Concise Synthesis of (+)-[¹³C₄]-Anatoxin-a by a Dynamic Kinetic Resolution of a Cyclic Iminium Ion

Jacob J. Lacharity,[†] Artur K. Mailyan,[†] Karen Chen,[†] and Armen Zakarian[†]

⁺Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93110, United States

Supplementary Information

General Information.

All reactions were carried out under an inert atmosphere of dry argon in oven or flamedried glassware, unless the reaction procedure states otherwise. Tetrahydrofuran (THF) and diethyl ether (Et₂O) were distilled from sodium-benzophenone in a continuous still under an atmosphere of argon. Dichloromethane (CH₂Cl₂), diisopropylamine (*i*-Pr₂NH), N,Ndiisopropylethylamine (i-Pr₂NEt), and acetonitrile (MeCN) were distilled from calcium hydride in a continuous still under an atmosphere of argon. Reaction temperatures were controlled by IKA ETS-D4 fuzzy thermo couples. Analytical thin-layer chromatography (TLC) was performed using pre-coated TLC plates with Silica Gel 60 F₂₅₄ (EMD no. 5715-7) and visualized using combinations of UV, anisaldehyde, ceric ammonium molybdate (CAM), potassium permanganate and iodine staining. Flash column chromatography was preformed using 40–63 µm silica gel (Merck, Geduran, no. 11567-1) as the stationary phase. Proton nuclear magnetic resonance spectra were recorded at 400, 500, and 600 MHz on Varian Unity Inova spectrometers. Carbon nuclear magnetic resonance spectra were recorded at 100 MHz, 125 MHz, and 150 MHz on Varian Unity Inova spectrometers. All Chemical shifts were reported in δ units relative to tetramethylsilane. High Resolution mass spectral data were obtained using Waters Xevo G2-XS Tof mass spectrometer at the University of California, Santa Barbara. Ethyl $[^{13}C_4]$ -acetoacetate ($[^{13}C_4]$ -15, $^{13}C_7$, 99.1% isotope purity) was purchased from Cambridge Isotope Laboratories. Sulfide **23** was purchased from TCI America. * denotes the ¹³C isotope.

Ethyl ester $[^{13}C_4]$ -S1. A solution of sodium borohydride (93 mg, 2.50 mmol, 0.33 equiv.) in water (1.0 mL) was added in three portions over 5 min to a heterogeneous mixture of commercially available ethyl $[^{13}C_4]$ -acetoacetate ($[^{13}C_4]$ -15, 1.00 g, 7.5 mmol) and water (2.0 mL) at 0 °C, and

the reaction mixture was stirred at 0 °C for 30 min. Then the mixture was carefully quenched by slow addition of 1 M HCl (2 mL) followed by the addition of solid NaCl (1.35 g). The product was extracted with CH_2Cl_2 (6×15 mL), the combined organic layers were dried over Na_2SO_4 and concentrated under reduced pressure at 0 °C. The crude product was submitted to the next step without further purification.

The crude β -hydroxyester was dissolved in CH₂Cl₂ (15 mL) and the solution was cooled to 0 °C. Imidazole (1.23 g, 17.6 mmol, 2.4 equiv.) and TBSCl (1.36 g, 9.02 mmol, 1.2 equiv.) were added sequentially. The reaction mixture was stirred at 0 °C for 30 min, then warmed to 23 °C and left to stir for another 12 h. The resulting solution was quenched with water (50 mL) and the product was extracted with CH₂Cl₂ (3 × 50 mL). The combined organic layers were dried over Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel (5% EtOAc in hexanes) to give ethyl ester ([¹³C₄]-**S1** (1.80 g, 7.2 mmol, 96% yield) as a colorless liquid. ¹H NMR (500 MHz, CDCl₃): δ 4.25 (dm, *J* = 151.7 Hz, 1H), 4.16 – 4.04 (m, 2H), 2.44 (dm, *J* = 134.0 Hz, 1H), 2.34 (dm, *J* = 126.4 Hz, 1H), 1.24 (t, *J* = 10 Hz, 6H), 1.17 (ddd, *J* = 125.9, 10.5, 4.6 Hz, 1H), 0.85 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 171.8 (dd, *J* = 57.6, 3.5 Hz), 66.0 (td, *J* = 39.2, 1.3 Hz), 60.4 (d, *J* = 2.4 Hz), 45.1 (ddd, *J* = 57.7, 38.9, 1.8Hz), 25.9, 24.1 (ddd, *J* = 39.4, 3.5, 1.7 Hz), 18.1, 14.3, -4.4, -4.9. HRMS-ESI (m/z): [M+H]⁺ calcd for ¹³C₄C₈H₂₆O₃SiNa, 273.1683; found, 273.1683.

Ethyl ester S1. The title compound was obtained using the procedure described above, starting from 9.05 g (69.6 mmol) of ethyl acetoacetate **15** (natural isotope), 0.87 g (23.0 mmol, 0.33 equiv.) of sodium borohydride and 27.0 mL of water for the first step. The second step was performed using 12.6 g (83.5 mmol, 1.2 equiv.) of TBSCl, 11.4 g (167.0 mmol, 2.4 equiv.) of imidazole in CH_2Cl_2 (135 mL). Ethyl ester **S1** was obtained in 91% yield (15.6 g, 63.3 mmol) ¹H NMR (500MHz, CDCl₃): δ 4.30 – 4.24 (m, 1H), 4.16 – 4.07 (m, 2H), 2.45 (dd, *J* = 14.5, 7.6 Hz, 1H),

2.35 (dd, *J* = 14.5, 5.3 Hz, 1H), 1.26 (t, *J* = 7.15 Hz, 3H), 1.19 (d *J* = 6.15 Hz, 3H), 0.86 (s, 9H), 0.06 (s, 3H), 0.04 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 171.8, 66.0, 60.4, 45.1, 25.8, 24.1, 18.1, 14.3, - 3.4, -4.9. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₂H₂₆O₃SiNa, 269.1549; found, 269.1553.

Allylic alcohol [¹³C₄]-14. Method 1:

Aldehyde [$^{13}C_4$]-16. *i*-Bu₂AlH (1.27 mL, 7.10 mmol, 1.05 equiv.) was added dropwise to a solution of ethyl ester [$^{13}C_4$]-S1 (1.68 g, 6.80 mmol) in CH₂Cl₂ (40 mL) over 30 min at -78 °C. The resulting solution was stirred for 1 h at –78 °C before 2 mL of MeOH was added dropwise over 2 min. After 5 min the reaction mixture was warmed to 23 °C and a saturated solution of potassium sodium tartrate (20 mL) was added. The heterogeneous mixture was stirred vigorously for 1 h, the layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (4 × 30 mL). The combined organic extracts were dried over Na₂SO₄ and the solvent was removed under reduced pressure on a rotary evaporator (bath temp 7 °C). The crude material was purified by column chromatography on silica gel (5% EtOAc in hexanes) to give [$^{13}C_4$]-**16** (1.05 g, 5.19 mmol, 80% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.80 (s, 1H), 4.45 – 4.30 (m, 1H), 2.63 – 2.38 (m, 2H), 1.24 (d, *J* = 6.12 Hz, 3H), 0.98 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H). ¹³C NMR (100.5 MHz, CDCl₃): δ 202.3, 64.7, 53.1, 25.9, 24.3, 18.1, -4.2, -4.8. HRMS-ESI (m/z): [M+Na+CH₃OH]⁺ calcd for ¹³C₄C₇H₂₆O₃SiNa, 261.1683; found, 261.1675.

Allyl alcohol [¹³C₄]-14. A solution of *n*-butyllithium in hexanes (2.50 M, 0.350 mL, 0.872 mmol, 2.0 equiv.) was added dropwise over 3 min to a solution of (1*S*,2*R*)-2-morpholin-4-yl-1-phenylpropanol **S2** (0.193 g, 0.872 mmol, 2.0 equiv.) in toluene (1 mL) at 0 °C. The solution was stirred for 30 min at 0 °C before a divinyl zinc solution¹ (0.289 M, 3.02 mL, 0.872 mmol, 2.0 equiv.) was added dropwise over 5 min at 0 °C. The resulting solution was stirred for an

additional 1 h at 0 °C before it was cooled to -78 °C. A solution of aldehyde [¹³C₄]-**16** (88 mg, 0.436 mmol) in toluene (0.55 mL) was added to the reaction mixture. After the reaction mixture was stirred at -78 °C for 40 min, the temperature was raised to -30 °C and stirred for another 10 min. An aqueous citric acid solution (30% by weight, 5 mL) was then added slowly, and the reaction was diluted with EtOAc (5 mL). The aqueous layer was extracted with EtOAc (3 × 5 mL), washed with aqueous 1M NaOH (4 × 5 mL), and brine (5 mL). The combined organic layers were dried over Na₂SO₄ and concentrated to dryness under reduced pressure. The crude material was purified by column chromatography on silica gel (1% EtOAc in hexanes to 5% EtOAc in hexanes) to give $\begin{bmatrix} 1^{13}C_4 \end{bmatrix}$ -14 (65 mg, 0.282 mmol, 65% yield). The enantiopurity of the material (70% ee) was measured by HPLC trace analysis after derivatization (see below). ¹H NMR (600 MHz, CDCl₃, mixture of diastereomers): δ (ppm) 5.90 – 5.80 (m, 2H), 5.29 – 5.22 (m, 2H), 5.10 – 5.03 (m, 2H), 4.58 - 3.9 (m, 4H), 3.31 (br. s, 2H), 1.81 - 1.65 (m, 2H), 1.58 - 1.46 (m, 2H), 1.22 (ddd, J = 125.6, 6.2, 4.3 Hz, 3H), 1.18 (ddd, J = 125.7, 6.9, 4.5 Hz), 0.89 (s, 9H), 0.89 (s, 9H), 0.11 (s, 3H), 0.10 (s, 3H), 0.08 (s, 3H), 0.08 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, mixture of diastereomers) δ (ppm): 141.3 (dd, J = 47.0, 3.7 Hz), 140.86 (dd, J = 47.6, 4.1 Hz), 114.0 (dd, J = 31.5, 2.9 Hz), 72.3 (ddd, J = 37.0, 3.7, 1.2 Hz), 69.7 (ddd, J = 37.2, 2.7, 2.0 Hz), 69.6 (td, J = 39.3, 1.1 Hz), 67.2 (td, J = 39.1, 1.9 Hz), 46.1 (dd, J = 38.9, 37.4 Hz), 44.6 (dd, J = 38.4, 37.3 Hz), 25.95, 25.94, 24.6 (ddd, J = 38.8, 3.7, 0.9 Hz), 23.21 (ddd, J = 39.0, 2.7, 0.8 Hz), 18.06 (d, J = 0.8 Hz), 18.03 (d, J = 0.9 Hz), -3.7, -4.3, -4.7, -4.8. HRMS-ESI (m/z): $[M+Na]^+$ calcd for ${}^{13}C_4C_8H_{26}O_2SiNa$, 257.1734; found, 257.1727.

Allylic alcohol [¹³C₄]-14. Method 2:

Ethyl ester [¹³C₄]-S3. *i*-Bu₂AlH (1.27 mL, 7.10 mmol, 1.05 equiv.) was added dropwise over 30 min to a solution of ethyl ester [¹³C₄]-S1 (1.68 g, 6.80 mmol) in CH₂Cl₂ (40 mL) at –78 °C. The resulting solution was stirred for 1 h at –78 °C before 2 mL of MeOH was added dropwise over 2 minutes. After 5 min the reaction mixture was warmed to 23 °C and a saturated solution of potassium sodium tartrate (20 mL) was added. The heterogeneous mixture was stirred for 1 h, the layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (4 × 30 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure on a rotary evaporator (bath temp 7 °C). The crude aldehyde was submitted to the next step without further purification.

Triethyl phosphonoacetate (1.98 g, 8.83 mmol, 1.3 equiv.) was added dropwise over 10 min to a suspension of sodium hydride (0.33 g, 8.15 mmol, 1.2 equiv., 60% sodium hydride suspension in mineral oil was used) in THF (20 mL) at 0 °C. The mixture was stirred until homogeneity was observed (~30 min). A solution of the crude aldehyde from the previous step in THF (3 mL) was then added, and the reaction was stirred for 30 min at 0 °C. The reaction was quenched by addition of saturated aqueous NH₄Cl (20 mL) and the aqueous layer was extracted with EtOAc (4 × 30 mL). The combined organic layers were dried over Na₂SO₄ and concentrated to dryness under reduced pressure. The crude material was purified by column chromatography on silica gel (1% EtOAc in hexanes to 5% EtOAc in hexanes) to give $[^{13}C_4]$ -S3 (1.60 g, 5.77 mmol, 85% yield) as a colorless liquid. ¹H NMR (500 MHz, CDCl₃): δ 6.90 (dddd, J = 155.6, 15.3, 7.5, 2.7 Hz, 1H), 5.78 (dd, J = 15.6, 5.5 Hz, 1H), 4.14 (q, J = 7.2 Hz, 2H), 3.87 (dm, J = 140.5 Hz, 1H), 2.27 (d, J = 127.7, 2H), 1.24 (t, J = 7.1 Hz, 3H), 1.11 (ddd, J = 125.3, 5.9, 4.5 Hz, 3H), 0.84 (s, 9H), 0.01 (s, 3H), 0.00 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 166.5 (d, J = 6.4 Hz), 146.13 (d, J = 42.3 Hz), 123.3 (dd, J = 70.4, 2.2 Hz), 67.8 (d, J = 39.9, 38.1, 2.0 Hz), 60.2, 42.55 (ddd, J = 42.3, 38.1, 1.3 Hz), 25.9, 23.9 (ddd, J = 39.7, 2.6, 1.2 Hz), 18.2, 14.4, -4.4, -4.7. HRMS-ESI (m/z): $[M+Na]^+$ calcd for ${}^{13}C_4C_{10}H_{28}O_3SiNa$, 299.1840; found, 299.1843.

Allylic alcohol [¹³C₄]-17. *i*-Bu₂AlH (2.40 mL, 13.3 mmol, 2.3 equiv.) was added dropwise over 5 min to a solution of [¹³C₄]-S3 (1.60 g, 5.80 mmol) in CH₂Cl₂ (115 mL) at -78 °C. After the reaction was stirred at this temperature for 1 h, a saturated aqueous solution of potassium sodium tartrate (60 mL) was added. The mixture was vigorously stirred at 23 °C for 3 h, then the organic layer was separated and the aqueous solution was extracted with CH₂Cl₂ (3 × 70 mL). The combined organic layers were dried over Na₂SO₄ and concentrated to dryness under reduced pressure. The crude material was purified by column chromatography on silica gel (30% EtOAc in hexanes) to afford the product [¹³C₄]-**17** (1.35 g, 5.76 mmol, 99% yield) as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 5.71 – 5.61 (m, 1H), 5.68 (dm, *J* = 153.4, 1H), 4.12 – 4.07 (m, 2H), 3.84 (dm, *J* = 139.9, 1H), 2.17 (dm, *J* = 125.9 Hz, 2H), 1.43 (br. s, 1H), 1.12 (ddd, *J* = 125.5, 6.0, 4.4 Hz, 3H), 0.88 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 131.3 (dd, *J* = 71.8, 2.9 Hz), 129.93 (d, *J* =43.4 Hz), 68.5 (ddd, *J* = 40.1, 38.5, 2.0 Hz), 63.9 (d, *J* = 5.6 Hz), 42.7 (ddd, *J* = 43.4, 38.5, 1.1 Hz), 26.01, 23.6 (ddd, *J* = 39.8, 2.4, 1.2 Hz), 18.3, -4.4, -4.6. HRMS-ESI (m/z): [M+Na]⁺ calcd for ¹³C₄R₂₆O₂SiNa, 257.1734; found, 257.1739.

Chiral alcohol [¹³C₄]-14. Crushed 4 Å molecular sieves (0.27 g) and Ti(O*i*-Pr)₄ (0.24 mL, 0.81 mmol, 0.14 equiv.) were added sequentially to a solution of (–)-diisopropyl D-tartrate (0.24 g, 1.03 mmol, 0.18 equiv.) in CH₂Cl₂ (9 mL) at –5 °C and the mixture was stirred at this temperature for 15 min. The mixture was then cooled to –20 °C and *t*-BuOOH (2.1 mL of 5.5 M solution, 11.4 mmol, 2 equiv.) was added. After 15 min of stirring, a solution of allylic alcohol [¹³C₄]-17 (1.34 g, 5.72 mmol) in CH₂Cl₂ (2.5 mL) was added and the mixture was stirred at –15 °C for 24 h. The reaction was then diluted with Et₂O (25 mL) and quenched by the addition of a saturated solution of Na₂SO₄ (15 mL). After stirring for 1 h, the aqueous layer was extracted with EtOAc (4 × 30 mL). The combined organic layers were dried over Na₂SO₄ and concentrated

7

to dryness under reduced pressure. The crude product was submitted to the next step without further purification.

Triphenylphosphine (4.50 g, 17.16 mmol, 3 equiv.) and imidazole (2.92 g, 42.9 mmol, 7.5 equiv.) were added sequentially to a solution of crude epoxide [$^{13}C_4$]-**18** in CH₂Cl₂ (57 mL). The mixture was cooled to 0 °C and crushed iodine (4.36 g, 17.16 mmol, 3 equiv.) was added. After stirring for 10 min, the cooling bath was removed and the reaction was warmed to 23 °C. Stirring was continued for 1 h, at which point the mixture was diluted with CH₂Cl₂ (80 mL) and washed with a 1:1 mixture of saturated aqueous solutions of NaHCO₃ and Na₂S₂O₃ (100 mL). The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 30 mL). The combined organic layers were dried over Na₂SO₄ and concentrated to dryness under reduced pressure. Et₂O (30 mL) was added to the dry, solid residue. The precipitate was crushed with a spatula and filtered, washing with an additional portion of Et₂O (20 mL). The filtrate was concentrated under reduced pressure and purified by column chromatography (3% EtOAc in hexanes to 8% EtOAc in hexanes) to produce the unstable iodide that was immediately submitted to the next step.

Zinc (1.86 g, 28.6 mmol, 5 equiv.) and sodium iodide (2.15 g, 14.3 mmol, 2.5 equiv.) were added sequentially to a solution of the the iodide from the previous step in MeOH (29 mL) and the mixture was heated to reflux with vigorous stirring for 1 h. The reaction mixture was cooled to room temperature, then concentrated to dryness under reduced pressure. Water (20 mL) and CH_2Cl_2 (30 mL) were added to the residue, and the white precipitate formed was filtered and washed with CH_2Cl_2 (2 × 20 mL). The filtrate was transferred into separatory funnel and organic layer was separated. The aqueous layer was extracted with CH_2Cl_2 (2 × 15 mL). The combined organic layers were dried over Na_2SO_4 and concentrated under reduced pressure. The resulting residue was purified by column chromatography on silica gel (5% EtOAc in hexanes) to afford [$^{13}C_4$]-**14** (1.18 g, 5.03 mmol, 88% yield over 3 steps) as a pale yellow oil. The enantiopurity of the material (86% ee) was measured by HPLC trace analysis after derivatization to compound [$^{13}C_4$]-**S5** (see below). The ¹HNMR, ¹³C NMR and mass spectral data are in full agreement with ones for the compound obtained by method 1 (see above).

(±)-Alcohol-[¹³C₄]-14:² A solution of vinyImagnesium bromide (0.97 M in THF, 1.55 mL, 1.50 mmol, 1.5 equiv.) was added dropwise to a solution of aldehyde [¹³C₄]-16 (0.206 g, 1.00 mmol) in THF (3 mL) at –78 °C. The solution was warmed to 0 °C and stirred for 45 min. before being quenched with a solution of saturated aqueous ammonium chloride. The layers were separated and the aqueous layer was extracted with EtOAc (3 x 15 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated to dryness under reduced pressure. The crude material was purified by column chromatography on silica gel (1% EtOAc in hexanes to 5% EtOAc in hexanes) to give (±)-[¹³C₄]-14 (0.193 g, 0.823 mmol, 82% yield). The ¹H NMR, ¹³C NMR and mass spectral data are in full agreement with ones for the compound obtained by method 1 (see above).

Ethyl ester S3. The title compound was prepared according to the procedure described above for its ${}^{13}C_4$ analog starting from 4.88 g (19.8 mmol) of ethyl ester **S1**, 3.71 mL (20.8 mmol, 1.05 equiv.) of *i*-Bu₂AlH in CH₂Cl₂ (115 mL) for the first step. The second step was conducted using 0.95 g (23.8 mmol. 1.2 equiv.) of 60% sodium hydride suspension in mineral oil and 5.8 g (25.7 mmol, 1.3 equiv.) of triethyl phosphonoacetate in THF (66 mL). Ethyl ester **S3** was obtained in 82% yield over 2 steps (4.42 g, 16.2 mmol). ¹H NMR (500 MHz, CDCl₃): δ 6.99 – 6.87 (m, 1H), 5.84 (d, *J* = 15.65 Hz, 1H), 4.17 (q, *J* = 7.15 Hz, 2H), 3.96 – 3.89 (m, 1H), 2.38 – 2.24 (m, 2H), 1.28 (t, *J* = 16.1 Hz, 3H), 1.15 (d, *J* = 6.1 Hz, 3H), 0.88 (s, 9H), 0.04 (s, 3H), 0.04 (s, 3H).

MHz, $CDCl_3$): δ 166.6, 146.2, 123.4, 67.8, 60.3, 42.6, 26.0, 23.9, 18.2, 14.4, -4.4, -4.7. HRMS-ESI (m/z): $[M+Na]^+$ calcd for $C_{14}H_{28}O_3SiNa$, 295.1705; found, 295.1711.

Allylic alcohol 17. The title compound was prepared using the procedure described above for its ${}^{13}C_4$ analog starting from 5.7 g (20.9 mmol) of ethyl ester **S3** and 8.6 mL (48.1 mmol, 2.3 equiv.) of *i*-Bu₂AlH in CH₂Cl₂ (420 mL). Allylic alcohol **17** was obtained in 99% yield (4.8 g, 20.83 mmol). 1 H NMR (500 MHz, CDCl₃): δ 5.75 – 5.60 (m, 2H), 4.11 – 4.08 (m, 2H), 3.86 – 3.80 (m, 1H), 2.25 – 2.09 (m, 2H), 1.13 (d, *J* = 6.1 Hz, 3H), 0.88 (s, 9H), 0.04 (s, 3H), 0.04 (s, 3H). 13 C NMR (125.7 MHz, CDCl₃): δ 131.3, 130.0, 68.6, 64.0, 42.7, 26.0, 23.6, 18.3, -4.4, -4.6. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₂H₂₆O₂SiNa, 253.1600; found, 253.1605.

Alcohol 14. The title compound was prepared using the procedure described above for its ${}^{13}C_4$ analog starting from 1.53 g (6.64 mmol) of allylic alcohol **17**. The following reagents were used with the indicated quantities: Ti(*Oi*-Pr)₄ (0.14 mL, 0.46 mmol); D-DIPT (0.13 mL, 0.60 mmol); *t*-BuO₂H (2.6 mL of 5.14 M solution, 13.28 mmol); iodine (5.0 g, 19.92 mmol); PPh₃ (5.2 g, 19.92 mmol); imidazole (3.4 g, 49.8 mmol); zinc (2.16 g, 33.2 mmol); Nal (2.5 g, 16.6 mmol). After the final purification, **14** (1.30 g, 5.64 mmol, 85% yield) was obtained as a clear oil. The enantiopurity of the material (86% ee) was measured by HPLC trace analysis after derivatization to **S5** (see below). ¹H NMR (500 MHz, CDCl₃, mixture of diastereomers): δ 5.91 – 5.78 (m, 2H), 5.32 – 5.22 (m, 2H), 5.11 – 5.05 (m, 2H), 4.48 – 4.42 (m, 1H), 4.32 – 4.24 (m, 1H), 4.22 – 4.14 (m, 1H), 4.13 – 4.05 (m, 1H), 3.38 (s, 1H), 3.27 (s, 1H), 1.69 – 1.58 (m, 4H), 1.23 (d, *J* = 6.3 Hz, 3H), 1.19 (d, *J* = 6.1 Hz, 3H), 0.91 (s, 9H), 0.90 (s, 9H), 0.12 (s, 3H), 0.11 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.09 (s, 9H), 0.12 (s, 3H), 0.11 (s, 3H), 0.09 (s, 3H), 0.09 (s, 9H), 0.12 (s, 3H), 0.11 (s, 3H), 0.09 (s, 3H), 0.09 (s, 9H), 0.12 (s, 3H), 0.11 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.11 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.11 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.11 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.11 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.11 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.11 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.11 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.11 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.11 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H), 0.11 (s, 3H), 0.09 (s,

3H). ¹³C NMR (151 MHz, CDCl₃, mixture of diastereomers) δ 141.3, 140.9, 114.1, 113.9, 72.3, 69.7, 69.6, 67.3, 46.1 44.6, 25.95, 25.94, 24.7, 23.2, 18.6, 18.0, -3.74, -4.3, -4.7 -4.8. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₂H₂₆O₂SiNa, 253.1600; found, 253.1604.

Allylic benzoate [¹³C₄]-S4. Benzoyl chloride (0.050 mL, 0.43 mmol, 5 equiv.) was added to a mixture of allylic alcohol $[^{13}C_4]$ -14 (20 mg, 0.085 mmol) and pyridine (0.14 mL, 1.71 mmol, 20 equiv.) in CH₂Cl₂ (0.17 mL) at 0 °C. The mixture was allowed to warm to 23 °C and stirred for 12 h. The resulting solution was diluted with CH_2Cl_2 (5 mL) and sequentially washed with aqueous 1 M HCl solution (5 mL), saturated NaHCO₃ solution (5 mL), and brine (5 mL). The organic phase was dried over Na₂SO₄ and concentrated to dryness under reduced pressure. The resulting crude material was purified by column chromatography on silica gel (3% EtOAc in hexanes) to afford $[^{13}C_4]$ -14 (27 mg, 0.0807 mmol, 93% yield) as a colorless oil. ¹H NMR (500 MHz, CDCl₃, mixture of diastereomers): δ (ppm): 8.10 (d, J = 7.5 Hz, 4H), 7.60 (t, J = 7.4 Hz, 2H), 7.49 (t, J = 7.7 Hz, 4H), 6.01 – 5.89 (m, 2H), 5.61 (dd, J = 149.5, 25.5 Hz, 2H), 5.37 (ddd, J = 24.2, 17.3, 6.9 Hz, 2H), 5.29 – 5.19 (m, 2H), 4.00 (dm, J = 140.0 Hz, 2H), 2.28 – 1.67 (m, 4H), 1.25 (dm, J = 125.6 Hz, 6H), 0.94 (s, 9H), 0.92 (s, 9H), 0.11 (s, 3H), 0.10 (s, 3H), 0.04 (s, 3H), 0.00 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, mixture of diastereomers) δ (ppm): 165.8, 165.9, 137.1 (dd, J = 47.4, 3.1 Hz), 136.7 (dd, J = 47.6, 2.3 Hz), 133.0, 132.9, 130.8, 130.7, 129.71, 129.65, 128.48, 128.47, 117.0, 116.2, 73.0 (dd, J = 39.0, 2.2 Hz), 72.9 (dd, J = 39.8, 2.8 Hz), 65.3 (m), 44.7 (m), 26.03, 26.01, 24.5 (ddd, J = 39.2, 3.0, 1.5 Hz), 23.9 (dd, J = 39.2, 0.9 Hz), 18.3, 18.1, -4.08, -4.11, -4.6, -4.8. HRMS-ESI (m/z): $[M+Na]^+$ calcd for ${}^{13}C_4C_{15}H_{30}O_3SiNa$, 361.1996; found, 361.1992.

Allylic benzoate S4. This title compound was prepared using the procedure described above from 50.0 mg (0.22 mmol) of allyl alcohol 14 to give 70.4 mg, 0.21 mmol, 97% yield of S4 as a clear oil. ¹H NMR (400 MHz, CDCl₃, mixture of diastereomers): δ (ppm) 8.05 (d, J = 7.6 Hz, 4H), 7.56 (t, J = 7.4 Hz, 2H), 7.44 (t, J = 7.4 Hz, 4H), 5.97 – 5.85 (m, 2H), 5.64 – 5.51 (m, 2H), 5.39 – 5.14 (m, 4H), 4.03 – 3.89 (m, 2H), 2.10 – 2.01 (m, 2H), 1.95 – 1.73 (m, 2H), 1.21 (d, J = 2.56 Hz, 3H), 1.19 (d, J = 2.56 Hz, 3H), 0.90 (s, 9H), 0.87 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H), 0.00 (s, 3H), - 0.05 (s, 3H). ¹³C NMR (126 MHz, CDCl₃, mixture of diastereomers) δ 165.9, 165.8, 137.1, 136.7, 133.0, 132.9, 130.8, 130.7, 129.7, 129.7, 128.5, 128.5, 117.0, 116.2, 73.0, 72.9, 65.6, 65.1, 44.8, 44.6, 26.0, 26.0, 24.6, 23.9, 18.3, 18.1, -4.08, -4.09, -4.12, -4.6, -4.8. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₉H₃₀O₃SiNa, 357.1862; found, 357.1865.

Alcohol [¹³C₄]-S5. HCl (1 M, 0.2 mL) was added to a solution of allylic benzoate [¹³C₄]-S4 (27 mg, 0.0807 mmol) in THF (2 mL) at 23 °C. The reaction was left to stir overnight, then it was diluted with EtOAc (8 mL) and washed with saturated aqueous NaHCO₃ (10 mL) followed by brine (10 mL). The organic phase was dried over Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography (10% EtOAc in hexanes to 35% EtOAc in hexanes) to produce alcohol [¹³C₄]-S5 (17 mg, 0.0772 mmol, 95% yield) as a colorless oil. ee: 86% [Chiralpak ® AD-H; 1% *i*-PrOH- hexanes; flow rate = 1 mL/ min; 10 µL injection of a 1 mg/ mL solution; detection at 254 nm; t₁ = 17.68 min. (major), t₂ = 21.94 min. (minor), t₃ = 27.47 min. (major), t₄ = 29.84 min. (minor)]. ¹H NMR (600 MHz, CDCl₃, mixture of diastereomers) δ 8.06 (ddt, *J* = 10.9, 6.9, 1.4 Hz, 2H), 7.61 – 7.54 (m, 1H), 7.45 (q, *J* = 8.0 Hz, 2H), 6.01 – 5.91 (m, 1H), 5.91 – 5.49 (m, 1H), 5.43 – 5.33 (m, 1H), 5.29 – 5.18 (m, 1H), 4.16 – 3.63 (m, 1H), 2.21 – 1.59 (m, 3H), 1.34 (ddt, *J* = 23.5, 6.2, 4.5 Hz, 1.5H), 1.13 (ddt, *J* = 23.6, 6.2, 4.5 Hz, 1.5H). ¹³C NMR (126 MHz, CDCl₃, mixture of diastereomers) δ 157.0, 165.9, 136.6 (dd, *J* = 48.3,

3.0 Hz), 136.4 (dd, *J* = 48.3, 2.5 Hz), 133.4, 133.2, 130.4, 130.1, 130.0, 129.7, 128.59, 138.55, 117.2 (d, *J* = 3.0 Hz), 116.6 (d, *J* = 3.0 Hz), 73.7 (dd, *J* = 38.9, 3.2 Hz), 72.7 (ddd, *J* = 39.1, 3.7, 1.5 Hz), 65.4 (t, *J* = 38.2 Hz), 63.7 (ddd, *J* = 39.3, 37.8, 1.4 Hz), 44.6 (ddd, *J* = 39.3, 37.7, 1.5 Hz), 43.6 (ddd, *J* = 39.0, 37.7, 1.1 Hz), 23.9 (ddd, *J* = 38.6, 3.2, 1.1 Hz), 23.2 (ddd, *J* = 39.4, 3.8, 1.5 Hz).

Alcohol S5. The title compound was prepared using the procedure described above from 65.0 mg (0.19 mmol) of allylic benzoate S4 to give alcohol S5 (37.0 mg, 0.17 mmol, 86% yield). The enantiopurity of the product was determined to be 86% ee using the same HPLC conditions as those described for its ${}^{13}C_4$ analog with identical retention times. ${}^{1}H$ NMR (500 MHz, CDCl₃, mixture of diastereomers): δ 8.06 (t, *J* = 7.48 Hz, 4H), 7.56 (q, *J* = 7.48 Hz, 2H), 7.44 (q, *J* = 7.48 Hz, 4H), 6.03 – 5.88 (M, 2H), 5.81 – 5.60 (m, 2H), 5.39 (dd, *J* = 5.04, 17.2 Hz, 2H), 5.23 (t, *J* = 10.28 Hz, 2H), 4.05 – 3.75 (m, 2H), 2.10 – 1.72 (m, 6H), 1.25 (d, *J* = 6.16 Hz, 3H), 1.21 (d, *J* = 6.16 Hz, 3H). ${}^{13}C$ NMR (100.6 MHz, CDCl₃, mixture of diastereomers): δ 166.9, 165.8, 136.6, 133.4, 130.4, 129.7, 128.5, 117.2, 116.5, 73.7, 72.7, 65.4, 63.7, 44.6, 43.7, 23.9, 23.2.

`Me

==== Shimadzu LCsolution Analysis Report ====

C:\LabSolutions\Data\Project1\Karen\kyc1-167a_AD-H1.lcd

Acquired by	: Artur Mailyan	
Sample Name	: kyc1-167a_AD-H	
Sample ID	: kyc1-167a AD-H	ОВ Z ОН
Vail #		$\land \land \land$
Injection Volume	: 10 uL	~ . ~ . M
Data File Name	: kyc1-167a_AD-H1.lcd	
Method File Name	: brad.lcm	(±)-[¹³ C ₄]- S5
Batch File Name		
Report File Name	: Default.lcr	
Data Acquired	: 10/4/2017 12:09:27 PM	
Data Processed	: 10/4/2017 1:03:27 PM	

<Chromatogram>

1 PDA Multi	1/254nm 4nm
-------------	-------------

			PeakTable		
PDA Ch1 2	254nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	23.124	377702	13247	14.876	22.221
2	28.742	383514	10881	15.105	18.253
3	38.672	893630	18509	35.197	31.047
4	42.394	884093	16978	34.821	28.479
Total		2538939	59616	100.000	100.000

C:\LabSolutions\Data\Project1\kyc2-8a.lcd Acquired by Sample Name Karen Chen kyc2-8a Sample ID Vail # kýc2-8a OBz OH `Ме Injection Volume 10 uL Data File Name kyc2-8a.lcd Method File Name brad.lcm [¹³C₄]-**S5** Batch File Name 70% ee Report File Name Default.lcr Data Acquired 2/9/2018 6:30:51 PM Data Processed 2/9/2018 7:28:31 PM

<Chromatogram>

1 PDA Multi 1/254nm 4nm

PeakTable PDA Ch1 254nm 4nm Peak# Ret. Time Area Height Area % Height % 24.478 739002 23526 51.171 62.352 2 30.498 146884 3810 10.171 10.097 3 42.003 493881 9238 34.198 24.483 4.460 46.063 64405 1157 3.068 4 Tota 1444172 37730 100.000 100.000

C:\LabSolutions\Data\Project1\kyc2-151.lcd

Acquired by	: Karen Chen
Sample Name	: kyc2-151a
Sample ID	: kyc2-151a
Vail #	1.1
Injection Volume	: 10 uL
Data File Name	: kyc2-151.lcc
Method File Name	: brad.lcm
Batch File Name	1
Report File Name	: Default.lcr
Data Acquired	: 7/8/2018 12
Data Processed	: 7/8/2018 12

<Chromatogram>

1 PDA Multi 2/254nm 4nm

			FCakTable		
PDA Ch2 254nm 4nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.680	5446840	212582	47.115	58.638
2	21.944	426679	16544	3.691	4.563
3	27.469	5312796	123514	45.955	34.070
4	29.840	374497	9896	3.239	2.730
Total		11560813	362535	100.000	100.000

PeakTable

Ester [¹³C₄]-12. 4-(Dimethylamino)pyridine (0.68 g, 5.55 mmol, 2 equiv.) and N,N'dicyclohexylcarbodiimide (1.14 g, 5.55 mmol, 2.0 equiv.) were added sequentially to a solution of allylic alcohol $[^{13}C_4]$ -14 (0.650 g, 2.77 mmol) and 5,5-dimethoxypentanoic acid³ (0.900 g, 5.55 2.0 CH_2CI_2 mmol, equiv.) in (14 mL), at 23 °C and the reaction mixture was left to stir at the same temperature for 12 h. The N,N'dicyclohexylurea precipitate was removed by filtration and the filtrate was concentrated to dryness under reduced pressure. The crude residue was purified by column chromatography on silica gel (10% EtOAc in hexanes) to produce the desired product $[^{13}C_4]$ -12 (1.02 g, 2.69 mmol, 97% yield) as a colorless oil. ¹H NMR (600 MHz, CDCl₃, mixture of diastereomers): δ 5.81 – 5.71 (m, 2H), 5.49 - 5.38 (m, 1H), 5.26 - 5.07 (m, 5H), 4.35 (t, J = 5.5, 2H), 3.84 (dm, J = 141.8 Hz, 2H),3.30 (s, 12H), 2.32 (t, J = 7.2 Hz, 4H), 2.02 - 1.48 (m, 12H), 1.14 (dm, J = 125.6 Hz, 6H), 0.87 (s, 9H), 0.86 (s, 9H), 0.03 (s, 6H), 0.02 (s, 3H), 0.00 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, mixture of diastereomers): δ 172.5, 172.4, 137.2 (dd, J = 47.4 Hz, 3.0 Hz), 136.7 (dd, J = 47.5, 2.3 Hz), 117.0 (d, J = 2.6 Hz), 116.2 (d, J = 2.6 Hz), 104.28, 104.26, 72.3 (dd, J = 39.0, 2.3 Hz), 72.2 (dd, J = 39.8, 2.9 Hz), 65.4 (t, J = 39.4 Hz), 64.9 (t, J = 39.4), 52.86 (d, J = 1.1 Hz), 52.80 (J = 2.2 Hz), 44.6 (td, J = 39.7, 1.2 Hz), 44.4 (td, J = 39.2, 0.8 Hz), 34.29, 34.24, 31.99, 31.96, 25.99, 25.98, 24.4 (ddd, J = 39.2, 3.0, 1.4 Hz), 23.8 (ddd, J = 39.2, 3.2, 1.1 Hz), 20.24, 20.20, 18.2, 18.1, -4.07, -4.10, -4.6, -4.8. HRMS-ESI (m/z): $[M+Na]^+$ calcd for ${}^{13}C_4C_{15}H_{38}O_5SiNa$, 401.2520; found, 401.2520.

17

Ester 12. The title compound was prepared according to the procedure described above using allylic alcohol **14** (0.95 g, 4.12 mmol), 5,5-dimethoxypentanoic acid (1.00 g, 6.18 mmol, 1.5 equiv.), N,N'-dicyclohexylcarbodiimide (1.27 g, 6.18 mmol, 1.5 equiv.), and 4- (dimethylamino)pyridine (0.75 g, 6.18 mmol, 1.5 equiv.) in CH₂Cl₂ (21 mL). Ester **12** was isolated in 97% yield (1.50 g, 4.0 mmol). ¹H NMR (400 MHz, CDCl₃, mixture of diastereomers) δ 5.83 – 5.73 (m, 2H), 5.40 – 5.09 (m, 6H), 4.36 (t, *J* = 5.1 Hz, 2H), 3.92 – 3.79 (m, 2H), 3.31 (s, 12H), 2.33 (t, *J* = 7.2 Hz, 6H), 1.92 – 1.83 (m, 1H), 1.73 – 1.59 (m, 11H), 1.16 (d, *J* = 2.6 Hz, 3H), 1.14 (d, *J* = 2.6 Hz, 3H), 0.89 (s, 9H), 0.88 (s, 9H), 0.05 (s, 6H), 0.03 (s, 3H), 0.01 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, mixture of diastereomers): δ 172.56, 172.49, 137.1, 136.7, 117.0, 116.2, 104.28, 104.26, 72.28, 72.21, 65.5, 64.9, 52.86, 52.81, 44.6, 44.4, 34.28, 34.24, 31.99, 31.96, 25.99, 25.97, 24.4, 23.9, 20.23, 20.20, 18.2, 18.1, -4.07, -4.11, -4.6, -4.8. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₉H₃₈O₅SiNa, 397.2386; found, 397.2393.

Acid [¹³C₄]-11. A solution of ester [¹³C₄]-12 (0.500 g, 1.32 mmol) in THF (2 mL) was added dropwise over 5 min to a solution of freshly prepared lithium diisopropylamide (2.64 mmol, 2 equiv.) in THF (14 mL) at -78 °C. The reaction mixture was stirred at -78 °C for 30 min, then TBSCI (0.46 g, 3.04 mmol, 2.3 equiv.) and HMPA (2.1 mL) were added sequentially and the reaction mixture was stirred for an additional 30 min at -78 °C. Methanol (0.53 mL, 13.2 mmol, 10.0 equiv.) was added dropwise over 1 min to quench excess LDA, then the mixture was warmed to 0 °C and stirred at the same temperature until complete disappearance of the starting material was observed by TLC (approx. 2 h). A solution of lithium hydroxide (63 mg, 2.64 mmol, 2 equiv.) in water (1 mL) was added and the mixture was stirred at 0 °C until a complete hydrolysis of the silyl ester was observed by TLC. The reaction mixture was diluted with EtOAc (30 mL) and water (20 ml), cooled to 0 °C and acidified to pH = 5 with 1 M

hydrochloric acid. The product was immediately extracted with EtOAc (3×20 ml). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel (15% EtOAc in hexanes to 50% EtOAc, 1% AcOH in hexanes) to give [$^{13}C_4$]-**12** (0.49 g, 1.31 mmol, 99% yield) as a pale yellow oil. The enantiopurity of the material (81% ee) was measured by HPLC trace analysis after derivatization to [$^{13}C_4$]-**56** (see below). ¹H NMR (600 MHz, CDCl₃, mixture of diastereomers): δ 5.50 (dm, J = 137.3 Hz, 1H), 5.37 (m, 1H), 4.35 (t, J = 4.92 Hz, 1H), 3.77 (dm, J = 140.7 Hz), 3.31 (s, 3H), 3.30 (s, 3H), 2.45 – 2.15 (m, 4H), 2.10 – 1.92 (m, 1H), 1.70 – 1.52 (m, 4H), 1.09 (ddd, J = 125.4, 9.2, 4.4 Hz, 3H), 0.87 (s, 9H), 0.03 (s, 3H), 0.03 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) mixture of diastereomers: δ 181.32, 181.34, 130.1 (dd, J = 43.4, 1.9 Hz), 128.7 (d, J = 2.1 Hz), 104.3, 68.8 (t, J = 39.1Hz), 53.0 (d, J = 2.2 Hz), 52.6 (d, J = 0.8 Hz), 45.3 (d, J = 2.6 Hz), 43.0 (ddd, J = 43.4, 38.7, 4.2 Hz), 35.3, 30.2, 26.4, 26.3, 26.02, 23.5 (dd, J = 39.8, 1.0 Hz), 18.3, -4.6, -4.4. HRMS-ESI (m/z): [M+Na]⁺ calcd for ${}^{13}C_4C_{15}H_{38}O_5SiNa$, 401.2520; found, 401.2523.

Acid 11. The title compound was prepared according to the procedure described above with ester 12 (2.0 g, 5.34 mmol), lithium diisopropylamide (10.68 mmol, 2 equiv.), TBSCI (1.85 g, 12.28 mmol, 2.3 equiv.), and HMPA (8.0 mL) in THF (54 mL). Acid 11 was isolated in 93% yield (1.86 g, 4.97 mmol). The enantiopurity of the material was measured by HPLC trace analysis after derivatization to S6 (see below). ¹H NMR (400 MHz, CDCl₃), mixture of diastereomers: δ 5.52 – 5.44 (m, 1H), 5.42 – 5.34 (m, 1H), 4.35 (t, *J* = 5.2 Hz, 1H), 3.81 – 3.74 (m, 1H), 3.30 (s, 3H), 3.29 (s, 3H), 2.44 – 2.30 (m, 2H), 2.24 – 2.03 (m, 3H), 1.71 – 1.52 (m, 4H), 1.08 (d, *J* = 6.1 Hz, 3H), 0.87 (s, 9H), 0.03 (s, 3H), 0.02 (s, 3H). ¹³C NMR (100.5 MHz, CDCl₃, mixture of diastereomers): δ

181.48, 181.46, 130.1, 128.6, 104.2, 68.8, 52.6, 52.6, 45.3, 43.00, 35.3, 30.2, 26.4, 26.3, 26.0, 23.4, 18.3, -4.4, -4.6. HRMS-ESI (m/z): $[M+Na]^+$ calcd for $C_{19}H_{38}O_5SiNa$, 397.2386; found, 397.2389.

Amide [¹³C₄]-S6. EDC hydrochloride (15.3 mg (0.08 mmol, 3 equiv.) was added to a solution of acid [¹³C₄]-**11** (10 mg, 0.026 mmol), (*R*)-1-phenylethylamine (10.2 μL, 0.08 mmol, 3 equiv.), and 1-hydroxybenzotriazole hydrate (11 mg, 0.08 mmol, 3 equiv.) in CH₂Cl₂ (0.5 mL) at 23 °C. The reaction mixture was stirred overnight, then it was diluted with CH₂Cl₂ (7 mL) and sequentially washed with water (5 mL) and brine (5 mL). The organic phase was dried over Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel (30% EtOAc in hexanes) to give [¹³C₄]-S6 (11.2 mg, 0.023 mmol, 88% yield) as a pale yellow oil. ee: 81% [Chiralpak ® AD-H; 5% *i*-PrOH- hexanes; flow rate = 1 mL/ min; 10 μ L injection of a 1 mg/ mL solution; detection at 210 nm; t₁ = 5.84 min. (major), t₂ = 6.55 min. (major), $t_3 = 7.39$ min., $t_4 = 9.44$ min.]. ¹H NMR (500 MHz, CDCl₃, mixture of diastereomers) δ 7.37 – 7.22 (m, 5H), 5.78 (d, J = 6.3 Hz, 1H), 5.42 (dm, J = 134.0 Hz, 1H), 5.33 – 5.23 (m, 1H), 5.20 - 5.10 (m, 1H), 4.33 (t, J = 5.3 Hz, 1H), 3.71 (dm, J = 141.8 Hz, 1H), 3.32 (s, 3H), 3.30 (s, 3H), 2.34 – 1.82 (m, 5H), 1.72 – 1.51 (m, 3H), 1.48 (d, J = 6.9 Hz, 3H), 1.05 (ddd, J = 125.4, 10.2, 4.3 Hz, 3H), 0.87 (s, 9H), 0.02 (s, 3H), 0.01 (s, 3H). ¹³C NMR (126 MHz, CDCl₃, mixture of diastereomers): δ 174.0, 143.4, 129.7 (dd, J = 43.4, 5.3), 129.4, 128.8 (d, J = 0.8 Hz), 127.4 (d, J = 2.6 Hz), 126.4, 104.8, 68.8 (m), 53.5 (d, J = 2.2 Hz), 52.7, 48.6 (d, J = 1.8 Hz), 47.7, 43.1 (m), 36.3, 30.5, 27.5, 26.0, 23.5 (ddd, J = 39.8, 9.2, 1.0 Hz), 21.9 (d, J = 6.5 Hz), 18.3, -4.4, -4.5. HRMS-ESI (m/z): $[M+Na]^+$ calcd for ${}^{13}C_4C_{23}H_{47}NO_4SiNa$, 504.3306; found, 504.3310.

Amide S6. The title compound was prepared according to the procedure described above for its ${}^{13}C_4$ analog with acid **11** (20 mg, 0.053 mmol), (*R*)-1-phenylethylamine (20.4 μL, 0.16 mmol, 3 equiv.), EDC hydrochloride (30.7 mg, 0.16 mmol, 3 equiv.), and 1-hydroxybenzotriazole hydrate (22 mg, 0.16 mmol, 3 equiv.) in CH₂Cl₂ (1 mL). **S6** was isolated in 91% yield (23.2 mg, 0.048 mmol, 91% yield). The enantiopurity of the product was determined to be 74% ee using the same HPLC conditions as those described for its ${}^{13}C_4$ analog with identical retention times. ¹H NMR (400 MHz, CDCl₃, mixture of diastereomers): ¹H NMR (500 MHz, CDCl₃, mixture of diastereomers) δ 7.37 – 7.20 (m, 5H), 5.82 (d, *J* = 4.7 Hz, 1H), 5.47 – 5.36 (m, 1H), 5.33 – 5.23 (m, 1H), 5.20 – 5.07 (m, 1H), 4.33 (t, *J* = 5.3 Hz, 1H), 3.78 – 3.67 (m, 1H), 3.31 (s, 3H), 3.29 (s, 3H), 2.35 – 2.23 (m, 1H), 2.15 – 2.03 (m, 3H), 2.03 – 1.93 (m, 1H), 1.72 – 1.49 (m, 3H), 1.48 (d, *J* = 6.9 Hz, 3H), 1.06 (d, *J* = 6.1 Hz, 3H), 0.87 (s, 9H), 0.02 (s, 3H), 0.01 (s, 3H). ¹³C NMR (126 MHz, CDCl₃, mixture of diastereomers): δ 174.0, 143.4, 129.6, 129.4, 128.7, 127.4, 126.3, 104.8, 68.8, 53.4, 52.6, 48.6, 47.7, 43.1, 36.3, 30.4, 27.5, 26.0, 23.5, 21.9, 18.3, -4.4, -4.6. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₇H₄₇NO₄SiNa, 500.3172; found, 500.3174.

Acquired by	: Artur Mailyan	MeO、OMe
Sample Name	: AKM-09-133racemic	Ť
Sample ID	: AKM-09-133racemic	
Vail #		н <u>н</u>
Injection Volume	: 10 uL	N Y Ph
Data File Name	: AKM-09-133racemic1.lcd	
Method File Name	: brad.lcm	*
Batch File Name		*Me
Report File Name	: Default.lcr	Ϋ́
Data Acquired	: 6/21/2018 1:52:00 PM	ÓТВS
Data Processed	: 6/21/2018 2:09:20 PM	(±)-[¹³ C ₄]- S6

<Chromatogram>

1 PDA Multi 1/210nm 4nm

	1 curi dore				
PDA Ch1 2	210nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.831	3369481	338182	10.165	15.501
2	6.442	12882099	795250	38.862	36.451
3	7.266	13234855	860867	39.927	39.458
4	9.245	3661508	187404	11.046	8.590
Total		33147943	2181703	100.000	100.000

PeakTable

	C:\LabSolutions\Data\AKM\Anatoxin-a\AKM-09-133.2.lcd	MeOOMe
Acquired by	: Artur Mailyan	Ī
Sample Name	: AKM-09-133.2	
Sample ID	: AKM-09-133.2	
Vail #		
Injection Volume	: 10 uL	U U Me
Data File Name	: AKM-09-133.2.lcd]* *
Method File Name	: brad.lcm	, Me
Batch File Name		Ť
Report File Name	: Default.lcr	OTBS
Data Acquired	: 6/20/2018 7:16:52 PM	[¹³ C⊿]- S6
Data Processed	: 6/20/2018 7:31:18 PM	L -4]
		81% ee

<Chromatogram>

1 PDA Multi 1/210nm 4nm

	1 carraote				
PDA Ch1 2	10nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.836	5824115	539793	44.933	52.365
2	6.554	5912738	406052	45.617	39.391
3	7.389	611581	49751	4.718	4.826
4	9.437	613388	35226	4.732	3.417
Total		12961822	1030822	100.000	100.000

PeakTable

Tosyl amine $[^{13}C_4]$ -19. A solution of acid $[^{13}C_4]$ -11 (0.48 g, 1.27 mmol) diphenyl phosphoryl azide (0.41 mL, 1.9 mmol, 1.5 equiv.), and *i*-Pr₂NEt (0.44 mL, 2.54 mmol, 2 equiv.) in benzene (12.7 mL) was heated at reflux for 3 h with a drying tube attached. Then the reaction mixture was cooled to 23 °C and a solution of Me₃SiONa (0.64 g, 5.7 mmol, 4.5 equiv.) in THF (6.4 mL) was added in one portion. The mixture was stirred for 20 min, then diluted with EtOAc (20 mL) and quenched with water (20 mL). The product was extracted with EtOAc (3 × 20 ml), the combined organic layers were washed with 3M aqueous NaOH (50 mL) and brine (50 mL), dried over Na_2SO_4 and concentrated to dryness under reduced pressure. The crude amine [¹³C₄]-**S7** was dissolved in CH₂Cl₂ (12.7 mL), then *i*-Pr₂NEt (0.44 mL, 2.54 mmol, 2 equiv.) and *p*toluenesulfonyl chloride (0.31 g, 1.65 mmol, 1.3 equiv.) were added sequentially to the mixture. After complete disappearance of $[{}^{13}C_4]$ -S7 was observed by TLC (1 h), the mixture was concentrated under reduced pressure, and the residue directly subjected to column chromatography on silica gel (15% EtOAc in hexanes to 35% EtOAc in hexanes) to produce ¹³C₄]-**19** (0.53 g, 1.05 mmol, 83% yield) as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃, mixture of diastereomers): δ 7.73 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.2 Hz, 4H), 5.33 (dm, J = 151.8 Hz, 1H), 5.20 – 5.07 (m, 1H), 4.66 – 4.56 (m, 1H), 4.23 (t, J = 5.1 Hz, 1H), 3.74 (dm, J = 139.9 Hz, 1H), 3.25 (s, 6H), 3.24 – 3.17 (m, 1H), 2.41 (s, 3H), 2.01 (dm, J = 125.9 Hz, 2H), 2.08 – 1.06 (m, 2H), 1.58 – 1.46 (m, 3H), 1.43 – 1.34 (m, 2H), 1.06 (dm, J = 125.4 Hz, 3H), 0.86 (s, 9H), 0.02 (s, 3H), 0.00 (s, 3H). ¹³C NMR (125.7 MHz, CDCl₃, mixture of diastereomers): δ 143.3, 131.8 (dd, J = 43.4, 10.9 Hz), 129.7 (d, J = 1.0 Hz), 127.2, 104.4, 68.6 (td, J = 39.1, 1.8 Hz), 68.4 (td, J = 39.1, 1.8 Hz), 53.6, 53.1, 53.0, 43.0 (ddd, J = 43.4, 38.5, 9.6 Hz), 38.17, 29.4, 28.6, 26.0, 23.5 (ddd, J = 39.8, 9.4, 1.1 Hz), 21.6, 18.3, -4.4, -4.6. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₁¹³C₄H₄₅NO₅SSiNa, 526.2820; found, 526.2827.

Tosyl amine 19. The title compound was prepared according to the procedure described above for its ¹³C₄ analog, using acid 11 (1.5 g, 4.0 mmol) with the following reagents in the indicated quantities: diphenyl phosphoryl azide (1.3 mL, 6.0 mmol, 1.5 equiv.), *i*-Pr₂NEt (1.4 mL, 8.0 mmol, 2 equiv.) in benzene (40 mL), then Me₃SiONa (2.0 g, 18 mmol, 4.5 equiv.) in THF (20 mL) for the first step; crude amine **S7** was treated with *i*-Pr₂NEt (1.4 mL, 8.0 mmol, 2 equiv.) and *p*toluenesulfonyl chloride (1.0 g, 5.2 mmol, 1.3 equiv.) in 40 mL of CH₂Cl₂ (40 mL). **19** was isolated in 80% yield (1.6 g, 3.20 mmol). ¹H NMR (500 MHz, CDCl₃), mixture of diastereomers: δ 7.74 (d, *J* = 8.3 Hz, 4H), 7.29 (d, *J* = 8.1 Hz, 4H), 5.41 – 5.30 (m, 2H), 5.20 – 5.08 (m, 2H), 4.49 (d, *J* = 8.0 Hz, 1H), 4.45 (d, J = 7.8 Hz, 1H), 4.27 – 4.23 (m, 2H), 3.80 – 3.72 (m, 2H), 3.28 – 3.26 (s, 12H), 3.25 – 3.18 (m, 2H), 2.42 (s, 6H), 2.11 – 1.96 (m, 8H), 1.56 – 1.45 (m, 6H), 1.45 – 1.35 (m, 2H), 1.09 (d, *J* = 2.4 Hz, 3H), 1.07 (d, *J* = 2.4 Hz, 3H), 0.87 (s, 18H), 0.03 (s, 6H), 0.02 (s, 6H). ¹³C NMR (126 MHz, CDCl₃, mixture of diastereomers): δ 143.34, 131.92, 129.74, 127.27, 126.69, 104.42, 68.44, 53.58, 53.14, 53.10, 43.07, 38.18, 29.48, 28.67, 26.02, 23.56, 21.65, 18.30, -4.37, -4.57. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₅H₄₅NO₅SSiNa, 522.2685; found, 522.2682.

N-Tosylpyrrolidine [$^{13}C_4$]-20. (±)-10-Camphorsulfonic acid (10 mg, 0.04 mmol, 0.05 equiv.) was added to a solution of tosyl amine [$^{13}C_4$]-19 (0.450 g, 0.89 mmol) in MeOH (8.9 mL) at 23 °C and

the reaction was left to stir overnight. The solvent was evaporated under reduced pressure and the dry residue was dissolved in CH₂Cl₂ (8.9 mL). TEMPO (42 mg, 0.27 mmol, 0.3 equiv.) and PhI(OAc)₂ (0.58 g, 1.79 mmol, 2 equiv.) were then added and the mixture was stirred at 23 °C for 8 h. The solvent was removed under reduced pressure and the residue was directly purified by column chromatography on silica gel (25% EtOAc in hexanes to 35% EtOAc in hexanes) to give [¹³C₄]-**19** (0.290 g, 0.81 mmol, 91% yield) as a pale yellow oil. [α]_D²¹ –79.8 (*c* 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 7.68 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 1H), 5.63 (dm, *J* = 126.5 Hz, 1H), 5.55 – 5.41 (m, 1H), 5.02 (d, *J* = 5.0 Hz, 1H), 3.56 – 3.46 (m, 1H), 3.41 (s, 3H), 3.12 (ddd, *J* = 126.4, 12.8, 6.4 Hz, 2H), 2.69 – 2.61 (m, 1H), 2.41 (s, 3H), 2.40 – 2.33 (m, 1H), 2.14 (ddd, *J* = 127.3, 5.8, 0.9 Hz, 3H), 1.82 – 1.69 (m, 3H), 1.15 – 1.02 (m, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 207.2 (t, *J* = 39.8 Hz), 143.7, 135.8, 130.3, 129.8, 127.4, 125.0 (dd, *J* = 43.3, 2.9 Hz), 92.8, 60.5, 54.8, 47.7 (ddd, *J* = 43.3, 38.8, 14.4 Hz), 40.1 (d, *J* = 39.8 Hz), 32.1, 29.4 (dd, *J* = 14.4, 40.8 Hz), 29.0, 21.6. HRMS-ESI (m/z): [M+Na]⁺ calcd for ¹³C₄C₁₄H₂₅NO₄SNa, 378.1536; found, 378.1548.

N-Tosylpyrrolidine 20. The title compound was prepared according to the procedure described above for its ¹³C₄ analog using tosyl amine 19 (1.10 g, 2.20 mmol) and (±)-10-camphorsulfonic acid (25.6 mg, 0.11 mmol, 0.05 equiv.) in methanol (4.4 mL), followed by treatment with TEMPO (103 mg, 0.66 mmol, 0.3 equiv.) and PhI(OAc)₂ (1.42 g, 4.40 mmol, 2 equiv.) CH₂Cl₂ (22 mL). *N*-tosylpyrrolidine 20 was isolated in 90% yield (0.70 g, 1.98 mmol). $[\alpha]_D^{21}$ –81.4 (*c* 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 7.69 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.3 Hz, 1H), 5.66 – 5.58 (m, 1H), 5.55 – 5.48 (m, 1H), 5.03 (d, *J* = 5.0 Hz, 1H), 3.56 – 3.48 (m, 1H), 3.41 (s, 3H), 3.12 (d, *J* = 6.8 Hz, 2H), 2.69 – 2.62 (m, 1H), 2.43 (s, 3H), 2.42 – 2.35 (m, 1H), 2.15 (s, 3H), 1.82 – 1.72 (m, 3H), 1.15 – 1.04 (m, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 207.2, 143.7, 135.7, 130.5, 129.8, 127.3,

125.1, 92.8, 60.5, 54.8, 47.7, 40.0, 32.1, 29.5, 29.0, 21.6. HRMS-ESI (m/z): $[M+Na]^{+}$ calcd for $C_{18}H_{25}NO_4SNa$, 374.1402; found, 374.1402.

Vinyl ketone [¹³C₄]-10. DBU (0.63 mL, 4.2 mmol, 5.0 equiv.) was added to a solution of *N*-tosylpyrrolidine [¹³C₄]-20 (0.300 g, 0.84 mmol) in benzene (8.4 mL) at 23 °C. The resulting solution was stirred at 23 °C for 12 h, then it was diluted with EtOAc (35 mL) and washed with saturated aqueous NH₄Cl (30 mL) and brine (30 mL). The organic phase was dried over Na₂SO₄, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (35% EtOAc in hexanes to 50% EtOAc in hexanes) to give [¹³C₄]-10 (0.270 g, 0.76 mmol, 90% yield) as a pale yellow oil. $[\alpha]_D^{21}$ –93.2 (*c* 1.0, MeOH). ¹H NMR (600 MHz, CDCl₃): δ 7.67 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 6.82 (ddt, *J* = 152.6, 15.9, 6.5 Hz, 1H), 6.09 (dd, *J* = 157.4, 16.0 Hz, 1H), 5.04 (d, *J* = 5.1 Hz, 1H), 3.54 – 3.46 (m, 1H), 3.42 (s, 3H), 2.43 (s, 3H), 2.26 (dd, *J* = 127.3, 5.8, 3H), 2.35 – 2.20 (m, 2H), 2.11 – 2.03 (m, 1H), 1.85 – 1.68 (m, 4H), 1.18 – 1.06 (m, 1H). ¹³C NMR (151 MHz, CDCl₃): δ 198.7 (dd, *J* = 53.2, 42.1 Hz), 147.6 (dd, *J* = 67.9, 1.2 Hz), 143.8, 135.7, 131.6 (ddd, *J* = 67.9, 53.1, 14.7), 129.9, 127.4, 92.9, 60.4, 55.0, 35.3, 32.2, 28.5 (dd, *J* = 41.4, 5.7 Hz), 26.9 (dd, *J* = 42.1, 14.7), 27.0 (dd, *J* = 14.7, 42.1 Hz), 21.6. HRMS-ESI (m/z): [M+Na]⁺ calcd for ¹³C₄C₁₄H₂₅NO₄SNa, 378.1536; found, 378.1529.

Vinyl ketone 10. The title compound was prepared according to the procedure described above for its ${}^{13}C_4$ analog with *N*-tosylpyrrolidine **10** (0.400 g, 1.14 mmol) and DBU (0.85 mL, 5.69 mmol, 5 equiv.) in benzene (11.4 mL). Vinyl ketone **10** was isolated in 85% yield (0.340 g, 0.97

mmol). $\left[\alpha\right]_{D}^{21}$ –95.1 (*c* 1.0, MeOH). ¹H NMR (600 MHz, CDCl₃): δ 7.66 (d, *J* = 9.1 Hz, 2H), 7.29 (d, *J* = 9.4 Hz, 2H), 6.82 (dt, *J* = 16.0, 6.8 Hz, 1H), 6.08 (d, *J* = 16.0 Hz, 1H), 5.02 (d, *J* = 5.1 Hz, 1H), 3.54 – 3.44 (m, 1H), 3.41 (s, 3H), 2.41 (s, 3H), 2.37 – 2.27 (m, 1H), 2.27 – 2.18 (m, 4H), 2.12 – 2.03 (m, 1H), 1.84 – 1.67 (m, 4H), 1.16 – 1.05 (m, 1H). ¹³C NMR (151 MHz, CDCl₃): δ 198.7, 147.7, 143.9, 135.7, 131.7, 129.9, 127.4, 92.9, 60.4, 55.0, 35.3, 32.2, 29.4, 28.6, 27.0, 21.6. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₈H₂₅NO₄SNa, 374.1402; found, 374.1398.

N-Tosylanatoxin-a [¹³C₄]-21. Me₃SiOTf (0.65 mL, 3.58 mmol, 2.5 equiv.) was added to a solution of vinyl ketone $[{}^{13}C_4]$ -10 (0.510 g, 1.43 mmol) and tetrahydrothiophene (0.19 mL, 2.15 mmol, 1.5 equiv.) in MeCN (14.3 mL) at -30 °C. The resulting mixture was stirred at -30°C for 72 h, then guenched with DBU (0.43 mL, 2.87 mmol, 2 equiv.) and stirred at 23°C for 30 min. The solution was diluted with EtOAc (40 mL), washed with saturated aqueous NH₄Cl (30 mL) and brine (30 mL). The organic phase was dried over Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel (35% EtOAc in hexanes) to give $[^{13}C_4]$ -10 (0.360 g, 1.11 mmol, 78% yield) as a white solid. ee: 80% [Chiralpak ® AD-H; 10% i-PrOH- Hexanes; flow rate = 1 mL/ min; detection at 254 nm; t₁ = 16.6 min. (minor), $t_2 = 23.4$ min. (major)]. This material can be recrystallized from *i*-PrOH/Hexanes mixture to produce material with ee = 98% (0.240 g, 67% yield, 52% overall yield). $\left[\alpha\right]_{D}^{18}$ –14.6 (*c* 0.8. CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 7.71 (d, J = 8.3 Hz, 2H), 7.26 (d, J = 8.3 Hz, 2H), 6.86 (ddd, J = 152.6, 12.5, 6.4 Hz, 1H), 5.24 - 5.16 (m, 1H), 4.46 - 4.40 (m, 1H), 2.70 - 2.59 (m, 1H), 2.39 (s, 3H), 2.25 (dd, J = 127.7, 5.8 Hz, 3H), 2.39 - 2.31 (m, 1H), 2.20 - 2.13 (m, 1H), 1.77 - 1.58 (m, 3H), 1.55 - 1.43 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 197.36 (ddd, J = 50.4, 43.3, 4.1 Hz), 147.3 (ddd, J = 69.6, 50.5, 12.2 Hz), 143.5 (dd, J = 69.6, 3.7 Hz), 143.4, 137.2, 129.7, 126.8, 58.9, 56.1, 33.3, 31.9, 29.6, 25.3 (dd, J = 43.3, 12.2 Hz), 24.3 (dd, J = 40.0, 5.6 Hz), 21.5. HRMS-ESI (m/z): [M+Na]⁺ calcd for ¹³C₄C₁₃H₂₁NO₃SNa, 346.1274; found, 346.1276.

*N***-Tosylanatoxin-a 21.** The title compound was prepared according to the procedure described above for its ${}^{13}C_4$ with vinyl ketone **21** (0.260 g, 0.74 mmol), Me₃SiOTf (0.34 mL, 1.85 mmol, 2.5 equiv.), tetrahydrothiophene (98 µL, 1.11 mmol, 1.5 equiv.), DBU (0.22 Ml (1.48 mmol, 2 equiv.) in MeCN (7.4mL).

N-Tosylanatoxin-a **21** was isolated in 75% yield (0.177 g, 0.55 mmol).). The enantiopurity of the product was determined to be 72% ee using the same HPLC conditions as those described for its ${}^{13}C_4$ analog with identical retention times. [α]_D²⁰ –13.9 (*c* 0.8, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ 7.71 (d, *J* = 8.1 Hz, 2H), 7.26 (d, *J* = 8.1 Hz, 2H), 6.86 (t, *J* = 5.8 Hz, 1H), 5.21 (d, *J* = 8.7 Hz, 1H), 4.46 – 4.40 (m, 1H), 2.71 – 2.61 (m, 1H), 2.44 – 2.32 (m, 4H), 2.26 (s, 3H), 2.22 – 2.12 (m, 1H), 1.80 – 1.60 (m, 3H), 1.57 – 1.44 (m, 2H). ¹³C NMR (151 MHz, CDCl₃): δ 197.6, 147.5, 143.4, 143.3, 137.4, 129.8, 127.1, 59.0, 56.5, 33.7, 32.1, 29.9, 25.5, 24.5, 21.6. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₇H₂₁NO₃SNa, 342.1140; found, 342.1136.

C:\LabSolutions\Data\AKM\Anatoxin-a\AKM-09-234.lcd

Acquired by Sample Name Sample ID Vail # Injection Volume Data File Name	: Artur Mailyan : AKM-09-234 : AKM-09-234 : : 10 uL : AKM-09-234.lcd	Ts No * Me
Batch File Name	: brad.icm	V
Report File Name Data Acquired Data Processed	: Default.lcr : 6/23/2018 11:18:55 AM : 6/23/2018 11:54:50 AM	(±)-[¹³ C ₄]- 21

<Chromatogram>

1 PDA Multi 1/254nm 4nm

		1 cut 1 uore				
F	PDA Ch1 2	54nm 4nm				
Γ	Peak#	Ret. Time	Area	Height	Area %	Height %
Γ	1	15.759	5253735	211405	50.601	59.321
Γ	2	21.893	5128905	144968	49.399	40.679
	Total		10382640	356373	100.000	100.000

PeakTable

Acquired by Sample Name Sample ID Vail # Injection Volume Data File Name Method File Name Batch File Name	C:\LabSolutions\Data\AKM\Anatoxin-a\AKM-09-156_before_cryst2.lcd : Artur Mailyan : AKM-09-156_before_cryst2 : AKM-09-156_before_cryst2 : : 10 uL : AKM-09-156_before_cryst2.lcd : brad.lcm	Ts N V * Me
Report File Name Data Acquired Data Processed	Default.lcr : 6/20/2018 3:49:25 PM : 6/20/2018 4:17:32 PM	[¹³ C ₄]- 21 80% ee

<Chromatogram>

1 PDA Multi 1/254nm 4nm

PeakTable					
PDA Ch1 254nm 4nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.325	469863	18309	10.031	13.228
2	22.472	4214128	120103	89.969	86.772
Total		4683991	138412	100.000	100.000

C:\LabSolutions\Data\AKM\Anatoxin-a\AKM-09-156_after_cryst2.lcd Acquired by : Artur Mailyan Sample Name AKM-09-156_after_cryst2 Sample ID Vail # AKM-09-156_after_cryst2 Injection Volume 10 uL AKM-09-156 after cryst2.lcd Data File Name Method File Name brad.lcm Batch File Name Report File Name Default.Icr [¹³C₄]-21 Data Acquired 6/23/2018 12:40:32 PM 98% ee Data Processed : 6/23/2018 1:09:42 PM

<Chromatogram>

1 PDA Multi 1/254nm 4nm

				PeakTable	2	
į	PDA Ch1 2	254nm 4nm				
l	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	15.764	31558	1408	0.657	1.015
[2	21.697	4772383	137324	99.343	98.985
	Total		4803941	138732	100.000	100.000

(-)- $[^{13}C_4]$ -Anatoxin-a $[^{13}C_4]$ -1 • HCl. A mixture of *N*-tosylanatoxin-a $[^{13}C_4]$ -21 (0.240 g, 0.74 mmol), ethylene glycol (0.42 mL, 7.42 mmol, 10 equiv.) and pyridinium p-toluenesulfonate (19 mg, 0.074 mmol) in benzene (10 mL) was heated to reflux with a Dean-Stark apparatus for 24 h. The reaction mixture was cooled to 23 °C and the solvent was evaporated under reduced pressure. The crude acetal was taken up in MeOH (15 mL), magnesium (0.530 g, 22.2 mmol, 30 equiv.) was added, and the resulting suspension was sonicated at 23 °C for 1 h. The reaction was guenched with 3 M hydrochloric acid (20 mL) and stirred for 1 h at 23 °C. Solid K₂CO₃ was carefully added to the reaction mixture until pH ~12 and the mixture was filtered through celite to remove the inorganic precipitate. The product was extracted with CH_2CI_2 (4 × 20 ml), the combined organic phase was dried over Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by reversed-phase column chromatography on C18 reversed-phase silica gel (1% MeOH, 0.1% TFA in water to 3% MeOH, 0.3% TFA in water) followed by the treatment with a 1 M HCl solution in MeOH to produce the title compound (0.110 g, 0.53 mmol, 72% yield) as a white solid upon precipitation from dry diethyl ether. $[\alpha]_{n}^{^{21}}$ +41.3 (c 1.0, MeOH). ¹H NMR (600 MHz, CD₃OD): δ 7.40 (dm, J = 157.4 Hz, 1H), 5.16 – 5.06 (m, 1H), 4.32 – 4.23 (m, 1H), 2.79 – 2.68 (m, 1H), 2.67 – 2.58 (m, 1H), 2.48 – 2.39 (m, 1H), 2.35 (dd, J = 128.0, 6.0 Hz, 3H), 2.30 – 2.20 (m, 1H), 2.19 – 2.11 (m, 1H), 2.05 – 1.89 (m, 3H). ¹³C NMR (151 MHz, CD₃OD): δ 198.4 (ddd, J = 51.2, 44.0, 3.8), 149.5 (d, J = 68.2 Hz), 144.7 (ddd, J = 68.1, 51.3, 13.0), 60.6 (d, J = 11.8 Hz), 53.7 (dd, J = 46.6, 15.8 Hz), 31.2, 29.0, 28.3, 25.42 (ddd, J = 44.0, 13.0, 5.4 Hz), 24.5 (dd, J = 39.0, 5.6 Hz). HRMS-ESI (m/z): $[M+H]^+$ calcd for ${}^{13}C_4C_6H_{16}NO$, 170.1366; found, 170.1365.

Anatoxin-a 1•HCl. The title compound was prepared according to the procedure described above for its ${}^{13}C_4$ analog with *N*-tosylanatoxin-a **21** (130 mg, 0.41 mmol), ethylene glycol (0.23 mL, 4.1 mmol, 10 equiv.), and pyridinium *p*-toluenesulfonate (10.3 mg, 0.041 mmol) in benzene (4.1 mL). The crude acetal was then treated with magnesium (0.295 g, 12.3 mmol, 30 equiv.) and sonicated in methanol (7 mL). Anatoxin-a **1**•HCl was obtained in 65% yield (54 mg, 0.27 mmol). [α]_D²¹ +39.1 (*c* 1.0, MeOH). ¹H NMR (500 MHz, CD₃OD): δ 7.39 (dd, *J* = 8.6, 2.7 Hz, 1H), 5.10 (d, *J* = 9.3 Hz, 1H), 4.30 – 4.24 (m, 1H), 2.78 – 2.68 (m, 1H), 2.68 – 2.58 (m, 1H), 2.49 – 2.39 (m, 1H), 2.35 (s, 3H), 2.30 – 2.20 (m, 1H), 2.19 – 2.09 (m, 1H), 2.06 – 1.91 (m, 3H). ¹³C NMR (125.6 MHz, CD₃OD): δ 198.5, 149.5, 144.7, 60.6, 53.7, 31.2, 29.0, 28.3, 25.5, 24.6. HRMS-ESI (m/z): [M+H]⁺ calcd for C₁₀H₁₆NO, 166.1232; found, 166.1228.

Preparation of Chiral Sulfides for enantioselective MBH Cyclization:

Chiral sulfide 22 is commercially available and was purchased from TCI America. Sulfides 23^4 and 25^5 have been prepared previously. All other sulfides were synthesized according to the procedures outlined below. The absolute stereochemistry of thiolanes 24, 26, 27, 28, and 29 was not determined. In all cases, the enantiomer which eluted first during preparative chiral HPLC purification was used in the enantioselective MBH cyclization. Chiral sulfide 25 is known to have a positive optical rotation and gave the non-natural enantiomer of *N*-tosyl anatoxin-a (*ent*-21). Sulfides 24 and 26 also had positive optical rotations and favored the formation of *ent*-21, so their structures were tentatively drawn with a (2*S*,5*S*) configuration based on correlation to 25. Thiolanes 27, 28, and 29 all had negative optical rotations and favored the formation of 21 over *ent*-21, so their structures were tentatively drawn with a (2*R*,5*R*) configuration.

Thiolane 24. A solution of 3-phenylpropylmagnesium bromide (0.91 M in THF, 8.1 mL, 7.35 mmol, 3.0 equiv.) was added dropwise to a solution of **S8**⁶ (0.500 g, 2.45 mmol) in THF (12.3 mL) at -30 °C. The solution was warmed to 0 °C and stirred at this temperature for 3 h. The mixture was then quenched with saturated aqueous NH₄Cl (25 mL), the layers separated, and the aqueous layer extracted with EtOAc (3 x 15 mL). The combined organic layers were washed with brine (60 mL), dried over NaSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (10% EtOAc in hexanes) to deliver **S9** (0.396 g, 1.23 mmol, 50% yield). Spectral data matched that reported in the literature.⁷

Sodium borohydride (93 mg, 2.46 mmol, 2.0 equiv.) was added portion-wise to a solution of **S9** in MeOH (8.2 mL) and THF (4.1 mL) at 0 °C. The mixture was warmed to room temperature and stirred for 30 min., at which point it was concentrated under reduced pressure. The residue was taken up in EtOAc (50 mL), washed with 1 M HCl (30 mL), saturated aqueous NaHCO₃ (30 mL), and brine (30 mL), dried over NaSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (50% EtOAc in hexanes). The resulting diol (0.391 g, 1.20 mmol, 97% yield) was submitted to the next step.

Methanesulfonyl chloride (0.28 mL, 3.58 mmol, 3.0 equiv.) was added dropwise to a solution of the diol from the previous step (0.391 g, 1.20 mmol) and trimethylamine (0.67 mL, 3.58 mmol, 4 equiv.) in CH_2Cl_2 (2.5 mL) at -10 °C. The mixture was warmed to room temperature and stirred for 2 h. The mixture was diluted with additional CH_2Cl_2 (30 mL) and washed sequentially with 1 M HCl (30 mL), saturated aqueous NaHCO₃ (30 mL), and brine (30 mL), dried over NaSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (20% EtOAc in hexanes to 25% EtOAc in hexanes to 30%

EtOAc in hexanes to 40% EtOAc in hexanes). The corresponding bismesylate was isolated in 84% yield (0.480 g, 0.994 mmol) as a clear oil and submitted to the next step.

A solution of the bismesylate from the previous step (0.467 g, 0.969 mmol) was dissolved in DMF (49 mL). Na₂S•9H₂O (1.16 g, 4.84 mmol, 5.0 equiv.) was then added and the mixture was stirred at room temperature for 15 h. The mixture was then diluted with water (300 mL) and extracted with EtOAc (4 x 75 mL). The combined organic layers were washed with brine (3 x 200 mL), dried over NaSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (2% EtOAc in hexanes) to give an impure 1:1 mixture of *cis*- to *trans*-(±)-**24** (~0.234 g, 0.722 mmol, 75% yield). A portion of this mixture (95 mg, 0.294 mmol) was purified through preparative chiral HPLC [Chiralpak ® AD-H; 250 x 20 mm i.d.; 0.25% *i*-PrOH- Hexanes; flow rate = 6 mL/ min; 3 mL injections of a 10 mg/ mL solution; detection at 210 nm; t₁ = 9.95 min. (*cis*-**24**), t₂ = 12.49 min. (**24**), t₃ = 15.85 min. (*ent*-**24**)]. Following preparative HPLC, **24** was isolated in 21% yield (20 mg, 0.0620 mmol, 99% ee) along with *ent*-**24** in 22% yield (21 mg, 0.0650 mmol, 98% ee), both as colorless oils.

Thiolane 24: $[α]_D^{24}$ +100.7 (*c* 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ 7.28 (t, *J* = 7.8 Hz, 4H), 7.21 – 7.15 (m, 6H), 3.41 (tt, *J* = 8.4, 4.9 Hz, 2H), 2.63 (t, *J* = 6.7Hz, 4H), 2.17 (qd, *J* = 6.4, 3.7 Hz, 2H), 1.77 – 1.64 (m, 6H), 1.57 (tt, *J* =10.6, 4.9 Hz, 2H), 1.51 (t, *J* = 8.3 Hz, 2H). ¹³C NMR (125.7 MHz, CDCl₃): δ 142.4, 128.5, 128.4, 125.8, 49.6, 37.4, 37.4, 35.9, 31.0. HRMS-ESI (m/z): [M+H]⁺ calcd for C₂₂H₂₉S, 325.1990; found, 325.1987.

*Thiolanes **24** and *ent*-**24** overlap slightly during preparative HPLC separation, so they were collected in fractions. The fraction containing thiolane **24** was analyzed to determine its enantiopurity, as shown below.

Report ====	
dzu LCsolution Analysis	C:\LabSolutions\Data\Project1\kyc3-113a.lcd
mai	i
Shi	:

eeport hile Name :	Acquired by Sample Name Sample ID Vall # Diection Volume Data File Name Method File Name	Karen Chen kyc3-113a kyc3-113a syc3-113a kyc3-113a.icd brad.icn
bata Processed : 4/10/2019 10:25:43 AM	ata Acquired	: 4/10/2019 10:05:27 AM
	ata Processed	: 4/10/2019 10:25:43 AM

<Chromatogram>

C:\LabSolutions\Data\Project1\kyc3-113a-fB.lcd Karen Chen Acquired by kyc3-113a-fB Sample Name kyc3-113a-fB Sample ID Vail # Injection Volume 10 uL Data File Name kyc3-113a-fB.lcd Method File Name brad.lcm Batch File Name Report File Name Default Icr Ph 4/17/2019 8:30:14 PM Data Acquired Data Processed 4/17/2019 8:52:56 PM

Thiolane 26. *n*-Butyllithium (2.55 M in hexanes, 7.8 mL, 20.0 mmol, 2.00 equiv.) was added dropwise to a solution of trimethylsilyl acetylene (2.16 g, 22.0 mmol, 2.20 equiv.) in THF (40 mL) at -78 °C. After 30 min, a solution of 4-(trifluoromethyl)benzaldehyde **S10** (1.74 g, 10.0 mmol)

in THF (10 mL) was added dropwise. The solution was warmed to 0 °C and stirred at this temperature for 30 min. The mixture was then quenched with saturated aqueous NH₄Cl (75 mL), the layers separated, and the aqueous layer extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with brine (200 mL), dried over NaSO₄, and concentrated under reduced pressure, and the crude residue submitted to the next step without further purification.

The crude product from the previous reaction was taken up in MeOH (100 mL) and potassium carbonate was added (1.66 g, 12.0 mmol, 1.20 equiv.) The mixture was stirred for 45 min. and then concentrated under reduce pressure. The residue was diluted with EtOAc (75 mL) and water (100 mL) and the layers separated. The aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic extracts were washed with brine (200 mL), dried over NaSO₄, and concentrated under reduced pressure, and the crude residue submitted to the next step without further purification.

The crude product from the previous reaction was taken up in CH_2Cl_2 (100 mL). Imidazole (1.63 g, 24.0 mmol, 2.40 equiv.) and TBSCl (1.81 g, 12.0 mmol, 1.2 equiv.) were added sequentially and the mixture was stirred at room temperature overnight. The reaction was quenched with water (100 mL) and the layers were separated. The aqueous layer was extracted with CH_2Cl_2 (3 x 75 mL), the combined organic extracts were dried over NaSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (20% EtOAc in hexanes) to give **S11** (2.91 g, 9.25 mmol, 92% yield) which was used in the next step.

n-Butyllithium (2.55 M in hexanes, 2.16 mL, 5.50 mmol, 1.10 equiv.) was added dropwise to a solution of **S11** (1.57 g, 5.00 mmol) in THF (25 mL) at -78 °C. After 30 min, a solution of 4-(trifluoromethyl)benzaldehyde **S10** (1.31 g, 7.50 mmol, 1.50 equiv.) in THF (10 mL) was added dropwise. The solution was warmed to 0 °C and stirred at this temperature for 30 min. The mixture was then quenched with saturated aqueous NH₄Cl (75 mL), the layers separated, and the aqueous layer extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with brine (200 mL), dried over NaSO₄, and concentrated under reduced pressure, and the crude residue submitted to the next step without further purification.

A solution of *n*-Bu₄NF • xH₂O (1.57 g, 6.00 mmol, 1.20 equiv.) in THF (5 mL) was added to a solution of the crude product from the previous step and acetic acid (0.43 mL, 7.50 mmol, 1.50 equiv.) in THF (20 mL) and the mixture was stirred at room temperature for 6 h. The mixture was then quenched with saturated aqueous NaHCO₃ (50 mL), diluted with EtOAc (30 mL), and the layers separated. The aqueous layer extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with brine (200 mL) and dried over NaSO₄. Silica (~5.0 g) was added to the filtrate which was then carefully concentrated under reduced pressure and dry-loaded onto a silica gel column. The product was purified by column chromatography on silica gel (25% EtOAc in hexanes to 50% EtOAc in hexanes) to give diol **S12** (1.33 g, 3.56 mmol) which was submitted to the next step.

A solution of diol **S12** (1.24 g, 3.40 mmol) and palladium on calcium carbonate, poisoned with lead (5 wt % Pd, 0.793 g, 0.340 mmol, 10 mol %) in MeOH (34 mL) was stirred under an atmosphere of hydrogen gas for 24 h. The mixture was filtered through celite, concentrated under reduced pressure, and submitted to the next step without further purification.

Methanesulfonyl chloride (0.80 mL, 10.2 mmol, 3.0 equiv.) was added dropwise to a solution of the diol from the previous step and trimethylamine (1.90 mL, 13.6 mmol, 4.0 equiv.) in CH_2Cl_2 (34 mL) at 0 °C and stirred at this temperature for 1 h. The mixture was diluted with additional CH_2Cl_2 (50 mL) and washed sequentially with 1 M HCl (75 mL), saturated aqueous NaHCO₃ (75 mL), and brine (75 mL), dried over NaSO₄, and concentrated under reduced pressure. The crude bismesylate was submitted to the next step without further purification.

A solution of the bismesylate from the previous step was dissolved in DMF (68 mL) and sparged with argon for 10 min. Na₂S•9H₂O (4.08 g, 17.0 mmol, 5.0 equiv.) was then added and the reaction was stirred at room temperature for 2 h. The mixture was then diluted with water (500 mL) and extracted with EtOAc (4 x 100 mL). The combined organic layers were washed with brine (3 x 200 mL), dried over NaSO₄, and concentrated under reduced pressure. The crude residue (1.4:1 (\pm)-*trans*- to *cis*-**26**) was purified by column chromatography on silica gel (8% PhMe in hexanes to 10 % PhMe in hexanes to 12 % PhMe in hexanes) to give (\pm)-*trans*-**26** (0.548 g, 1.46 mmol, 42% yield) which eluted first, followed by a 10:1 mixture of *cis*-**26** (0.439 g, 1.17 mmol, 34% yield) and (\pm)-*trans*-**26** (44 mg, 0.117 mmol, 3.4% yield). A portion of (\pm)-*trans*-

26 (0.300 g, 0.797 mmol) collected after chromatography was purified through preparative chiral HPLC [Chiralpak ® AD-H; 250 x 20 mm i.d.; 0.5% *i*-PrOH- Hexanes; flow rate = 6 mL/ min; 3 mL injections of a 10 mg/ mL solution; detection at 210 nm; t_1 = 20.33 min. (**26**), t_2 = 24.96 min. (*ent*-**26**)]. Following preparative HPLC, 0.130 g (0.345 mmol, 43% yield) of both **26** and *ent*-**26** were isolated as enantiopure, crystalline, white solids.

Thiolane 26: $[\alpha]_{D}^{22}$ +8.3 (*c* 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 7.60 (s, 8H), 4.90 (t, *J* = 7.3 Hz, 2H), 2.64 (qd, *J* = 9.1, 5.6 Hz, 2H), 2.13 (p, *J* = 11.6 Hz, 2H). ¹³C NMR (125.7 MHz, CDCl₃): δ 146.4, 129.7 (q, *J* = 32.5 Hz), 128.2, 125.7 (q, *J* = 3.8 Hz), 124.3 (q, *J* = 272.0 Hz), 54.0, 41.2. HRMS-ESI (m/z): [M+C₂H₅]⁺ calcd for C₂₀H₁₉F₆S, 405.1112; found, 405.1107.

<Chromatogram>

<Peak Table>

Detector A	A Channel 2 21	0nm			Peak Table
Peak#	Ret. Time	Area	Height	Area%	Height%
1	20.333	138392012	1605249	49.572	74.871
2	24.955	140781093	538760	50.428	25.129
Total		279173106	2144009	100.000	100.000

Thiolane 27. The title compound was prepared from **S14** according to the procedures described above for **26** on the same scale for the first step. The obtained alcohol **S15** (1.88 g, 7.88 mmol, 79% yield) was used in the next step with *n*-butyllithium (2.55 M in hexanes, 3.71 mL, 9.46 mmol, 1.20 equiv.) in THF (30 mL), followed by addition of **S14** (1.16 g, 11.8 mmol, 1.50 equiv.) in THF (9 mL). The crude residue obtained after work up was dissolved in THF (30 mL) with acetic acid (0.65 mL, 11.3 mmol, 1.50 equiv.) and treated with a solution of *n*-Bu₄NF•xH₂O (2.37 g, 9.06 mmol, 1.20 equiv.) in THF (8 mL). The reaction was stirred at 50 °C for 6 h. The product was purified by column chromatography on silica gel (40% EtOAc in hexanes to 60% EtOAc in hexanes) to give diol **S16** (1.22 g, 5.47 mmol, 72% yield) which was submitted to the next step.

A solution of diol **\$16** (0.966 g, 4.51 mmol) and *p*-toluenesulfonyl hydrazide (10.1 g, 54.1 mmol, 12.0 equiv.) in 1,2-dimethoxyethane (45 mL) and water (45 mL) was heated to reflux. A solution of sodium acetate (9.20 g, 67.7 mmol, 15.0 equiv.) was added over 5 h using a syringe pump. The mixture was then stirred overnight, cooled to room temperature, diluted with EtOAc (100 mL), and washed with water (3 x 100 mL). The organic phase was dried over NaSO₄, and concentrated under reduced pressure. The crude residue **\$17** was submitted directly to the next step.

Conversion of crude diol **\$17** to thiolane **28** follows the procedures outlined above for **26**, using methanesulfonyl chloride (1.05 mL, 13.5 mmol, 3.0 equiv.) and trimethylamine (2.51 mL, 18.0 mmol, 4.0 equiv.) in CH₂Cl₂ (45 mL). The crude bismesylate was submitted to the next step without further purification. The crude was dissolved in DMF (225 mL) and treated with Na₂S•9H₂O (5.42 g, 22.6 mmol, 5.0 equiv.), and stirred at 50 °C for 15 h. The crude residue was purified by column chromatography on silica gel (hexanes) to give an impure 1.6:1 mixture of (±)-*trans*- to *cis*-**27** (~0.603 g, 2.69 mmol, 60% yield over 3 steps). A portion this material (0.300 g, 1.33 mmol) was purified through preparative chiral HPLC [Chiralpak ® AD-H; 250 x 20 mm i.d.; 0.05% *i*-PrOH- Hexanes; flow rate = 6 mL/ min; 3 mL injections of a 10 mg/ mL solution; detection at 210 nm; t₁ = 17.38 min. (*cis*-**27**), t₂ = 22.12 min. (**27**), t₃ = 26.0 min. (*ent*-**27**)]. Following preparative HPLC, **27** was isolated in 14% yield (42 mg, 0.187 mmol, >99% ee) along with *ent*-**27** in 13% yield (40 mg, 0.178 mmol, 96% ee), both as white crystalline solids.

Thiolane 27: $[\alpha]_D^{22}$ –150.0 (*c* 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ 3.28 (td, *J* = 9.1, 6.1 Hz, 2H), 2.17 (dp, *J* = 10.9, 5.5 Hz, 2H), 1.88 (h, *J* = 8.4 Hz, 2H), 1.78 (dp, *J* = 14.3, 5.6, 4.1 Hz, 4H), 1.66 – 1.55 (m, 4H), 1.51 (dtd, *J* = 9.8, 7.5, 3.2 Hz, 6H), 1.25 (dq, *J* = 12.1, 8.1 Hz, 2H), 1,16 (dq, 12.0, 8.3 Hz, 2H). ¹³C NMR (125.7 MHz, CDCl₃): δ 55.8, 47.6, 37.1, 32.5, 31.9, 25.6, 25.5. HRMS-ESI (m/z): [M+H]⁺ calcd for C₁₄H₂₅S, 225.1677; found, 225.1674.

*Thiolanes **27** and *ent*-**27** overlap slightly during preparative HPLC separation, so they were collected in fractions. The fractions were analyzed to determine their enantiopurity, as shown below.

	lutions Analysi	s Repo	ort		
<sample inform<="" th=""><th colspan="5"><sample information=""></sample></th></sample>	<sample information=""></sample>				
Chiralpak AD-H, 0. Sample Name Sample ID Data Filename	15% i-PrOH/hex, 1 mL/min, 2 mg/ml : JJL-7-020-a : JJL-7-020-a : JJL-7-020-a.lcd	-, 10 uL	└ <u></u> + ()	s	
Batch Filename		cis -2	7	(±)- 27	
Vial #	: : 1-1 : 10 ul	Sample Type	: Unknown		
Date Acquired Date Processed	: 12/16/2019 5:20:02 PM : 12/16/2019 5:32:22 PM	Acquired by Processed by	: Jacob Lacharity : Jacob Lacharity		

<Chromatogram> mAU

<Peak Table>

PDA Ch1	210nm			Pea	k Table
Peak#	Ret. Time	Area	Height	Area%	Height%
1	5.359	1650421	194884	38.220	45.039
2	6.521	1331894	126885	30.843	29.324
3	7.281	1335929	110928	30.937	25.636
Total		4318244	432698	100.000	100.000

<Chromatogram>

<Peak Table>

F	DA Ch1	210nm			Pea	k Table
Г	Peak#	Ret. Time	Area	Height	Area%	Height%
Г	1	9.119	3328646	147851	100.000	100.000
Г	Total		3328646	147851	100.000	100.000

Thiolane 28. Sodium borohydride (0.263 g, 6.94 mmol, 2.0 equiv.) was added portion-wise to a solution of **S18**⁸ (0.869 g, 3.47 mmol) in MeOH (18 mL) at 0 °C. The mixture was warmed to room temperature and stirred for 30 min., at which point it was concentrated under reduced pressure. The residue was taken up in EtOAc (75 mL), washed with 1 M HCl (50 mL), saturated

aqueous NaHCO₃ (50 mL), and brine (50 mL), dried over NaSO₄, and concentrated under reduced pressure. The residue was submitted to the next step without further purification.

Methanesulfonyl chloride (0.81 mL, 10.4 mmol, 3.0 equiv.) was added dropwise to a solution of the crude diol from the previous step and trimethylamine (1.93 mL, 13.9 mmol, 4 equiv.) in CH₂Cl₂ (17 mL) at 0 °C. The mixture was stirred 1 h at this temperature, then diluted with additional CH₂Cl₂ (50 mL) and washed sequentially with 1 M HCl (30 mL), saturated aqueous NaHCO₃ (30 mL), and brine (30 mL), dried over NaSO₄, and concentrated under reduced pressure. The corresponding bismesylate was submitted to the next step without further purification.

A solution of the crude bismesylate from the previous step was dissolved in DMF (170 mL) and sparged with argon for 10 min. Na₂S•9H₂O (4.17 g, 17.4 mmol, 5.0 equiv.) was then added and the mixture was stirred at 50 °C for 15 h. The mixture was then diluted with water (1000 mL) and extracted with EtOAc (4 x 200 mL). The combined organic layers were washed with brine (3 x 300 mL), dried over NaSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexanes) to give an impure 3.8:1 mixture of (±)-*trans*- to *cis*-**28** (~0.294 g, 1.16 mmol, 33% yield over 3 steps). The mixture was purified through preparative chiral HPLC [Chiralpak ® AD-H; 250 x 20 mm i.d.; 0.15% *i*-PrOH-Hexanes; flow rate = 6 mL/ min; 3 mL injections of a 10 mg/ mL solution; detection at 210 nm; $t_1 = 12.65$ min. (*cis*-**28**), $t_2 = 16.48$ min. (**28**), $t_3 = 20.68$ min. (*ent*-**28**)]. Following preparative HPLC, 75.1 mg (0.297 mmol, 26% yield) of both **28** and *ent*-**28** were isolated as enantiopure, crystalline, white solids.

Thiolane 28: $[\alpha]_D^{20}$ –168.2 (*c* 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ (ppm) 3.10 (td, *J* = 8.5, 4.7 Hz, 2H), 2.21 (ddd, *J* = 7.5, 4.4, 2.0 Hz, 2H), 1.81 (ddd, *J* = 11.1, 6.6, 3.2 Hz, 4H), 1.69 (dd, *J* = 8.4, 4.7 Hz, 4H), 1.63 (dddd, *J* = 12.5, 5.1, 3.3, 1.5 Hz, 2H), 1.45 (t, *J* = 9.3 Hz, 2H), 1.31 (tdt, *J* = 11.9, 8.7, 3.5 Hz, 2H), 1.22 (ddt, *J* =16.4, 12.5, 3.3 Hz, 4H), 1.14 (qt, *J* = 12.7, 3.3 Hz, 2H), 1.01 (qd, *J* = 12.7, 3.5 Hz, 2H), 0.93 (qd, *J* = 12.4, 3.6 Hz, 2H). ¹³C NMR (125.7 MHz, CDCl₃): δ (ppm) 55.9, 45.3, 35.7, 33.4, 31.7, 26.5, 26.3, 26.3. HRMS-ESI (m/z): $[M+C_2H_5]^+$ calcd for $C_{18}H_{33}S$, 281.2303; found, 281.2305.

	C:\LabSolutions\Da	ata\Project1\JJL-6-062-a-prep.lcd	
Acquired by	: Jake Lacharity		
Sample Name	: JJL-6-062-a-prep		
Sample ID	: JJL-6-062-a-prep		
Vail #			
Injection Volume	: 1 uL		
Data File Name	: JJL-6-062-a-prep.lcd		
Method File Name	: JakeADHPrep.lcm	\checkmark	\checkmark
Batch File Name			
Report File Name	: Default.lcr	cis- 28	(±)- 28
Data Acquired	: 5/2/2019 4:06:42 PM		
Data Processed	: 5/2/2019 4:42:15 PM		

<Chromatogram>

C:\LabSolutions\Data\Project1\JJL-6-062-a1.lcd					
Acquired by	: Jake Lacharity	-			
Sample Name	: JJL-6-062-a				
Sample ID	: JJL-6-062-a				
Vail #	-				
Injection Volume	: 10 uL	\sim	\sim		
Data File Name	: JJL-6-062-a1.lcd				
Method File Name	: brad.lcm				
Batch File Name	-	\checkmark \checkmark	\checkmark \checkmark		
Report File Name	: Default.lcr	oio 29	(+) 29		
Data Acquired	: 5/2/2019 1:09:24 PM	0/8-20	(±)-28		
Data Processed	: 5/2/2019 1:33:53 PM				

<Chromatogram>

PeakTable

			Peaklable			
PDA Ch1 210nm 4nm						
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	3.147	5148950	523649	52.739	56.366
	2	4.486	966510	171243	9.900	18.433
	3	7.257	1813006	141526	18.570	15.234
	4	9.588	1834699	92602	18.792	9.968
	Total		9763165	929020	100.000	100.000

Thiolane 29. The title compound was prepared according to the procedures described above for thiolane **26.** The first step used aldehyde **S19**⁹ (1.00 g, 8.76 mmol) in THF (14mL), with trimethylsilyl acetylene (1.81 g, 18.4 mmol, 2.10 equiv.) and *n*-butyllithium (2.55 M in hexanes, 6.9 mL, 17.5 mmol, 2.00 equiv.) in THF (40 mL). The second step used potassium carbonate (1.45 g, 10.5 mmol, 1.20 equiv.) in MeOH. The crude product from this step was then treated with imidazole (1.43 g, 21.0 mmol, 2.40 equiv.) and TBSCl (1.58 g, 10.5 mmol, 1.2 equiv.) in CH₂Cl₂ (88 mL). After purification by column chromatography on silica gel (5% EtOAc in hexanes), alkyne **S20** was obtained in 84% yield over 3 steps (1.86 g, 7.33 mmol) and used directly in the next step.

Following the same procedure as that used for thiolane **26**, alkyne **S20** was treated with *n*-butyllithium (2.55 M in hexanes, 3.15 mL, 8.04 mmol, 1.10 equiv.) in THF (12 mL) followed by addition of a solution of **S19** (1.03 g, 9.00 mmol, 1.23 equiv.) in THF (5 mL) The crude residue obtained after work up was treated with a solution of *n*-Bu₄NF (1 M in THF, 8.30 mL, 8.30 mmol, 1.20 equiv.) in THF (35 mL) and the mixture was stirred at room temperature for 6 h. After work up, the product was purified by column chromatography on silica gel (5% MeOH in EtOAc) to give diol **S21** (1.37 g, 5.38 mmol, 77% yield).

A solution of diol **S21** (0.782 g, 3.08 mmol) and palladium on calcium carbonate, poisoned with lead (5 wt % Pd, 0.656 g, 0.308 mmol, 10 mol %) in MeOH (30 mL) was stirred under an atmosphere of hydrogen gas for 15 h. The mixture was filtered through celite,

concentrated under reduced pressure, and submitted to the next step without further purification.

Methanesulfonyl chloride (0.72 mL, 9.24 mmol, 3.0 equiv.) was added dropwise to a solution of the diol from the previous step and trimethylamine (1.70 mL, 12.3 mmol, 4.0 equiv.) in CH_2Cl_2 (30 mL) at 0 °C and stirred at this temperature for 1 h. The mixture was diluted with additional CH_2Cl_2 (50 mL) and washed sequentially with 1 M HCl (75 mL), saturated aqueous NaHCO₃ (75 mL), and brine (75 mL), dried over NaSO₄, and concentrated under reduced pressure. The crude bismesylate was submitted to the next step without further purification.

A solution of the bismesylate from the previous step was dissolved in DMF (154 mL) and sparged with argon for 10 min. Na₂S•9H₂O (3.70 g, 15.4 mmol, 5.0 equiv.) was then added and the reaction was stirred at 50 °C for 15 h. The mixture was then diluted with water (1000 mL) and extracted with EtOAc (4 x 200 mL). The combined organic layers were washed with brine (3 x 300 mL), dried over NaSO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (30% EtOAc in hexanes) to give an impure 3:1 mixture of (±)-*trans*- to *cis*-**29** (~0.400 g, 1.56 mmol, 51% yield over 3 steps). The mixture was purified through preparative chiral HPLC [Chiralpak ® AD-H; 250 x 20 mm i.d.; 5% *i*-PrOH-Hexanes; flow rate = 6 mL/ min; 3 mL injections of a 10 mg/ mL solution; detection at 210 nm; $t_1 = 27.69$ min. (*cis*-**29**), $t_2 = 43.39$ min. (**29**), $t_3 = 57.15$ min. (*ent*-**29**)]. Following preparative HPLC, 0.112 g (0.437 mmol, 14% yield) of both **29** and *ent*-**29** were isolated as enantiopure, crystalline, white solids.

Thiolane 29: $[α]_{D}^{25}$ –158.5 (*c* 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ 3.94 (dt, *J* = 11.3, 5.4 Hz, 4H), 3.34 (q, *J* = 11.5 Hz, 4H), 3.14 (td, *J* = 8.9, 5.1 Hz, 2H), 2.25 (tq, 11.1, 5.6 Hz, 2H), 1.75 – 1.62 (m, 4H), 1.60 – 1.44 (m, 4H), 1.35 (qd, *J* = 12.2, 4.5 Hz, 4H). ¹³C NMR (125.7 MHz, CDCl₃): δ 68.0, 67.8, 55.1, 42.4, 34.9, 33.1, 31.6. HRMS-ESI (m/z): [M+H]⁺ calcd for C₁₄H₂₅O₂S, 257.1575; found, 257.1575.

LabSolutions Analysis Report				
<sample information=""></sample>	•	$\int \int s$	~ +	
Sample Name : JJL-6-2 Sample ID : JJL-6-2 Data Filename : JJL-6-2 Method Filename : JakePi Batab Eilename :	228-preprun1 228-preprun1 228-preprun1.lcd rep.lcm	0 cis-29	00	
Vial # : 1-1		Sample Type	: Unknown	
Date Acquired : 9/24/20 Date Processed : 9/24/20	D19 3:02:17 PM D19 4:17:35 PM	Acquired by Processed by	: Jacob Lacharity : Jacob Lacharity	

<Chromatogram>

<Peak Table>

Detector A Channel 2 210nm Peak Table										
	Peak#	Ret. Time	Area	Height	Area%	Height%				
	1	27.687	6638810	145445	27.607	61.395				
	2	43.391	8787945	56720	36.544	23.942				
	3	57.149	8620925	34735	35.849	14.662				
	Total		24047681	236899	100.000	100.000				

CF

(ts c	<i>hiral sufic</i> Me ₃ SiOT	de ⁻f ┣	Ts N	° V	Me	Me Me S Me	
	(±)- 10			2	1		22	2
entry	solvent	sulfide	temp.	time	yield	ee	Ph	3
1	MeCN	22	0 °C	2 h	85%	24%	2	4
2	MeCN	23	0 °C	3 h	85%	0%		3
3	MeCN	24	0 °C	2 h	68%	26%	2	5
4 ^a	MeCN	25	₽20 °C	22 h	53%	22%	I Junk	
5 ^b	MeCN-CH ₂ Cl ₂ (1:1)	26	ิ215 °C	24 h	19%	?	F ₃ C 2	6
6	MeCN-CH ₂ Cl ₂ (1:1)	27	0 °C	3 h	59%	44%		_ ۲
7	MeCN-PhMe (1:1) ^c	28	0 °C	3 h	40%	62%		3/""
8	MeCN-CH ₂ Cl ₂ (1:1)	29	0 °C	3 h	29%	82%		,
9 ^d	MeCN-CH ₂ Cl ₂ (1:1)	29	0 °C	2 h	50%	78%		3
10	MeCN-PhMe (1:1)	28	⊵40 °C	24 h	42%	70%	2	8
11	MeCN-CH ₂ Cl ₂ (1:1)	29	₽78 °C	4 h	28%	93%	$ \frown $	7. /
^a Epim instea (±)-10	erization of the sulfide d of Me ₃ SiOTf. ^c Conce . ^d Me ₃ SiOTf was add	was obs entration ed at 27	served. ^{b-} was 0.03 8 °C. sti	BSOT M with	⁻f was h respe or 1 h.	used ect to then		s """ 9

General Procedure for Enantioselective aza-MBH Cyclization:

warmed to 0 °C and stirred 1 h. A solution of (\pm) -10 (20 mg, 0.0569 mmol) and chiral sulfide (0.0854 mmol, 1.50 equiv.) in the solvent (0.60 mL excent for entry 7) was cooled to the indicated temperature. MersioTf (26 mL

solvent (0.60 mL, except for entry 7) was cooled to the indicated temperature. Me₃SiOTf (26 μ L, 0.142 mmol, 2.50 equiv.) was added carefully and the solution was stirred for the indicated amount of time. The mixture was then quenched with saturated aqueous NaHCO₃ and diluted with EtOAc (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic phases were washed with brine (30 mL), dried over Na₂SO₄, and concentrated. The residue was dissolved in CH₂Cl₂ (0.60 mL), treated with DBU (17 μ L, 0.114 mmol, 2.0 equiv.), and stirred at room temperature for 30 min. The mixture was concentrated under reduced pressure and purified directly by column chromatography on silica (30% EtOAc in hexanes to 40% EtOAc in hexanes to 50% EtOAc in hexanes) to deliver **21**.

	C:\LabSolutions\Data\Project	1\AKM-09-36a.lcd
Acquired by	: Karen Chen	
Sample Name	: AKM-09-36a	
Sample ID	: AKM-09-36a	Ts
Vail #	:	N Q
Injection Volume	: 10 uL	ii Luc
Data File Name	: AKM-09-36a.lcd	- Mie
Method File Name	: brad.lcm	Δ
Batch File Name	:	
Report File Name	: Default.lcr	v
Data Acquired	: 2/15/2018 11:11:21 AM	
Data Processed	: 2/15/2018 11:57:55 AM	(±)- 21
		()

<Chromatogram>

	1 Carl able							
PDA Ch2 2	DA Ch2 254nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	27.979	1359037	32644	50.813	59.807			
2	40.616	1315539	21938	49.187	40.193			
Total		2674576	54582	100.000	100.000			

	lutions Analy	sis Repo	ort	
<sample inform<="" th=""><th>nation></th><th></th><th></th><th>Ts V O N V</th></sample>	nation>			Ts V O N V
Sample Name Sample ID Data Filename Method Filename Batch Filename	: kyc3-242b : kyc3-242b : kyc3-242b.lcd : JakeAnalytical.lcm			Me
Vial #	: 1-1 : 10 ul	Sample Type	: Unknown	21
Date Acquired Date Processed	: 12/12/2019 10:18:15 AM : 12/12/2019 11:06:45 AM	Acquired by Processed by	: Karen Chen : Karen Chen	10/0 66

<Chromatogram> mAU

<Peak Table>

PDA C	h1 254nm				
Peak#	Ret. Time	Area	Height	Height%	Area%
1	30.082	429370	9903	16.328	11.166
2	43.356	3416111	50746	83.672	88.834
Total		3845481	60649	100.000	100.000

<Chromatogram>

<Peak Table>

	PDA Ch1 254nm								
Peak# Ret. Time		Ret. Time	Area	Height	Height%	Area%			
	1	29.105	90684	1938	4.667	3.234			
	2	42.007	2713594	39582	95.333	96.766			
	Total		2804278	41520	100.000	100.000			

.

¹ J.D. Brubaker, A.G. Myers, *Org. Lett.* **2007**, *18*, 3523.

² A. Fujino, T. Sugai, *Adv. Synth. Catal.* **2008**, *350*, 1712.

³ G. Xu, M. Micklatcher, M.A. Silvestri, T.L. Hartman, J. Burrier, M.C. Osterling, H. Wargo, J.A. Turpin, R.W. Buckheit, M. Cushman, *J. Med. Chem.* **2001**, *44*, 4092.

 ⁴ a) V.K. Aggarwal, E. Alonso, G. Hynd, K.M. Lydon, M.J. Palmer, M. Porcelloni, J.R. Studley, Angew. Chem. 2001, 113, 1479; Angew. Chem. Int. Ed. 2001, 40, 1430 b) V.K. Aggarwal, G.Y. Fang, C.G. Kokotos, J. Richardson, M.G. Unthank, Tetrahedron 2006, 62, 11297.

⁵ M. Periasamy, G. Ramani, G.P. Muthukumaragopal, *Synthesis* **2009**, 1739.

⁶ S. Wiesler, M.A. Bau, S.L. Younas, H.-T. Luu, D. Kratzert, J. Streuff, Chem. Eur. J. **2018**, 24, 16532.

⁷ T. Satoh, D. Taguchi, A. Kurabayashi, M. Kanoto, *Tetrahedron* **2002**, *58*, 4217.

⁸ J. Bach, R. Berenguer, J. Garcia, M. López, J. Manzanal, J. Vilarrasa, *Tetrahedron* **1998**, *54*, 14947.

⁹ D.J. Morris, A.M. Hayes, M. Wills, J. Org. Chem. 2006, 71, 7035.