inhibition of translation).

DISCUSSION

Implementing a within-person loading and analysis strategy

facilitated the identification of the genome-wide molecular anal-

ysis of humanmuscle remodeling in a small human cohort. Com-

bined with an updated RNA profiling strategy (to quantify 30 or 50
Cell Reports 32, 107980, August 4, 2020 5
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Figure 4. Growth-Regulated Genes Modulate Protein Synthesis and Anabolic Signaling in Human Muscle Cells

RNAi targeting of individual members of the muscle mass-related gene network.

(A) mRNA expression of BCAT2, FKBP1A, NID2, andMBNL1 relative to their own control (100%) following treatment with a pool of multiple siRNAs targeting each

gene (BCAT2, FKBP1A, NID2, and MBNL1), with IGF-1 used to increase primary muscle cell protein synthesis. *p<0.05, **p<0.01, ***p<0.001.

(B) Calculation of relative arbitrary units (RAUs) for mTOR Ser2448 and eEF2 Thr56, using phosphospecific antibodies (IGF-1 treatment in primary muscle cell in

the presence or absence of FKBP1A and MBNL1 RNAi). *p<0.05, **p<0.01, ***p<0.001.

(C) Correlation matrix of the in vivo changes in gene expression covarying with the change in FKBP1A. All of the genes were also correlated with exercise training-

induced alterations in muscle lean mass (see Method Details). Transcription factor binding site enrichment analysis (�1,500 to +500 nt from the start codon using

CiiiDER and controlled for bias in the muscle transcriptome) revealed that 3 transcription factors (KLF9, NFIA, and RBPJ) potentially coordinate this FKBP1A-

angiogenesis related transcriptional ‘‘module’’ (i.e., they are not enriched in the larger lean-mass growth-related transcriptional signature).

6 Cell Reports 32, 107980, August 4, 2020
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regulatory ends of protein coding mRNA) enabled us to identify

molecular transducers of muscle growth. A subset of transcripts

was found to be regulated in proportion to the magnitude of hu-

man muscle growth, including members of validated growth and

atrophy canonical pathways. We established that four of these

genes regulated muscle protein synthesis (MPS) and canonical

signaling events that regulate translational control. Overall, our

analyses support the utility of using human models to identify

relevant molecular transducers of muscle activity while reinforc-

ing the view of Sweeney et al. (2017), and our own experience,

that integrating multiple independent clinical datasets and ac-

counting for variations in phenotypic adaptability are crucial for

producing reliable molecular models of human physiology.

A Robust Molecular Model of Human Muscle during
Changes in Mass
Many variables influence muscle responses to loading—age,

biological sex, diet, and genetic variation (Roberts et al., 2018;

Silventoinen et al., 2008). A within-subject study design

enhanced the means-based statistical analysis and resulted in

a far greater number of detected differentially expressed genes

than comparably sized studies (Damas et al., 2019; Melov

et al., 2007; Phillips et al., 2013; Raue et al., 2012). Our transcrip-

tional analyses identified many genes with established roles in

cell growth, but we discovered that they were regulated both

bymRNA abundance and through differential modulation of their

50 or 30 UTR. Moreover, we demonstrate that UTR-specific regu-

latory events can covary with lean mass transitions in human

muscle without corresponding changes to the full-length tran-

script. These regulatory events are missed by traditional tran-

scriptomic analysis techniques that focus on the full transcript

or gene-level regulation only. For instance, the recently curated

database of transcriptional responses to acute and chronic exer-

cise (Pillon et al., 2020) calculated only gene-level RNA regula-

tion (from multiple different methods) and therefore erroneously

considers many important growth-regulating genes as being un-

important in adaptation to exercise that we identified (e.g.,

BCAT2, KDR, NRP1). More generally, this type of database (Pil-

lon et al., 2020) does not integrate physiological heterogeneity,

and as such, any potential insights are obscured by the normal-

ized means-based data analysis. In contrast, our unbiased anal-

ysis strategies yield a significant advance in our understanding of

the molecular transducers of lean mass gain in response to RT.

Using our large multi-study tissue transcriptomic biobank and

quantitative network analysis, we illustrated how HypAt-regu-

lated genes may interact to influence skeletal muscle growth.

Quantitative network analysis differs from database analysis as

it reveals quantitative gene-gene interactions. In Figure S2, a

multi-module mitochondrial network is presented that centers

around well-recognized genes, such as NDUFS3 and SDHB,

but it also reveals the regulation of less well-studied genes—

for example,ChChd3, amitochondrial membrane protein (Darshi

et al., 2011). Underscoring the power of this approach, quantita-

tive network analysis correctly localized a recently discovered

long non-coding RNA LINC00116, to our mitochondrial network

(Figure S2). Two recent publications demonstrated that a pep-

tide called mitoregulin, originating from LINC00116, localizes

to the inner mitochondrial membrane and regulates mitochon-
drial complex I activity (Chugunova et al., 2019; Stein et al.,

2018). In fact, many genes with established mitochondrial roles

were positively correlated with the degree of muscle growth.

For instance, the apelin receptor (APLNR) was regulated at the

FL-ENST level. Apelin plays an important role in the sarcopenia

of aging and positively regulates inter-myofibrillar mitochondrial

content in mice (Vinel et al., 2018). We observed that APLNR

expression was positively related to numerous mitochondrial

genes (e.g., ATP5G1, ATP5G3, BCAT2, COX7A2, NDUFB8,

NDUFS2) as part of the mitochondrial gene expression network

(Figure S2). The HypAt approach efficiently identified molecular

transducers of dynamic muscle remodeling, and when com-

bined with validation in multiple independent studies, the anal-

ysis provides unrivaled detail of the genome-wide responses.

Physiological Regulation of Human Muscle Protein
Remodeling
The most conspicuous adaptation of protein turnover with

immobilization-inducedmuscle UL is a rapid decline inMPS, first

identified >30 years ago (Gibson et al., 1987) and that the loss of

muscle mass can be explained completely by this reduction in

rates of MPS (Phillips and McGlory, 2014). The analysis of the

HypAt study demonstrated that reductions in iMyoPS represent

a dominant feature of muscle mass changes during periods of

disuse (Figure S1D), with muscle atrophy proceeding at a rate

�5 times faster during UL than corresponding RT-induced mus-

cle growth. Notably, while myofibrillar protein synthesis was

enhanced with RT, the extent of upregulation was not correlated

withmuscle growth. Ourmolecular analysis demonstrated abun-

dant regulation of mitochondrial and microvascular gene net-

works, which we speculate support adaptive changes and

contribute to and support an increased MPS signal. It has

been reported that mitochondria support angiogenesis, the co-

ordinated migration and proliferation of endothelial cells to

form new blood vessel branches (Diebold et al., 2019), and the

question arises whether components of the mitochondria also

influence muscle hypertrophy.

Mitochondrial transcript abundance is sensitive to muscle UL

(Abadi et al., 2009; Powers et al., 2012; Timmons et al., 2006).

Moreover, we have shown that maximal ADP-stimulated respira-

tion is impaired within days of UL, but in the absence of detect-

able mitochondrial protein content (Miotto et al., 2019). A loss of

mitochondrial function therefore appears to be an earlier mani-

festation of muscle disuse (Miotto et al., 2019), and this is directly

reflected in the present transcriptome model. In addition to the

mitochondrial-dominated gene network, numerous angiogen-

esis-related genes were differentially regulated in our study.

The angiogenic program is stimulated early in an RT program

and appears temporally coupled with muscle growth (Holloway

et al., 2018). In the present study, not only was the regulation

of FKBP1A linked to protein synthesis (it is a prolyl isomerase,

but also binds the immunosuppressants rapamycin and

FK506; Aylett et al., 2016) and its expression tightly coordinated

with a number of key angiogenetic genes but it also covaried with

the degree ofmuscle hypertrophy, possibly through the activities

of KLF9, NFIA, andRBPJ (Figure 4C). Clearly, muscle growth and

remodeling are multifaceted processes, and it is thus unsurpris-

ing that any relationship between muscle growth and the
Cell Reports 32, 107980, August 4, 2020 7



Figure 5. Genes Regulated by Potentially Related Physiological

Conditions Show Substantial Pathway Overlap

(A and B) Circos plots showing the overlap in gene expression (A) and Gene

Ontology (B) between the HypAt model and additional biological signatures of

potentially related physiological conditions (e.g., insulin sensitivity; RT [resis-

tance training]; age; ET [endurance training]). While the overlap in individual

genes is modest (HYPAT versus ET = 338 genes; HYPAT versus RT = 160

genes; HYPAT versus insulin sensitivity = 73 genes; HYPAT versus age = 69

genes; see Data S1 for full lists), the overlap at the pathway level is substantial

(highlighting at least one caveat of relying on only gene identifiers to compare

and contrast molecular profiles). Notably, there are pathway features of insulin

sensitivity and aging that do not appear in the ET and RT signatures (obtained

from healthy subjects).
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corresponding changes in iMyoPS would be complex, reflecting

the precise composition of newly formed proteins.

Leveraging Transcriptional Networks to Investigate
Chronic Disease and Identify Potential Therapies
Immobilization impairs the sensitivity of the protein synthetic ma-

chinery to hyperaminoacidemia (Glover et al., 2008), implicating

anabolic resistance as a key process in atrophy. Here, we find

that the average BCAT2 transcript has longer 30 UTRs and that

this change was positively related to gains in lean mass in three

independent studies (without our distinct RNA method, the

importance of BCAT2 in this context would have been missed).

BCAT is a mitochondrial protein that catalyzes the transamina-

tion of leucine to a-ketoisocaproic acid, leading to TOR complex

1 (TORC1) activation (Moghei et al., 2016). In our in vitro studies,

loss of BCAT2 in primary muscle cells resulted in reduced (Fig-

ure S7H) p70 S6K1 phosphorylation and protein synthesis (in

response to IGF-1) and an increase in eEF2 Thr56 phosphoryla-

tion (also consistent with the inhibition of protein translation). In

tumor cells, global shortening of 30 UTRs is a hallmark of

mTORC1 activation and increased protein production (Chang

et al., 2015a). This implies, as previously posited (Phillips et al.,

2013), that mTOR activation will not be key to explaining the vari-

ation in muscle growth across individuals. The loss of BCAT2

expression in vitro also resulted in the cell reducing other mem-

bers of the core 141-gene signature we describe that was regu-

lated in proportion to changes in lean mass (i.e., FKBP1A and

NID2; Figure S7A), as well as increased eEF2 Thr56 phosphory-

lation (consistent with direct FKBP1A KD; Figure 4B). Thus, the

loss of BCAT2 signals to the cell to downregulate several other

modulators of muscle growth or protein synthesis and suggests
8 Cell Reports 32, 107980, August 4, 2020
that leucine metabolism (Chawla et al., 1975; Escobar et al.,

2010) and/or aspects of amino acid sensing in general regulate

changes in human muscle mass in response to loading and UL.

While our approach identified numerous known and validated

genes, we also discovered several less well-characterizedmolec-

ular transducers ofmuscle adaptation in humans. Themain power

of genome-wide transcript modeling is that the signatures gener-

ated can be used as powerful tools to investigate chronic disease

and identify potential treatments (Chang et al., 2015b; Subrama-

nian et al., 2017; Timmons et al., 2005). At the level of individual

genes, shared features common to aging or insulin resistance

and exercise have been, to date, underwhelming (Melov et al.,

2007; Phillips et al., 2013), and we also noted limited overlap be-

tween the HypAt-regulated genes and age- or insulin-sensitivity-

regulated genes (Figure 5A; Data S1). However, at a pathway

level, the overlap between our gene signature and these pro-

cesses was considerable (Figure 5B). Specific hypotheses can

be generated by overlaying the information of transcript signa-

tures for each condition, using tissue-specific network analysis.

Annotating quantitative networks in this way revealed various sin-

gle-gene interactions between exercise, aging, and insulin

signaling. For example, we show in Figure 6 an ‘‘age network’’

formedaroundLAMTOR5, a protein subunit of the pentamericRa-

gulator complex that tethers the Rag GTPases and, by extension,

mTORC1, to the lysosomal membrane (Bar-Peled et al., 2012;

Sancak et al., 2010). The expression of LAMTOR5 was not regu-

lated by exercise, yet Figure 6 reveals parts of the LAMTOR5 ‘‘in-

teractome’’ relate to muscle activity (e.g., PRDX1 interacts with

TXNL1, andMTRF1 interacts with LAMTOR5). These interactions

can be explored further using reverse genetic strategies and phar-

macological tools in human primary cells (Crossland et al., 2017a).

Any RNA signature can be used to calculate a global ’’gene

score’’ per sample (Sood et al., 2015; Timmons et al., 2010),

and related to features of aging or frailty (i.e., used as a potential

diagnostic) or the gene list can be used to direct targeted DNA

sequencing. For example, we identified 141 gene expression re-

sponses that quantitatively related to the magnitude of muscle

growth (Figure S3, see Table S2 for instructions on how to pro-

duce a 3D representation of this network). Several genes have

already been extensively validated as regulators of growth and

protein synthesis (e.g., FOXO, MAPK, AMPK, PI3K-Akt, and

APLNR) (Ellis et al., 2014; Li et al., 2012; Sandri et al., 2013; Vinel

et al., 2018), and we validated four additional genes (see above).

There was no statistically significant overlap with the in vitro tran-

scriptional signature for rapamycin in primary muscle cells (Tim-

mons et al., 2019) and a rather limited overlap with themTOR ca-

nonical pathway. However, when using the 141-gene signature

to interrogate the L1000 drug signature database (Keenan

et al., 2018), we did identify that a number of mTOR inhibitors

could perturb the 141-gene signature. Unlike human muscle ag-

ing (Timmons et al., 2019), this list did not include rapamycin. The

cMAP L1000 database also includes transcriptional signatures

following gene KD or overexpression (OE), in 8 independent

cell lines (Data S1). Overall, we identified 119 drugs that could

either mimic or oppose the in vivo lean mass 141-gene signature

(Data S1), including numerous cyclin-dependent kinase (CDK)

inhibitors, which is consistent with our independent primary

cell culture experiments, where we found that eEF2 Thr56



Figure 6. Quantitative Network Analysis Unveils Potentially Important Gene Interactions across Potentially Related Physiological Conditions

An example network of gene interactions across different, yet interrelated physiological conditions, constructed using HypAt-, age-, and insulin sensitivity-

regulated transcripts (FDR < 5%) as input into Megena (FDR < 1% Spearman correlation; p < 0.01 for module significance, p < 0.01 for network connectivity, and

10,000 permutations for calculating FDR and connectivity p values). This example network is centered on LAMTOR5, a gene encoding a subunit of the pentameric

Ragulator complex involved inmTORC1 activation. From these interactome networks, relationships between genes can be discovered and subsequently studied

in model systems. Triangle symbols represent ’’hub genes,’’ whereas circles represent non-hub network members. Node colors represent different subnetwork

clusters, and node size is proportional to node degree.
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phosphorylation status was influenced by BCAT2 and FKBP1A

expression. Future studies examining the potential of some of

these 119 drugs to interact with exercise-induced muscle adap-

tation will shed light on whether the matching of transcriptional

signatures is predictive of positive synergies or potential aggra-

vation of age-related muscle frailty.
Limitations of Study
The present study lacked a parallel proteome analysis. To over-

come this limitation, we used large-scale protein-protein interac-

tion datasets to establish that our data generate significant net-

works containing proteins that belong to pathways known to

regulate cell growth and protein synthesis. This allowed us to

demonstrate strong agreement between our transcriptional

approachand theproteomechanges identified ina recentpublica-

tion (Robinson et al., 2017). While our paired loading and UL

modeling strategy recapitulated well-known RNA and proteome

signatures, we only included men in the HypAt study. Women

have shown, compared to men, a differing abundance of genes

involved in fatty acid oxidation (Liu et al., 2010); perhaps this is of
limited concern, given that in a large (n = 178) analysis of muscle

sex differences in physiologically matched subjects, only �200

genes are differentially expressed (>1.2 FC, FDR < 1%), and only

2, ATRNL1 and TSPYL2, are in the present analysis. Finally, our

method identifies alterations in UTR signal, but it does not catalog

the specific details, which can include losses and gains in micro-

RNA (miRNA) target sites, mRNA stability, and alterations in tran-

script polyadenylation. For example, the increase in FKBP1A 30

UTR signal reflects the increased production of up to 3 transcripts

with the long 30 UTR, each coding for �100 amino acid protein.
Conclusion
We developed a powerful model and analytical tool to measure

the within-individual paired tissue responses to loading and UL

in human muscle tissue that reduces response heterogeneity

by �40%, meaning that lower sample sizes can be used to

discover insightful transcriptional signatures (MacInnis et al.,

2017) before independent validation. Using an innovative

genome-wide analysis strategy, we also demonstrated signifi-

cant regulation of gene expression occurring only at the UTRs,
Cell Reports 32, 107980, August 4, 2020 9
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thus providing some insight into the reported discordance be-

tween mRNA and corresponding protein levels. Moreover, we

discovered that many of these UTR regulatory events covary

with lean mass transitions in humans. The global pattern of

gene expression was not mTOR dominant; however, we demon-

strate some level of mTOR involvement occurring at the protein

phosphorylation level. The extensive independent validation and

close agreement with previous mechanistic studies supports the

use of the HypAt model as a powerful tool to identify causal mo-

lecular determinants ofmuscle growth and atrophy directly in hu-

mans using a variety of molecular techniques and interventions.
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Antibodies

Phospho-mTOR (Ser2448) (D9C2) XP� Rabbit mAb Cell Signaling Technology CAT: #5536; RRID: AB_10691552

Phospho-p70 S6 Kinase (Thr389) (108D2) Rabbit mAb Cell Signaling Technology CAT: #9234; RRID: AB_2269803

Phospho-eEF2 (Thr56) Antibody Cell Signaling Technology CAT: #2331; RRID:AB_10015204

Phospho-4E-BP1 (Thr37/46) (236B4) Rabbit mAb Cell Signaling Technology CAT: #2855; RRID:AB_10695878

Anti-Puromycin Antibody, clone 12D10 Merck Millipore CAT: MABE343; RRID:AB_2566826

Biological Samples

Human Muscle Present article NA

Human Muscle Morton et al., 2016;

Mitchell et al., 2014;

Phillips et al., 2017

NA

Chemicals, Peptides, and Recombinant Proteins

Deuterium oxide (D, 70%) Cambridge Isotope

Laboratories, Inc.

DLM-4-70-PK; CAS#7732-18-5

Dowex – 50WX8 – Hydrogen Form Sigma Aldrich AC335335000

PhosStop Phosphatase Inhibitor Roche 04906837001

cOmplete Mini EDTA-free Protease Inhibitor Cocktail Roche 11836170001

TRIzol Reagent ThermoFisher Scientific CAT: 15596018

CD56 Microbeads, human Miltenyi Biotec CAT: 130-097-042

Lipofectamine RNAiMAX Transfection Reagent ThermoFisher Scientific CAT: 13778030

LONG� R3 IGF-I human Sigma-Aldrich CAT: I1271

Puromycin dihydrochloride Sigma-Aldrich CAT: P8833

SYBR Select Master Mix Applied Biosystems CAT: 4472920

Critical Commercial Assays

E.Z.N.A Total RNA Isolation Kit Omega Bio-Tek SKU: R6834-01

GeneChip WT Plus Reagent Kit ThermoFisher Scientific CAT: 902280

High-Capacity cDNA Reverse Transcription Kit Applied Biosystems CAT: 4368813

Deposited Data

Raw and analyzed data This study GEO: GSE154846

Oligonucleotides

esiRNA human BCAT2 (esiRNA1) Sigma-Aldrich CAT: EHU032991

esiRNA human NID2 (esiRNA1) Sigma-Aldrich CAT: EHU083781

esiRNA human FKBP1A (esiRNA1) Sigma-Aldrich CAT: EHU106961

esiRNA human MBNL1 (esiRNA1) Sigma-Aldrich CAT: EHU086561

Primer: BCAT2 Forward: GAGCTGAAGGAGATCCAGTACG Sigma-Aldrich N/A

Primer: BCAT2 Reverse: GAGTCATTGGTAGGGAGGCG Sigma-Aldrich N/A

Primer: NID2 Forward: TGGAAGCTACAGGTGTGAGTG Sigma-Aldrich N/A

Primer: NID2 Reverse: AGGTGGGGTGATCAAGATGCAA Sigma-Aldrich N/A

Primer: MBNL1 Forward: CTGCCCAATACCAGGTCAAC Sigma-Aldrich N/A

Primer: MBNL1 Reverse: GGGGAAGTACAGCTTGAGGA Sigma-Aldrich N/A

Primer: FKBP1A Forward: GGTGGAAACCATCTCCCCAG Sigma-Aldrich N/A

Primer: FKBP1A Reverse: TCAAGCATCCCGGTGTAGTG Sigma-Aldrich N/A

(Continued on next page)
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Software and Algorithms

ImageJ Schneider et al., 2012 https://imagej.nih.gov

Bowtie Alignment Tool Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/index.

shtml

Significance Analysis of Microarrays (SAM) implemented in

the R programming environment (SAMR)

Tusher et al., 2001 https://cran.r-project.org/web/packages/

samr/index.html

aroma.affymetrix Bengtsson et al., 2008 https://cran.rstudio.com/web/packages/

aroma.affymetrix/index.html

MEGENA Song and Zhang, 2015 https://rdrr.io/cran/MEGENA/

Bioconductor Gentleman et al., 2004 https://www.bioconductor.org/

CMap-L1000v1 database Subramanian et al., 2017 https://clue.io/

Custom CDF protocol Timmons et al., 2018 https://www.augurprecisionmedicine.com

Ciiider Gearing et al., 2019 www.ciiider.org

Other

GeneChip Human Transcriptome Array 2.0 and RT

labeling kits

ThermoFisher Scientific CAT: 902162

Raw and analyzed data Timmons et al., 2018, 2019 GEO: GSE154846

Human reference genome NCBI build 38, GRCh38_82p3 Genome Reference

Consortium

https://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/
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Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Dr. Stuart M. Phillips

(phillis@mcmaster.ca)

Materials Availability
This study did not generate any unique reagents.

Data and Code Availability
The accession number for the newly generated gene expression data reported in this paper is GEO:GSE154846 . Code for the various

informatics analyses can be readily obtained by contacting jamie.timmons@gmail.com.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Participants
Participants were recruited via local advertisements posted at McMaster University. Twelve recreationally-active men (18-30 y) vol-

unteered to participate in the study. A medical history questionnaire was administered at screening to exclude any individuals taking

medications known to affect protein metabolism (i.e., glucocorticoids, prescription-strength acne medication, or non-steroidal anti-

inflammatories), those with a (family) history of deep vein thrombosis, or individuals with acute or chronic illnesses that interfered with

the safe conduct of the study. All participants provided informed verbal and written consent prior to beginning the study. The exper-

imental trial was approved by the Hamilton integrated Research Ethics Board (REB #2867) and complied with the ethical standards

outlined in the Tri-Council Policy statement for use of humans in research. This study was registered on CinicalTrials.gov with the

identifier NCT03046095.

Human Primary Muscle Cell Culture
Human primary skeletal muscle cells were isolated from muscle biopsies from healthy young adults and cultured as previously

described (Crossland et al., 2017a, 2017b). Myogenic cell enrichment was carried out using magnetic-activated cell sorting

(MACS), using anti-CD56 microbeads and myoblasts were used for experimentation at passage 5-6. MACS-sorted myoblasts

were cultured on Collagen Type I-coated 6-well dishes in Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F-12;

Life Technologies) containing 20% (v/v) fetal bovine serum (FBS, Sigma-Aldrich), 1% (v/v) antibiotic-antimycotic (AbAm) solution

and 4mM L-glutamine (Life Technologies). Once cells reached �95% confluency, differentiation was induced by switching the
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medium to DMEM/F-12 containing 2% (v/v) horse serum (Sigma-Aldrich), 4mM L-glutamine and 1% (v/v) AbAm solution (Life Tech-

nologies). Puromycin based measures of protein synthesis was determined as previously described (Crossland et al., 2017b).

METHOD DETAILS

Experimental Protocol
The total duration of the study, including familiarization sessions, was 11 weeks.We employed a within-subjects design whereby one

leg was randomized to perform unilateral leg extension and leg press exercise 3 d$wk-1 for 10weeks. The contralateral leg had a knee

brace applied during the last two weeks of the study, and otherwise remained untrained. Body composition and maximal strength

assessments were performed before training (Pre-RT; day 0), before immobilization (Pre-UL; day 56), and upon completion of training

and immobilization (Post-RT/UL; day 70). At each testing session, participants had their lean body mass (LBM), mid-thigh vastus lat-

eralis cross sectional area (VLCSA), and ISO-MVC assessed. VLCSA, muscle volume, and whole-quadriceps CSA was quantified

using magnetic resonance imaging (MRI) at time points Pre-RT and Post-RT. A total of 7 muscle biopsies were obtained from the

vastus lateralis throughout and used, in conjunction with deuterium oxide, to measure integrated rates of muscle protein synthesis

(see below).

Pretesting
Participants visited McMaster University on three separate occasions at least one week prior to beginning the study to be famil-

iarized on the proper execution of an isometric maximal voluntary contraction (ISO-MVC) and unilateral leg extension and leg press

exercises. One-repetition maximum (1-RM) was tested on visits 2 and 3. Proper execution of unilateral leg extension and leg press

contractions was demonstrated, after which participants performed one set of non-exhaustive contractions while having their form

critiqued and adjusted. Participants then completed 3 sets of leg extension followed by 3 sets of leg press, with each set sepa-

rated by a 90 s rest period. On the final set of each exercise, participants were instructed to reach volitional failure, defined as an

inability to complete a full contraction through the predefined range of motion. Weight lifted, and the number of repetitions

completed for both leg extension and leg press exercises, was recorded and used to calculate estimated 1-RM using the following

formula:

1�RMðkgÞ= ðLoadðkgÞÞ=ð1:0278� ð0:0278x#repsÞÞ (Equation 1)

On the second visit (�48hr after visit 1), participants completed two submaximal sets of 8-12 repetitions on the leg extensionmachine

at�40%–60% of their estimated 1-RM. Participants then attempted to lift 90% of their 1-RM predicted from Equation 1. Weight was

increased progressively until the participant could not complete a full repetition. This testing procedure was repeated on the leg press

after �10 mins of rest. On the third visit,1-RM load was retested and either verified or adjusted accordingly and used for the subse-

quent calculation of week 1 working loads.

Dietary Records and Activity Monitoring
Participants completed 3-d dietary records during week 1, week 5 and week 10 of the study. Each record consisted of two weekdays

and one weekend day. A sample record was provided to each participant to permit the accurate estimation of portion sizes. Dietary

records were analyzed using NutriBase software (Cybersoft Inc., version 11.5, Phoenix, AZ, USA). During dietary recording, partic-

ipants were also asked to wear an ActiGraph wGT3X-BT activity monitor (ActiGraph, Pensacola, FL, USA) on their dominant wrist to

track daily step count and other metrics of physical activity levels. Data were downloaded from the activity monitors and analyzed

using ActiLife version 6 13.2 software (ActiGraph, Pensacola, FL, USA).

Unilateral Resistance Exercise - HypAt
Participants visited the laboratory everyMonday,Wednesday, and Friday to complete unilateral leg extension and leg press exercise.

Each session was supervised by a strength and conditioning coach and consisted of 3 sets of 8-12 repetitions of leg extensions and 3

sets of 8-12 repetitions on a 45-degree leg press. The last set of each exercise was performed to volitional failure, defined as an

inability to complete a repetition through the full range of motion. If the participant successfully completed more than 12 or less

than 8 repetitions, weight was adjusted accordingly. Following each exercise bout, participants ingested 25 g of whey protein isolate

to maximize the protein synthesis response to each exercise bout.

Immobilization
A X-ACT ROM knee brace (DonJoy, Dallas, TX, USA) was applied to the contralateral non-training leg for a continuous period of 14 d

during weeks 9 and 10. The angle of the brace was adjusted to permit toe clearance during crutch-assisted ambulation without active

hamstring flexion and averaged �60� flexion.

Dual energy X-ray absorptiometry
Leg leanmasswas assessed using dual energy X-ray absorptiometry Pre-RT, Pre-UL, and Post-RT/UL. TheDXAwas calibrated daily

prior to participant arrival using a three-compartment Universal Whole Body DXA Phantom (Orthometrix, Naples, Florida).
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Participants also underwent a fastedMRI scan of both thighs on day 0 and upon study completion (day 70) for the assessment ofmid-

thigh and whole-quadriceps CSA (see below).

Muscle Strength
Isometricmaximal voluntary contractions (ISO-MVC)were performed prior to exercise Pre-RT, Pre-UL, and after exercise completion

to assess peak knee extensor torque using a Biodex dynamometer (Biodex System 3, Biodex Medical Systems, Shirley, NY, USA).

Participants were familiarized on three separate occasions during the pretesting visits to avoid practice effects associated with de-

vice familiarity. During the pre-test familiarization sessions, chair settings were adjusted to each participant such that the knee joint

was aligned with the axis of rotation of the machine. All chair settings were recorded for accurate replication during subsequent

testing sessions. Each session consisted of five isometric contractions at 60� from the resting, 90� neutral position. Contractions

lasted 5 s and were separated by a 2-min resting period. Both legs were tested at each session in randomized order. Participants

were shown their force tracing and verbally encouraged during each effort to limit the influence of motivation on trial performance.

Peak torque was recorded and used in subsequent analyses. The coefficient of variation between contractions did not exceed 5%.

Deuterium Oxide Protocol
The incorporation of deuterium oxide (D2O) into muscle protein-bound alanine was assessed to quantify muscle protein synthesis

rates. Deuterium dosing began on day 52 and continued until day 70. The protocol consisted of one loading day and 17maintenance

days with the goal of enriching, and subsequently maintaining the body water pool at �0.5% 2H atom percent excess (APE). Partic-

ipants reported to the laboratory at 0800 h after an overnight (�10 h) fast on day 52 (Thursday) and were asked to void their bladder

before undergoing a DXA body scan to determine lean body mass. Participants then ingested 8 doses (0.625 ml$kg-1 LBM) of 70%

D2O (Cambridge Isotope Laboratories, Andover, MA, USA) evenly spaced every 1.5 h throughout the day. After 5 of the 8 doses were

ingested, participants were sent home with the remaining 3 doses and instructed to ingest them 1.5 h apart. None of the participants

reported any adverse side effects such as nausea or vertigo after consuming D2O. Blood samples were collected in EDTA blood

tubes and saliva samples were obtained by gently chewing on a cotton swab for 2-3 min until completely saturated with saliva. Blood

and saliva samples were centrifuged at 4000 rpm for 10 min at 4�C, after which aliquots of each were snap frozen in liquid nitrogen

and stored at �80�C for subsequent analysis.

Saliva Analysis
Saliva samples were obtained at baseline prior to commencing deuterium oxide loading on day 52 and each morning thereafter until

the end of the study. Salivettes were centrifuged at 4000 rpm for 10 min and diluted in doubly-distilled water. Deuterium enrichment

was then measured using a Picarro L2130-i Cavity Ringdown Spectrometer run in high-throughput mode. Six injections were per-

formed on each sample; the first readings were discarded to eliminate memory effects from previous sample injections. Internal

lab standards containing low, medium, and high enrichments of 2H were sampled in parallel prior to and following each participant’s

samples to account for drift in enrichment over time.

Magnetic Resonance Imaging
Participants underwent a fasted MRI scan of both thighs on day 0 and upon study completion (day 70) for the assessment of mid-

thigh and whole-quadriceps CSA. Each scan was performed in a 3-Tesla HD Scanner (Signa MRI System; GE Medical, Milwaukee,

Wisconsin) at the Imaging Research Center (St. Joseph’s Healthcare, Hamilton, ON). Axial (transverse) MR images were obtained

from both thighs from the distal end of the femur to greater trochanter. A fast-recovery, fast spin echo (FRFSE) pulse sequence

was used, along with IDEAL (iterative decomposition of water and fat with echo asymmetry and least-squares estimation) post-pro-

cessing to obtain water-only, fat-only, in-phase and out-of-phase images of the thighs. The following parameters were used: (TR) =

2000 msec, (TE) = 30 msec, refocusing flip angle = 111 degrees, echo train length = 6, ASSET (parallel imaging factor) = 2, field of

view = 42x21 cm, acquisition matrix = 512x256, 3 mm slice thickness, and 0mm slice gap. A total of�160 slices were acquired from

each participant. The acquisition was completed in two sections: a lower stage and an upper stage, which were subsequently

stitched together by an MR technician. Total scan time for both stages was approximately 11 min. Images were downloaded

from a secure server and analyzed using ImageJ (NIH, v 1.52). Mid-thigh vastus lateralis CSA was analyzed at 50% of the distance

between the greater trochanter and lateral epicondyle of the femur. Peak-quadriceps CSA was the slice with the greatest measured

quadriceps CSA. Finally, quadriceps muscle volume was calculated by summing the CSA measurements of a given slice multiplied

by the slice thickness. Peak-quadriceps CSA and muscle volume were analyzed using semi-automatic image analysis software

(AnalysisPro). The distal 20% of thigh images and the proximal 30% were not included in analyses. This data was not utilized as

the additional three clinical studies only had DXA measures of muscle mass.

Muscle Tissue Extraction
Muscle biopsy samples (�100 – 150mg each) were obtained on 7 occasions under local anesthesia using a Bergstrom needle modi-

fied for manual suction. Biopsies were taken from the RT limb pre-RT (day 0), day 53, day 56 and day 70 and from the UL limb on day

53, 56, and 70. Blood and other non-muscle tissue were dissected from each specimen at bedside prior to being snap-frozen in liquid

nitrogen (within �20 s) and stored at �80�C.
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RNA Extraction and Transcriptome Profiling
Approximately 20 mg of muscle was used to extract RNA. Muscle samples and 1000 mL of TRIzol were added to Lysing Matrix D

tubes containing ceramic microbeads (MP Biomedicals, Solon, OH, USA) and homogenized using a FastPrep tissue homogenizer

(MP Biomedicals, Solon, OH, USA). 200 mL of chloroform was added and the tubes hand-shaken vigorously for 15 s and incubated

at room temperature for 5 min. Samples were then centrifuged at 12 000 g for 10 min at 4�C and the upper aqueous phase containing

RNA was transferred to an RNase-free tube. RNA was purified using E.Z.N.A Total RNA Isolation kit (Omega Bio-Tek, Norcross, GA,

USA). RNA was processed for transcriptome profiling using the GeneChip WT Plus Reagent Kit according to manufacturer’s instruc-

tions. Briefly, first and second strand cDNA synthesis was performed using 100 ng of RNA and a spike-in Poly-A control, which was

then followed by reverse transcription into cRNA. cRNA was purified using magnetic beads and quantified using spectrophotometry

(Nanodrop UV-Vis, Thermo Fisher Scientific). 15 mg of cRNA was then amplified and hydrolyzed using RNase H (leaving single-

stranded cDNA) and purified with magnetic beads. cDNA (5.5 mg) was then fragmented and labeled. A hybridization master mix

was prepared and added to the fragmented and labeled cDNA. 200 mL of the mixture was applied to the HTA 2.0 cartridge and hy-

bridized at 45�C for 16 h rotating at 60 rpm. The cartridge was washed and stained using the FS450_001 fluidics protocol on the

GeneChip Fluidics Station 450 (Thermo Fisher) and scanned using a GeneChip Scanner 3000 7G (Thermo Fisher).

Myofibrillar Extraction
Snap-frozen muscle samples were homogenized using buffer (10 ml$mg-1) containing 25 mM Tris buffer (pH 7.2), 0.5% vol/vol Triton

X-100, a phosphatase inhibitor (PhosStop) and a complete protease inhibitor tablet (Roche, Mississauga, ON, CA). Samples were

centrifuged at 4500 rpm for 10min at 4�Cand the supernatant was removed. Collagenwas precipitatedwith 1MNaOH and discarded

leaving a myofibrillar-enriched supernatant fraction. Perchloric acid (1M) was added to the supernatant to precipitate the myofibrillar

fraction. Proteins were then hydrolyzed by adding 1mL of Dowex resin (50WX8-200) and 1mL of 1M HCl to each sample followed by

subsequent incubation for 72 hr at 110�C. Samples were vortexed every 24 hr. Free amino acids were then isolated using Dowex ion-

exchange chromatography and the N-acetyl-n-propyl ester of alanine was prepared and analyzed by gas chromatography pyrolysis

isotope ratio mass spectrometry.

Calculations
Saliva

Saliva deuterium enrichments were provided as a ratio (d2H), where:

d2H =

� ð2H=1HÞ sample

ð2H=1HÞ standard� 1

�
� 1000 (Equation 2)

Atom percent values were calculated as previously described:

AtomPercent =
100 x AR x ðd2H x 0:001+ 1Þ

1+ARðd2H x 0:001+ 1Þ (Equation 3)

Where AR is the absolute ratio constant for deuterium (0.00015595) based on the VSMOWstandard. Atompercent excess was calcu-

lated by subtracting background deuterium enrichment (at time = 0) from each sample and multiplying the result by 35 to account for

sample dilution.

Integrated Muscle Protein Synthesis Rates

Myofibrillar protein synthesis was calculated using the standard precursor-product equation:

iMyoPS
�
% $d�1

�
=

� ðD APEAla Þ
APEBW 3 3:7 x t

�
3 100 (Equation 4)

WhereD APEAla is the change in protein-bound
2H-alanine enrichment between biopsy sampling points,APEBW is the body-water 2H

enrichment multiplied by 3.7 to correct for the number of carbon-hydrogen bonds labeled in alanine relative to total body water, and t

is the incorporation time (in days) between biopsies. RT-induced change in iMyoPS was calculated using the muscle deuterium

enrichment values calculated in the muscle specimen taken from the RT limb on day 70 and the UL limb on day 56 (i.e., rested

limb). The effect of UL on iMyoPS was calculated using the muscle deuterium enrichment values calculated in the muscle specimens

taken from the UL limb on day 70 and from the UL limb on day 56.

Exercise Protocols used in Independent Studies
Morton et al. (2016)

For a detailed description of the RT protocol used, refer toMorton et al. (2016). Participants were 23 ± 2 years old, with a BMI of 26.9 ±

2 kg/m2 and had 4-5 y of resistance training experience. Briefly, participants performed full-body resistance training 4 days/week

(Mon, Tues, Thurs, Fri) for 12 weeks that targeted all of the major muscle groups. Each session included 5 exercises, each of which

were performed for 3 sets to volitional failure. Participants were randomly assigned to perform either high-repetition (20-25 reps per

set @ 30%–50% 1-RM) or low-repetition training (8-12 reps per set @ 75%–90%1-RM). Indices of muscle hypertrophy did not signif-

icantly differ between the groups post-RT, so group allocation was not considered in the present use of muscle tissue samples.
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Participants consumed 30 g of protein after each exercise bout. Muscle biopsies were taken from the vastus lateralis using the Berg-

strom approach described above prior initiating the RT protocol and 72 h after the final RE bout at 12 weeks. RNAwas extracted from

whole muscle samples and analyzed on the HTA 2.0 platform using an identical method as described above (see RNA Extraction and

Transcriptome Profiling).

Mitchell et al. (2014)

For a detailed description of the protocol used, refer to Mitchell et al. (2014). Participants were 24 ± 1 years old, with a BMI of 26.4 kg/

m2 and were recreationally active (not participating in an RT program). Participants performed full-body resistance training 4 days/

week for 16weeks consisting of two upper body and two lower body training sessions per week. The program progressed from 3 sets

of 12 repetitions to 4 sets of 6 repetitions of each exercise. The last set of each exercise was performed to volitional failure. Partic-

ipants consumed 30 g of protein immediately after each exercise session. Biopsies were obtained from the vastus lateralis using the

Bergstrom approach described above prior to initiating 16 weeks of RT and�48-72 h following the last RE bout. RNA was extracted

from whole muscle samples as described above (see RNA Extraction and Transcriptome Profiling). Samples were dissolved in

RNase-free water, processed to single-stranded sense fragmented DNA using the GeneChip� WT PLUS Reagent Kit, which relies

on a reverse transcription priming strategy that primes both the poly-A and non-poly-A RNA. HTA 2.0 chips were processed accord-

ing to the manufacturer’s protocol. Fragmented (5 mg) end-labeled sense strand target cDNA was hybridized to each array and

scanned using a Gene Chip Scanner 30007G (Affymetrix Core, MPI A/S, Denmark).

Phillips et al. (2017)

For a detailed description of the protocol used, refer to Phillips et al. (2017). Participants performed high-intensity interval training

(HIIT) 3 days/week (Mon, Wed, and Fri) for 6 weeks. Each session consisted of a 2 min warmup at 50 W followed by 5 sets of

high intensity cycling at �125% VO2max for 1 minute. Each set was separated by 90 s of rest. Biopsy tissue was available at pre

and post time points for 47 participants, including 16 males and 31 females with an average age of 39 years (range 20-51 years)

and a BMI of 31 kg/m2 (27-43 kg/m2). RNA was extracted using TRizol� (Life Technologies), dissolved in RNase-free water, pro-

cessed to single-stranded sense fragmented DNA using the GeneChip�WT PLUS Reagent Kit, which relies on a reverse transcrip-

tion priming strategy that primes both the poly-A and non-poly-A RNA. HTA 2.0 chips were processed according to the manufac-

turer’s protocol. Fragmented (5 mg) end-labeled sense strand target cDNA was hybridized to each array and scanned using a

Gene Chip Scanner 30007G (Affymetrix Core, MPI A/S, Denmark).

siRNA Transfection Experiments
Four days following initiation of myocyte differentiation, siRNA transfection was carried out following a media change, using lipofect-

amine RNAiMAX (Invitrogen), according to themanufacturer’s instructions. Gene-specific knockdownwas achieved using 500ng hu-

manMission� esiRNA (Sigma-Aldrich) for the following genes: BCAT2 (EHU032991), NID2 (EHU083781), FKBP1A (EHU106961) and

MBNL1 (EHU086561). Thirty-six hours following transfection, a media change was carried out and long R3 IGF-1 (50 ng/ml; Sigma-

Aldrich) was added to each well. Cells were harvested after 4h in TRIzol (Life Technologies) for RNA extraction (n = 2), or homoge-

nization buffer (50 mM Tris-HCl, pH7.5, 1 mM EDTA, 1 mM EGTA, 10 mM b-glycerophosphate, 50 mM NaF and complete protease

inhibitor cocktail tablet (Roche, West Sussex, UK)) for protein extraction (n = 4). A subset of cells was also collected after 48h in 0.3

mol/l NaOH for total protein, RNA and DNA extraction and quantification (n = 5). For 4h experiments, 0.5 mM puromycin (Sigma-Al-

drich, UK) was added to each well at the point of IGF-1 addition.

Cell culture total RNA Extraction and RT-PCR
Total RNAwas extracted using TRIzol (Life Technologies) according to themanufacturer’s protocol. RNAwas resuspended in 20 ml of

RNase-free water and quantified using a NanoDrop (Thermo Scientific). cDNA was synthesized by reverse transcription using the

High Capacity cDNA synthesis kit (Applied Biosystems) with 500 ng RNA. Samples were subsequently diluted 1:5 using RNase-

free water and real-time PCR was performed using 1 ml cDNA in duplicate and 6 ml master mix containing SYBR Select Master

Mix (Life Technologies) with primers targeting the following genes: BCAT2 (Fwd: GAGCTGAAGGAGATCCAGTACG, Rev: GAGT-

CATTGGTAGGGAGGCG), NID2 (Fwd: TGGAAGCTACAGGTGTGAGTG, Rev: AGGTGGGGTGATCAAGATGCAA), MBNL1 (Fwd:

CTGCCCAATACCAGGTCAAC, Rev: GGGGAAGTACAGCTTGAGGA), and FKBP1A (Fwd: GGTGGAAACCATCTCCCCAG, Rev:

TCAAGCATCCCGGTGTAGTG). RPL13A was used for as a housekeeping gene since it was stable between each group. PCR

was performed using a Viia 7 real-time PCR machine (Life Technologies) using the following thermal cycling conditions: 2 min at

50�C, 10 min at 95�C and 40 cycles of 15 s at 95oC and 1 min at 60�C.

Cell culture Western Blotting
Protein extraction from cells was performed by repeatedly passing samples through gel-loading pipette tips. Samples were centri-

fuged at 13,000 g for 10 min at 4�C. Protein samples (5 mg) were loaded onto Criterion XT 12%Bis-Tris gels (Bio-Rad) at 200V for 1h,

then transferred to PVDFmembrane for 45 min at 100V. After this, membranes were blocked using 5% (w/v) milk for 1h at room tem-

perature, then incubated with primary antibodies all diluted 1:2000 (phosphorylated mTOR Ser2448 (#5536), phosphorylated p70

S6K1 Thr389 (#9234), phosphorylated eEF2 Thr56 (#2331), and phosphorylated 4E-BP1 Thr37/46 (#2855); all from Cell Signaling
Cell Reports 32, 107980, August 4, 2020 e6



Resource
ll

OPEN ACCESS
Technology), except for anti-puromycin (Millipore), which was diluted 1:5000. Membranes were incubated overnight at 4�C. The
following day, membranes were washed 3x5 min with 1x TBS-Tween, then incubated with HRP-conjugated anti-rabbit secondary

antibody (New England) 1:2000 for 1h at room temperature. Bands were detected by incubating with enhanced chemiluminescence

detection reagent (Millipore) and exposing in a Chemidoc XRS system (Bio-Rad). Bands were normalized against GAPDH levels. For

total Protein, RNA and DNA measurements (48h) cells were harvested in 0.3 mol/L NaOH and then incubated at 37�C for 20 minutes

(extraction of total alkaline-soluble protein). After protein quantification, 1mol/L PCAwas added to each sample, which were then left

at 4oC for 30minutes. After centrifugation, the supernatant was quantified for RNA. Finally, to the pellet, 2 mol/L PCAwas added and

samples were incubated at 70�C for 1h. The resultant supernatant was used to quantify DNA.

QUANTIFICATION AND STATISTICAL ANALYSES

Physiological Data
Physiological data were assessed for normality using the Shapiro-Wilk test and visually inspected using Q-Q plots. Paired-samples t

tests were conducted to test for baseline differences in leg lean mass, mid-thigh CSA, and ISO-MVC between the trained and im-

mobilized legs. Changes in physical activity and macronutrient intake over the duration of the study were analyzed using a one-

way repeated-measures ANOVA. Changes in ISO-MVC, mid-thigh CSA and body composition variables obtained via DEXA were

analyzed using a two-way repeated-measures analysis of variance (ANOVA) with time (2) and leg (2) as the within-subjects’ factors.

Muscle protein synthesis was analyzed using a one-way ANOVA with repeated-measures. In all cases, the statistical procedures

were conducted on 12 young men (n). Results are presented as mean response plus/minus SD and, where appropriate, the median

and range is included to emphasize variation in response. A Tukey’s HSD post hoc test was employed to probe for pairwise differ-

ences between legs and across time points where warranted. In all analyses, statistical significance was set at p % 0.05.

Transcriptomic Data
All of the new HTA 2.0 array data has been deposited along with existing array data and are available at GEO (GSE154846).

Standard quality control processes were performed for each study (NUSE plots and PCA). While the array offers advantages

in terms of reproducibility, standard pre-processing approaches do not account for study specific probe-performance, and

we have developed a study-specific pipeline that scans the 7 million short probes prior to assembly of transcripts using the

following criteria:

a) specific to one location on the genome

b) the probe signal is above background noise in the particular dataset

Data analysis methods utilized numerous informatics resources (Bengtsson et al., 2008; Dai et al., 2005; Gentleman et al., 2004;

Wang et al., 2012). Each transcriptional ‘unit’ of expression was defined by establishing which of the �6.9 million probes, from the

HTA 2.0 chip, were detectable, and then assembling the signal from GC corrected ‘active’ probes into probe-sets (defined by en-

sembl ENST identifiers, http://www.ensembl.org//useast.ensembl.org/?redirectsrc=//www.ensembl.org%2F). The custom chip

definition file (CDF) used to summarize the transcript level data is deposited at GEO. Our method provides an enhanced signal by

removing individual probes, from probe-sets, that approximate to background noise. To create each CDF, the �6.9 million probe

sequences (Affymetrix website) were aligned to the genome build e.g., GRCh38_82p3 (e.g., see http://brainarray.mbni.med.

umich.edu for a description) using bowtie alignment tool (Langmead and Salzberg, 2012). Probes which map to more than one

part of the genome are discarded. There are �50,000 probes on the HTA 2.0 array which have an extreme GC content (i.e., <

20%, > 80%) and these were removed as the adjustment model used to correct GC content is not effective at these extreme values.

Older-generation transcriptomic data was re-processed to use the same transcript identifiers from the updated HTA pipeline (Tim-

mons et al., 2018).

Most studies of human muscle to date have used RNA detection technology that is unable to accurately measure exon-specific

transcripts (Shalek et al., 2013) or provides partial and skewed coverage of the transcriptome. Our process allows us to define which

part of the transcript wewish to quantify and in the present study, we apply the customCDF approach to study differential expression

of specific regions of transcripts through comparing the differential expression (DE) response of the entire (‘full length’) ensembl

defined transcript unit, with the responses of only the untranslated regions – regions critical for regulating protein translational effi-

ciency and hence a key component of the cell hypertrophy response. For DE analysis, we utilized paired SAMR analysis using a cut

off of 5% FDR and 1.2-fold difference to generate the initial transcript lists - before applying a number of down-stream approaches to

subset the data (See Results). For network analysis, we used the R-package MEGENA (Song and Zhang, 2015) to identify network

structures (FDR < 1% for spearman correlation; p < 0.01 for module significance and p < 0.01 for network connectivity) and 10,000

permutations for calculating FDR and connectivity p values. Network data-plots were produced using Fruchterman-Reingold force

directed plotting within MEGENA (Song and Zhang, 2015). CiiiDER was used to identify potential regulatory transcription factors

(Gearing et al., 2019).
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To estimate if a UTR signal was regulated in a manner distinct from the full length (FL) ENST’s the following heuristic was utilized:

1) A ‘‘gene’’ was considered if it was significantly regulated in any one of the three statistical analysis comparisons between RT

and UL (FL-ENST, 30UTR and 50UTR values, FDR < 5%, > 1.2FC)

AND

2) the FL-ENST was neither statistically regulated, nor the absolute numerical FC values were > 30% different from the matching

statistically significant UTR response

OR

3) the FL-ENST was statistically regulated but the absolute numerical FC values were > 30% different from the numerical UTR

response e.g., to include discordant patterns
Cell Reports 32, 107980, August 4, 2020 e8
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Figure S1. Muscle atrophy proceeds much more rapidly than muscle hypertrophy and is related to the 
change in muscle protein synthesis, related to Figure 2.  
(A) Percentage change in mid-thigh vastus lateralis cross sectional area (VLCSA) following 10 weeks of resistance 
training (RT) and 2 weeks of unloading (UL); n=12.  
(B) Percentage change in quadriceps volume following 10 weeks of RT and 2 weeks of UL, n=12. 
(C) Percentage change in peak-quadriceps CSA following 10 weeks of RT and 2 weeks of UL, n=12. 
(D) The linear relationship between changes in iMyoPS in response to 2 weeks of UL and the corresponding 
reduction of VLCSA in the same limb (Pearson’s r=0.8, p<0.05, caveat with small sample size acknowledged 
despite the high probability of a causal relationship between these two variables); n=12. 
(E) Average deuterium enrichment in saliva during the periods over which iMyoPS was assessed. The horizontal 
dotted line shows the global average from day 1 (i.e. after loading) until day 20; n=12.  
For box and whisker plots, the boxes include the 25th, 50th and 75th quartiles and whiskers represent the maximum 
and minimum values. The mean value is depicted by the ‘+’ symbol. 
*denotes statistically different from Pre; # statistically different from RT value (p<0.05). 
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Figure S2. HypAt-regulated genes form functional networks in a large human muscle tissue biobank, related 
to Supplemental Data S1 and Figure 3.   
Using the HypAT FL-ENST regulated transcripts (FDR <5%) as input into Megena (FDR <1% spearman 
correlation; p<0.01 for module significance, p<0.01 for network connectivity and 10,000 permutations for 
calculating FDR and connectivity p-values), top distinct planar filtered networks were identified that centered 
around NDUFS3 (top panel; enriched in genes relating to mitochondrial biology) and around DOCK1 (bottom 



panel, enriched in genes related to extracellular matrix remodeling) using a large independent skeletal muscle data 
set (n=187). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S3. Proteome constrained network modeling reveals growth regulating pathways, related to Figure 3 
and Table S2.  
HypAT genes that correlated with lean mass gains in independent cohorts were used as input to characterize tissue-
specific protein-protein interactions (PPI) using www.networkanalyst.ca and a 10th percentile threshold. A first-
order network of protein-protein interactions is presented. FOXO3 was negatively correlated with leg lean mass 
changes and the PPI contained 45 FOXO signaling pathway members (Kegg database), 1x10-13 FDR. Green circles 
represent negatively- and red, positively-correlated genes. Grey genes are members of the protein-protein 
interactome acting on the 141 HypAT genes regulated in proportion to gains in lean mass. Inset: bar graph 
generated using Metascape showing top enrichment clusters derived from the list of growth correlated genes. GO 
Terms: GO:0009167, Purine ribonucleoside monophosphate metabolic process; GO:0007005, Mitochondrion 

0 2 4 6 8 10
-Oog10(3)

G2:0010035: response to inorganic substance

G2:0007005: PitochonGrion organization

G2:0009167: purine ribonucOeosiGe Ponophosphate PetaboOic processGO:0009167	
	

GO:007005	
	

GO:0010035	
	



organization; GO:0010035, Response to inorganic substance. Color of bars indicates the level of significance of the 
corresponding cluster. Genes related to muscle growth in independent data sets were found to be dominated by 
proteins related to mitochondrial biology and ribonucleoside monophosphate synthesis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S4. RNAi effectively reduced RNA expression of selected growth-correlated target genes by >90% in 
differentiated myotubes, related to Figure 4. 
Normalized gene expression data from myotubes after knockdown with siRNA species against: FKBP1, BCAT2, 
MBNL1 and NID2. Cells were either untreated (set to 100%), treated with IGF-1 only, or treated with IGF-1 and 
with a pool of siRNA targeted against the gene listed. n=4; one-way ANOVA (*P<0.05, **P<0.01, ***P<0.001 
versus IGF-1) 
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Figure S5. Representative western blots of protein signaling data, related to Figure 4.  
Lane order (n=4): basal (untreated), IGF-1, IGF-1/FOXO KD, IGF-1/BCAT2 KD, IGF-1/FKBP1a KD. Note: the 
RNAi tool against FOXO3 was inactive and so we did not, as originally planned, study FOXO3 as a control. 
However, western analyses were carried out prior to the discovery that FOXO3 siRNA was defective and thus 
included in the original gels.  
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Figure S6. Total protein, RNA and DNA content after myotube treatment with or without IGF-1 and siRNA 
against selected gene targets, related to Figure 4.  
Total protein (A), RNA (B) and DNA (C) after myotube treatment with IGF-1 in isolation or combined with siRNA 
against BCAT2, FKBP1A, NID2 or MBNL1. n=5; one-way ANOVA (*P<0.05, versus IGF-1).  
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Figure S7. Knockdown of growth-correlated genes in myotubes alters protein synthesis and regulates 
signaling cascades that influence protein translation, related to Figure 4.  
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(A – D) The effects of targeting NID2 with siRNA on NID2 mRNA expression (A), 4hr puromycin signal (B), 48hr 
total protein (C) and protein content of various proteins thought to be involved in muscle growth.  
(E – H) The effects of targeting BCAT2 with siRNA on BCAT2 mRNA expression (A), 4hr puromycin signal (B), 
48hr total protein (C) and protein content of various proteins thought to be involved in muscle growth. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Tables 
 
Table S1. HypAt Participant Characteristics, related to Figure 1, 2, S1 and STAR Methods.  

Parameter Baseline Week 5 Week 10 

Age, y 20±3 - - 
Height, m 1.7±0.1 - - 
Mass, kg 71.2±12.2 71.2±11.4 70.8±11.2 
BMI, kg·m-2 23.8±3.1 23.9±2.9 23.7±2.8 
Leg Ext 1-RM, kg 53±12 - 77±12* 
Leg Press 1-RM, kg 120±32 - 190±35* 
Daily Steps 9900±5100 9100±2800 8000±3600 
Activity, kcal·d-1 1012±477 970±403 965±437 
Dietary Protein, g·kg·d-1 1.5±0.9 1.4±0.7 1.6±0.9 
En% Protein  17±6 19±5 18±4 
En% CHO 49±15 52±7 54±10 
En% Fat 32±12 31±7 28±10 

Abbreviations: BMI, body mass index; 1-RM, one-repetition maximum; En%, energy percentage. CHO, 
carbohydrates. * significantly different from baseline, p<0.05. All data are presented as mean±SD. 
 
 
 
 
 
 
 
 
 
 
 
 



Table S2. Steps for generating a proteome-constrained network plot, related to Table 1, STAR Methods, Figure S3 and Supplemental Data S2.  
 

Steps Link/File 
Get list of genes for uploading to web-site URL to Supplemental Data S2 
Browse to network tool home page www.networkanalyst.ca 
Select ‘Gene List Input’ option https://www.networkanalyst.ca/NetworkAnalyst/uploads/ListUploadView.xhtml 

 
Select ‘Human’ and Official Gene Symbol Pull-down lists 
Open file containing gene list Browse to location of ‘Supplementary Data S2’ file on your computer and open in text editor or Excel - then 

copy both columns 
Upload gene list Paste gene list and press upload and then press proceed 
Choose Tissue-Specific PPI Select ‘skeletal muscle’ from the pull-down menu and set the filter to 10 
Define Network Press proceed https://www.networkanalyst.ca/NetworkAnalyst/Secure/network/NetworkBuilder.xhtml) 

 
Define network structure Press 3D option within network plotting window. Then set ‘view’ to ‘expression’ and ‘shading’ = ‘none’.  
View 3D network Place mouse cursor on any black space, hold-down mouse button and drag to rotate. Type any gene name 

into the ‘search’ function to highlight that gene. Zoom in and out to view network connections. 
Explore pathway biology Select database to query from top right-hand side of web page. E.g. Kegg. Choose all nodes and press submit 

A step by step guide to generating a 3-dimentional plot of the 141 HypAT genes that correlated with lean mass gains across independent cohorts within the 
context of a muscle tissue-specific protein-protein interactions (PPI) network. Note, in November 2019, the analysis indicates FOXO3 was negatively correlated 
with leg lean mass changes and the PPI contains 45 FOXO signaling pathway members (Kegg database, 1x10-13 FDR). Green represents negatively and red 
positively correlated genes with in vivo changes in lean mass. Grey circles are members of the protein-protein interactome, acting on the 141 HypAt genes 
regulated in proportion to gains in lean mass, but themselves were not regulated at the RNA level in the present analysis. Any regulated gene, from the 141 
identified, that was not part of the protein-protein interactome would not appear in this analysis as evidence for protein level interaction was a prerequisite for 
inclusion. 
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