Supplemental Table 1. Clinical features of CTNNBL1 466^{V/V} patient.

Patient:	
CTNNBL1	Chr20:36488304_A>G: c.A1396G:p.M466V (hg19, NM_030877)
Age presentation	2 years
Sex	F
Infections:	Sinopulmonary HSV
Skin	Herpes Simplex V2 facial lesions Vitiligo
Hematology	Thrombocytopenia
Endocrine	Hypothyroidism Growth delay – now resolved

Supplemental Figure 1. Generation of CTNNBL1 466^{V/V} **Ramos B cells. (A)** Diagram of knock-in approach to introduce the CTNNBL1 466V mutation into Ramos B cells. ssODN - single-stranded donor oligonucleotide. Orange boxes indicate untranslated regions (UTRs), blue boxes indicate coding regions (CDS), and red box indicates the mutated base pair/amino acid. Green outline indicates the introduction of a novel BmgBI restriction enzyme site upon successful genome editing. (B) Agarose gel of a BmgBI digest of PCR products amplifying the region surrounding exon 14 from genomic DNA of potential CTNNBL1 466^{V/V} Ramos subclones. Red box highlights clone that had undergone successful genome editing. (C) Representative Sanger sequence of CTNNBL1 466^{V/V} clone aligned with the sequence of the CTNNBL1 transcript (variant 1).

Α

Supplemental Figure 2. UNG-deficient B cells do not display reduced interaction of CTNNBL1 and AID. (A) Lysates from EBV BLCLs from healthy donors (HD), patient carrying the 466V mutation, and UNG-deficient patient were subjected to immune precipitation with anti-CTNNBL1 antibody; precipitates were analyzed by immune blotting with indicated antibodies. (B) Densitometric quantification. Represented are values relative to UNG deficient cells (dashed lines); bar represents mean.

Supplemental Figure 3. AID and CDC5L form distinct complexes with CTNNBL1. Lysates of (**A**) EBV BLCLs from healthy donor (HD), CTNNBL1 466^{V/V} patient, or AIDdeficient patient or (**B**) parental WT, CTNNBL1 466^{V/V}, and AID^{-/-} Ramos B cells were subjected to immune precipitation with anti-CDC5L antibody; precipitates and total cell lysates were analyzed by immune blotting with indicated antibodies.

Supplemental Figure 4. Decreased SHM in CD27⁺IgM⁺ B cells from the CTNNBL1 466^{V/V} **patient.** (**A**) Distribution of number of mutations per VH sequence and (**B**) number of mutations evaluated in V_H sequences derived from single CD27⁺IgM⁺ B cells from healthy donors (HD, n=14) and the CTNNBL1 466^{V/V} patient is shown. Bar represents mean. P values were obtained with unpaired two-tailed Student's t-test.

CD19

Supplemental Figure 5. Lymphadenopathy and expanded CD19^{hi}CD21^{-/lo}CD10⁻CD27⁻ B cells in the CTNNBL1 466^{V/V} patient. (A) Lymph node architecture shows expanded and distorted follicles with surrounding epithelioid histiocytes in loose clusters 20x; (B) some areas demonstrate follicular hyperplasia with back-to-back follicles 20x; (C) there is attenuation of the mantle zones and some coalescent follicles 40x; (D) germinal centers show prominent tingible body macrophages with some peripheral epithelioid histiocytes 200x. (E) Dot plots of PBMCs from a representative healthy donor (HD), asymptomatic CTNNBL1 466^{M/V} relatives, and CTNNBL1 466^{V/V} patient, gated on CD19^{hi}CD21^{-/lo}CD10⁻CD27⁻.

Supplemental Figure 6. Altered frequencies of CD3⁺CD4⁺CD25^{hi}CD127^{-/lo}FOXP3⁺ Treg and circulating CD3⁺CD4⁺CXCR5⁺PD-1^{hi} Tfh-like in the CTNNBL1 466^{V/V} patient. (A) Dot plots of CD25 and FOXP3 expression in CD3⁺CD4⁺CD127^{-/lo} T cells from a representative CTNNBL1 466^{V/V} the donor and patient. (B) Frequency healthy (HD) of CD3⁺CD4⁺CD25^{hi}CD127^{-/lo}FOXP3⁺ regulatory T cells (Treg) in 32 HDs, 3 patient's relatives (CTNNBL1 466^{M/V}), and the CTNNBL1 466^{V/V} patient. Bar indicates mean. (C) Histograms of heterologous CFSE-labeled HD T responder cell (Tresp) proliferation on day 4 co-cultured with CD3⁺CD4⁺CD25^{hi}CD127^{-/lo} Tregs from a HD or the CTNNBL1 466^{V/V} patient. Dashed lines show unstimulated Tresp. (D) Dot plots of CXCR5 and PD-1 expression on CD3⁺CD4⁺ T cells from a representative HD and the CTNNBL1 466^{V/V} patient. (E) Frequency of circulating CD3⁺CD4⁺CXCR5⁺PD-1^{hi} T follicular helper (Tfh)-like in 32 HDs, 3 unaffected relatives (CTNNBL1 466^{M/V}), and the CTNNBL1 466^{V/V} patient.