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Supplemental Results  

Genomic Concordance 

WES and sWGS performed on paired primary and metastatic tumors, coupled with multi-

region sequencing (MRS) of multiple blocks from the same tumor, revealed that somatic coding 

mutations and whole-genome CN were each markedly less concordant for primary-metastatic 

tumor pairs than for multiple regions of the same tumor (mean Jaccard index of shared 

mutations: paired tumors = 0.29 ± 0.21, MRS = 0.78 ± 0.14, P = 5.4 × 10-7; mean R2 of genome-

wide CN: paired tumors = 0.55 ± 0.29, MRS = 0.86 ± 0.17, P = 3.8 × 10-4; Figure 1A). Notably, 

concordance metrics for mutations and CN were highly correlated (P = 5.8 × 10-5, Figure 1B). 

The extent of concordance observed between differentially preserved (i.e., FFPE vs. OCT) tumor 

pairs did not differ significantly from the concordance observed between tumor pairs with the 

same preservation type, indicating that the relatively low concordance between paired tumors 

was independent of preservation type for both WES and sWGS. 

As anticipated from their ancestral relationship, the majority of metastases were clonally 

related to their primary tumors of origin, as evidenced by co-clustering of 27 out of 28 primary-

metastatic tumor pairs according to recurrent somatic coding mutations (Supplemental Figure 2). 

Metastases exhibited a greater number of coding mutations (P = 6.9 × 10-5) and CNAs (P = 

0.0093) compared with the primary tumors from which they arose (Figure 1C). This was 

accompanied by an increase in the number of large-scale state transitions (LSTs) in metastatic 

tumors (P = 3.1 × 10-6), defined as the number of occurrences in which adjacent genomic 

segments of ≥10 Mbp change CN state (1).  
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Support for SAR DSS associations within METABRIC 

Aggregating P-values (Fisher’s method) across DSS associations within the METABRIC 

study for loss of CDKN2A, loss of STK11, gain of PTK6, and gain of PAQR8 resulted in P = 1.6 

× 10-13. When testing the reverse direction for each gene (e.g., CDKN2A gain instead of loss), the 

aggregate P-value was much greater (P = 0.078), demonstrating that the DSS associations of 

these 4 SARs were specific to CN directions exhibited by metastases and, thus, not a result of 

increased CN burden in metastases. This conclusion was further supported by comparing 

aggregated P-values to 10,000 aggregated P-values generated by testing DSS associations of 4 

randomly selected genes and CN directions. The true aggregate P-value was more significant 

than 99% of permuted tests (Pperm = 0.009), whereas the aggregated P-value from testing reverse 

directions was not significant (Pperm = 0.83). This provides further evidence that the DSS 

associations of metastasis-enriched SARs do not simply result from an increased CN burden in 

metastases. This was also true when the analysis was limited to ER+ tumors. When testing the 

CN directions observed in metastases, the aggregate P-value (P = 2.6 × 10-12) was more 

significant than 97% of permuted tests (Pperm = 0.027). This was not the case when reverse 

directions were tested (aggregated P = 0.33, Pperm = 0.94). 

 

mTOR pathway components are preferentially mutated in metastases  

The mTOR Signaling pathway gene set was preferentially mutated in metastases 

compared with primary tumors both in our paired tumor dataset (Pperm = 0.002) and in the 

Lefebvre dataset compared with TCGA-BRCA (Pperm = 0.052). Mutations in the mTOR 

Signaling pathway within metastatic tumors in our cohort occurred in several functionally 

distinct modules (Supplemental Figure 5), of which the most highly mutated was the core 
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PI3K/AKT signaling pathway. However, primary and metastatic tumors exhibited similar 

frequencies of PIK3CA mutations, which included common (H1047R/Q/L [n = 14], E545K [n = 

6], E542K/Q [n = 4]) (2), as well as rare, variants (E39K, C378W, E726K). 

In contrast to mutations in PIK3CA, AKT1 mutations occurred solely in metastases and 

included the activating mutations E17K (n = 3) and D323H (n = 1) (3, 4). Two novel AKT2 

missense mutations, S398I and S1098R, were identified in a metastasis from 1 patient. An 

additional patient harbored a 1 bp frameshift deletion in PTEN that co-occurred with focal 

deletion in both primary and metastatic tumors, abrogating PTEN function. Mutations specific to 

the PI3K-AKT Signaling gene set included components of JAK/STAT signaling (JAK1 [n = 3], 

JAK2 [n = 2], JAK3, STAT5B), as well upstream growth factors (FGF10, FGF20, NGF), 

hormones (GH1, GH2), and their respective receptors (FGFR4, GHR).  

Metastases preferentially harbored mutations in mTOR modules other than PI3K/AKT, 

including the MAPK, WNT, AMPK, and amino acid sensing pathways. Within the MAPK 

module of the mTOR Signaling gene set, mutations occurred exclusively in metastases and co-

occurred with CN gain in 5 out of 6 tumors, with 1 metastasis harboring both the activating 

KRAS G12V mutation and CN gain of MYC. Though not included in the mTOR Signaling gene 

set, 3 metastases (4.5%) exhibited mutations in NF1 that were likely deleterious (nonsense 

and/or co-occurred with deletion or copy neutral loss of heterozygosity). Mutations in the MAPK 

Signaling gene set were also enriched in the Lefebvre dataset compared with TCGA-BRCA 

primary tumors (Pperm = 0.029).  

Upstream of MAPK and PI3K/AKT signaling, a large proportion of primary and 

metastatic tumors harbored at least 1 mutation in an RTK (28.6% and 34.8%, respectively). 

Intriguingly, PTK6, which is preferentially amplified in metastases, has been reported to interact 
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with a number of RTKs, thereby activating AKT1 (5-8). Although the mTOR Signaling gene set 

does not include PTK6 nor most RTKs, their alteration would be anticipated to up-regulate 

mTOR activity. 

Metastatic tumors also exhibited significantly more mutations in the WNT signaling 

module of the mTOR Signaling gene set (Supplemental Figure 5B). Within the mTOR Signaling 

gene set, WNT pathway mutations were found exclusively in metastatic tumors and affected 

multiple WNT ligands and receptors (LRPs and FZDs), including the LRP5 activating mutation, 

A65V (9).  

TSC1/2 inhibition via upstream PI3K/AKT, MAPK, WNT, and AMPK signaling 

represents a critical node in mTOR pathway activation. Four metastatic tumors, but no primary 

tumors, harbored mutations in TSC1 (n = 3) and TSC2 (n = 1). TSC1/2 mutations have recently 

been reported to be enriched in metastatic breast cancer compared with primary tumors (10), 

with frequencies of 6% in both our cohort and the Lefebvre et al. dataset. 

Unlike upstream pathways that affect mTORC1 activity by regulating TSC1/2, the amino 

acid sensing module directly impacts mTORC1 activity. High concentrations of amino acids 

induce binding of the Rag subfamily of Ras small GTPases (RagA/B/C/D) to Raptor, a 

component of mTORC1 (11, 12). Rag binding, in turn, promotes localization of mTORC1 to the 

surface of Rheb-containing amino acid-rich lysosomes, ultimately resulting in mTORC1 

activation. Mutations were identified in components of the v-ATPase complex (n = 6), which 

stimulates the ability of Ragulator to promote mTORC1-Rag binding via Raptor. Additional 

mutations were identified in genes that regulate mTORC1-Rag binding, including components of 

the GATOR1/2 complexes. Overall, 22.7% of metastases, but only 7.1% of primary tumors, 

harbored mutations in the amino acid sensing module (P = 0.061); moreover, 14 components of 
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this module were mutated in metastases, with only 2 being mutated in primary tumors 

(Supplemental Figure 6). 

Multiple novel mutations were identified in metastatic tumors within subunits common to 

mTORC1 and mTORC2 (MTOR [n = 2], MLST8, DEPTOR), or specific to mTORC2 (RICTOR 

[n = 2]). Intriguingly, while the RICTOR mutation, K1125E, has not been reported in human 

cancers, acetylation of K1125 in response to elevated glucose and/or acetate levels activates 

mTORC2 independently of upstream PI3K/AKT signaling (13). Mutations were also found in 

several downstream targets of mTORC1/2 involved in cytoskeletal organization, lipid 

biosynthesis, autophagy, cell growth and proliferation. Particularly interesting amongst this 

group includes mutations in 2 metastatic tumors in RHOA, G14E and G17V, the latter of which 

is frequently found in lymphomas where it promotes proliferation via activation of PI3K and 

MAPK signaling (14). 

Of the 36 mutations with known or putative effect, 24 (67%) mutations are predicted to 

result in increased mTOR activity and 12 (33%) mutations are predicted to lead to decreased 

mTOR activity, with mutations being consistent with activation in 17 (26%) metastases and 

inactivation in 6 (9%) metastases (4 metastases had both activating and inactivating mutations).  

 
Alterations in the WNT Signaling pathway 

The Wnt Signaling pathway gene set was identified as a metastasis-enriched SMP in our 

cohort (Pperm = 0.029) and exhibited trending enrichment between the Lefebvre and TCGA-

BRCA datasets (Pperm = 0.22). Metastases harbored mutations in several genes within the WNT 

Signaling gene set (Supplemental Figure 13), including multiple WNT ligands (WNT1, WNT2B, 

WNT11) and receptors (LRP5 [n = 2], LRP6 [n = 2], FZD1, FZD2, FZD3, FZD7, FZD10), as 

well as genes involved in receptor-ligand interactions (WIF1 [n = 2], BAMBI, NOTUM, 
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SERPINF1) and regulation of Dvl (CSNK1E [n = 2], PRICKLE1, INVS, VANGL1), which affect 

downstream mTOR, MAPK, focal adhesion, and cell cycle pathways. Notably, 1 metastasis 

exhibited an activating mutation in the WNT receptor, LRP5 A65V, which abrogates the ability 

of Dkk1 to inhibit LRP5 and resulting pathway activity (9). 

Metastases also harbored mutations in genes that regulate b-catenin (CHD8 [n = 3], 

APC2, AXIN1, FRAT1, CSNK2A1, CSNK2A3), cell cycle promoting transcription factors 

(SMAD4, LEF1), ubiquitin-mediated proteolysis (CUL1, TBL1X, TBL1XR1), and calcium 

signaling (PLCB1 [n = 2], PLCB3 [n = 2], PLCB4, NFATC1, NFATC3, CAMK2D, PPP3CB, 

PRKCB). Similar numbers of putatively activating and inactivating mutations occurred within 

canonical WNT (10 GOF and 9 LOF) and calcium (4 GOF and 4 LOF) signaling sub-pathways.  

 

Mutations in the cAMP Signaling pathway 

The cAMP Signaling pathway gene set was also identified as a metastasis-enriched SMP 

in our cohort (Pperm = 0.045) and within the Lefebvre dataset compared with TCGA-BRCA 

(Pperm = 0.045). The second messenger, cyclic adenosine monophosphate (cAMP), mediates a 

broad array of cellular processes, including apoptosis, metabolism, differentiation, and 

proliferation, and exerts its effects primarily through activation of the cAMP-dependent kinase, 

PKA (19). Mutations in this pathway (Supplemental Figure 14) were identified in many genes 

whose products regulate cellular cAMP levels, including adenylyl cyclases (ADCY10 [n = 2], 

ADCY4, ADCY5, ADYC6, ADYC7, ADYC9); phosphodiesterases (PDE3A, PDE4D); a membrane 

transporter that regulates cAMP efflux (ABCC4 [n = 2]); and G-coupled protein receptors that 

activate (ADRB1, DRD1, DRD5, TSHR, GLP1R, PTGER2) or inhibit (CHRM1 [n = 2], CHRM2, 

GHSR, GNAI3, HTR1B, HTR1F, SSTR1, SSTR5) adenylyl cyclases.  
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Downstream of PKA, mutations were identified in several sub-pathways, including 

PI3K/AKT, MAPK, Rac GEFs, and genes involved in the regulation of actin (described above). 

Additional mutations were identified in genes involved in RAP1 signaling (RAPGEF4 [n = 3], 

PLCE1, VAV1, VAV2), CREB binding (PPP1CB [n = 2], PPP1R12A [n = 2], PPP1CA, 

PPP1CC, EP300 [n = 2], CREB3L3 [n = 2], CREB3L4, CREBBP), NFkB signaling (NFKB1, 

AMH), fatty acid degradation (ACOX1), cell migration (ARAP3), and calcium signaling 

(NFATC1, CAMK2D), as well as PKA-activated P-type primary ion transport ATPases (ATP1A1 

[n = 2], ATP1A3 [n = 2], ATP1A2, ATP1A4, ATP1B3, ATP1B4, ATP2A2, ATP2B1, ATP2B2), 

glutamate-regulated ion AMP acid receptors (GRIA1, GRIA2, GRIA4), and glutamate-regulated 

ion N-methyl-D-aspartate receptors (GRIN3A [n = 3], GRIN2A [n = 2], GRIN1 [n = 2], GRIN3B, 

GRIN2B). In total, 17 mutations were predicted to result in activation, and 12 mutations 

inactivation, of this pathway, with mutations in aggregate being consistent with activation in 10 

(15%), and inactivation in 6 (9%), metastases. 

 

Mutations in the Carbohydrate Digestion and Absorption pathway  

The Carbohydrate Digestion and Absorption pathway gene set was also identified as a 

metastasis-enriched SMP in our cohort (Pperm = 0.055) and when the Lefebvre dataset was 

compared with TCGA-BRCA (Pperm = 0.10). This pathway shares with the cAMP Signaling 

pathway mutations in the core PI3K/AKT pathway and in PKA-activated P-type primary ion 

transport ATPases. Unique to this pathway, however, are mutations in hexokinases (HKDC1 [n = 

3], HK1 [n = 2]) and genes that regulate the initial digestion of sugars (MGAM, SI), as well as in 

a G protein alpha subunit (GNAT3) and a G-protein coupled receptor (TAS1R3). 
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Mutations in the Progesterone Mediated Oocyte Formation pathway 

The Progesterone Mediated Ooctye Formation pathway gene set was also identified as a 

metastasis-enriched SMP in our cohort (Pperm = 0.022) and when the Lefebvre dataset was 

compared with TCGA-BRCA (Pperm = 0.028) and includes genes that regulate insulin and/or 

progesterone-mediated inhibition of G2-arrest in Xenopus oocytes via activation of cyclin B. 

Like several other metastasis-enriched pathways identified in this study, the Progesterone 

Mediated Oocyte Formation pathway includes the core PI3K/AKT and MAPK pathways and 

affects genes that regulate the cell cycle. Furthermore, like the cAMP signaling pathway, 

upstream activators within the Progesterone Mediated Oocyte Formation pathway, such as 

insulin, are expected to alter intracellular cAMP levels by regulating adenylyl cyclases. Though 

PAQR8 is not explicitly included in this KEGG gene set, this pathway is described as being 

driven by G-protein coupled non-genomic membrane-bound progestin receptors (mPRs) due to 

their ability to inhibit adenylyl cyclase activity. Mutations unique to this metastasis-enriched 

pathway include regulators of APC/C (ANAPC7 [n = 2], ANAPC11), microtubule formation 

(KIF22 [n = 2], AURKA), CDK1/2 (PKMYT1 [n = 2], SPDYC), and the nuclear progesterone 

receptor, PGR (n = 2). 

 

Mutations in the Focal Adhesion pathway 

The Focal Adhesion pathway gene set was identified as a metastasis-enriched SMP both 

in our tumor cohort (Pperm = 0.0013) and within the Lefebvre et al. dataset compared with 

TCGA-BRCA (Pperm = 0.078). Beyond shared modules with other metastasis-enriched pathways 

(e.g., RTKs, PI3K/AKT, WNT, and MAPK signaling), mutations in metastases were identified 

in several components unique to the Focal Adhesion pathway (Supplemental Figure 15). For 
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example, within the “ECM-Receptor Interaction” module, frequent mutations were identified in 

metastases in collagens (26% of metastases harbored mutations in 14 members: COL1A1 [n = 2], 

COL4A4 [n = 2], COL4A5 [n = 2], COL4A6 [n = 2], COL6A3 [n = 2], COL6A5 [n = 2], COL2A1, 

COL4A1, COL4A2, COL4A3, COL6A2, COL9A1, COL9A2, COL9A3), integrin-a and b subunits 

(15% of metastases harbored mutations in 9 members: ITGA9 [n = 2], ITGB4 [n = 2], ITGA1, 

ITGA11, ITGA4, ITGA7, ITGA8, ITGB3, ITGB6), and laminins (11% of metastases harbored 

mutations in 7 members: LAMA3 [n = 4], LAMA1 [n = 2], LAMB1 [n = 2], LAMA4, LAMA5, 

LAMC1, LAMC3). Other gene families mutated in this module included: platelet-derived growth 

factors and receptors (PDGFC, PDGFD, PDGFRB), integrin-binding tenascins (TNXB [n = 2], 

TNC, TNN), and thrombospondins (THBS2 [n = 2], THBS3), which regulate collagen 

fibrillogenesis (15). Frequent mutations also occurred in RELN (n = 6), which promotes cell 

adhesion to the ECM via activation of integrin-b1 (16), and VWF (n = 4), which binds integrin-

αvβ3 (17) and promotes platelet adhesion (18). 

Downstream of integrin signaling, mutations in metastases were identified in several 

members of the FAK, SRC, RAS and RAC signaling cascades, including FAK and SRC genes 

themselves, Rho GTPase activating proteins (ARHGAP5, ARHGAP35), and guanine nucleotide 

exchange factor (GEF) activators of both Rac (VAV1, VAV2, DOCK1) and Ras (RASGRF1 [n = 

3]). Within the “Regulation of Actin Cytoskeleton” module of the Focal Adhesion pathway gene 

set, mutations in metastatic tumors were detected in the myosin light chain kinases, MYLK (n = 

4), which was also identified as a metastasis-specific SMG, and MYLK3, as well as their 

substrate, MYL10. Metastatic tumor mutations were also identified in actin-binding actinins 

(ACTN1 [n = 2], ACTN4), regulatory subunits of protein phosphatase I (PPP1CB [n = 2], 

PPP1R12A [n = 2], PPP1CA, PPP1CC), and regulators of actin assembly (TLN1, TLN2), cross-
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linking (FLNC [n = 3]), polymerization (PARVA [n = 2], RHOA [n = 2], ROCK1, DIAPH1, 

PXN), and stabilization (PAK4). Finally, though not included in the Focal Adhesion gene set, we 

identified 2 additional metastasis-specific SMGs whose functions impact on the actin 

cytoskeleton: XIRP2 and PEAK1. 

Of the 41 mutations with putative effect within collagens, laminins, thrombospondins, 

integrin subunits, tenascins, and growth factors, as well FAK (PTK2) and SRC, 23 were GOF 

and 18 were LOF, with mutations being consistent with activation in 7 metastases and 

inactivation in 10 metastases (7 metastases had both GOF and LOF mutations).  

 

Mutations in the Longevity Regulating pathway 

The Longevity Regulating pathway gene set was also identified as a metastasis-enriched 

SMP in our cohort (Pperm = 0.076) and when the Lefebvre dataset was compared with TCGA-

BRCA (Pperm = 0.0095) and includes genes that are involved in the ability of caloric restriction to 

increase lifespan. Like other metastasis-enriched pathways, the Longevity Regulating Pathway 

includes core PI3K, MAPK, mTOR, and cell-cycle pathways, as well as adenylyl cyclases and 

subunits of CREB. Mutations within genes specific to this metastasis-enriched pathway include: 

HKMTs (EHMT1, EHMT2), an adiponectin receptor, ADIPOR1; an AMPK kinase, CAMKK2 (n 

= 2); a subunit of PPAR-gamma, PPARGC1A; a pRB-regulator, RB1CC1, and regulators of 

insulin signaling (IRS4 [n = 3], IRS2, KL, SESN3). 

 

Mutations in the HIF-1 Signaling pathway 

The HIF-1 Signaling pathway gene set was also identified as a metastasis-enriched SMP 

in our cohort (Pperm = 0.082) and when the Lefebvre dataset was compared with TCGA-BRCA 
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(Pperm = 0.040). Like other metastasis-enriched pathways, the HIF-1 Signaling pathway includes 

core PI3K, MAPK, and mTOR pathways, as well as JAK-STAT. Unique to this pathway, the 

majority of mutations were identified in genes that are transcriptionally regulated by HIF-1. 

These include: glucose metabolism regulators (hexokinases: HKDC1 [n = 3], HK1 [n = 2]; 

phosphofructokinases: PRKFB3 [n = 2], PFKL), iron binding transporters (TF, TFRC), an 

endothelin (EDN1 [n = 2]), a nitrous oxide synthase (NOS2), a kinase that inhibits pyruvate 

dehydrogenase (PDK1), and the glucose transporter SLC2A1 (also known as GLUT1). 

 

Mutations in the Regulation of Lipolysis in Adipocytes pathway 

The Regulation of Lipolysis in Adipocytes pathway gene set was also identified as a 

metastasis-enriched SMP in our cohort (Pperm = 0.0064) and when the Lefebvre dataset was 

compared with TCGA-BRCA (Pperm = 0.035). Like other metastasis-enriched pathways, the 

Regulation of Lipolysis in Adipocytes pathway includes core PI3K, MAPK, mTOR, and cell-

cycle pathways, as well as genes that regulate cAMP. Mutations in genes unique to this pathway 

include insulin receptors (IRS4 [n = 3], IRS2), isoforms of PKG (PRKG1 [n = 2], PRKG1), 

which activate perilipin, PLIN, and hormone-sensitive lipase, LIPE, in the presence of cGMP, as 

well as downstream genes that regulate lipolysis (PNPLA2 and PNPLA2). 

 

Mutations in the VEGF Signaling pathway 

The VEGF Signaling pathway gene set was also identified as a metastasis-enriched SMP 

in our cohort (Pperm = 0.018) and when the Lefebvre dataset was compared with TCGA-BRCA 

(Pperm = 0.10). Like other metastasis-enriched pathways, the VEGF Signaling pathway includes 

core PI3K, MAPK, and mTOR pathways. Mutations in genes unique to this pathway include 
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genes that hydrolyze phospholipids (PLA2G4E [n = 2], JMJD7-PLA2G4B [n = 2]), the 

sphingosine kinase, SPHK2, and calcium-dependent, calmodulin-stimulated protein phosphatase, 

PPP3CB. 

 

Mutations in the Prolactin Signaling pathway 

The Prolactin Signaling pathway gene set was also identified as a metastasis-enriched 

SMP in our cohort (Pperm = 0.013) and when the Lefebvre dataset was compared with TCGA-

BRCA (Pperm = 0.0024). Like other metastasis-enriched pathways, the Prolactin Signaling 

pathway includes core PI3K, MAPK, and mTOR pathways, as well as JAK/STAT components. 

Mutations in genes unique to this pathway include nuclear estrogen receptors (ESR1 [n = 7], 

ESR2); the G-protein coupled receptor, LHCGR (n = 2), which promotes ovarian steroidogenesis; 

the epithelial-specific Ets transcription factor, ELF5; a tumor necrosis factor, TNFSF11; and 

GCK (Hexokinase 4), which plays an important glucose regulatory role in liver and pancreatic 

islet beta cells. 

 

Mutations in the Lysine Degradation pathway 

The Lysine Degradation pathway gene set was also identified as a metastasis-enriched 

SMP in both our cohort (Pperm = 0.020) and when comparing the Lefebvre and TCGA-BRCA 

datasets (Pperm = 0.041). Although several mutations were identified in metastases in genes 

regulating acetyl-CoA production (ALDH7A1, ALDH9A1, COLGALT1, OGDH, PLOD2 and 

TMLHE), the majority of mutations in this KEGG-defined pathway occurred in SET-domain-

containing histone lysine methyltransferases (HKMTs) from several different gene families. The 

KMT2 family of lysine methyltransferases was the most frequently mutated and included 
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KMT2C (MLL3, n = 9), KMT2D (MLL4, n = 3), KMT2E (MLL5, n = 3), SETD1B (n = 3), 

SETD1A, ASH1L, and KMT2A (MLL1), each of which methylate H3K4, a mark of 

transcriptionally active chromatin. Mutations were also identified in KMT3 family members, 

NSD1 (n = 3) and SETD2 (n = 2), which methylate H3K36 and H3K4, markers of actively 

transcribed genes, and in the KMT1 (EHMT1, EHMT2, SETDB1, SUV39H1), KMT5 (KMT5B, 

KMT5C), and KMT8 (PRDM2) families, which methylate H3K9, a marker of transcriptionally 

repressed chromatin. One mutation was found in SETMAR, which is a fusion gene that contains a 

N-methyltransferase domain and a C-terminal transposase domain. The majority of mutations in 

KMT2A/C/D within our cohort were deleterious. Of the 20 mutations within HKMTs with 

putative effect, 13 (65%) are predicted to result in LOF and 7 (35%) in GOF, with mutations 

being consistent with inactivation in 12 metastases (18%) and activation in 6 metastases (9%).  

 

 

Supplemental Methods  

Breast cancer cohort 

Patients with either newly suspected, untreated metastatic breast cancer or progressing 

disease were eligible for the METAMORPH study if they had: 1) a history of histologically-

confirmed primary breast cancer; 2) clinical or imaging evidence suggestive of recurrent breast 

cancer in a local, regional, or distant location; 3) willingness to undergo and/or provide tissue 

from a recent biopsy of recurrent tumor for both clinical and research testing; and 4) willingness 

to undergo blood specimen collection. Patients were excluded if they were on anticoagulation 

that could not be interrupted for the purpose of study procedures. Additional unpaired specimens 

were provided for IHC analyses by the TRACR project.  



 14 

Approximately 50% of tumors were provided as 10µm sections and required macro-

dissection to remove non-tumor tissue, guided by top and bottom Hematoxylin and Eosin-stained 

(H & E) sections. Tumor tissue from intact FFPE tumor blocks was isolated using a heating 

block (58°C) and xylene was used for deparaffinization prior to DNA extraction. Intact OCT 

core biopsies were thawed in a PBS bath at 4°C and the tissue washed 3 times in PBS at 4°C. 

DNA was extracted from FFPE and OCT-preserved tumors using the Qiagen AllPrep DNA/RNA 

FFPE Kit and Qiagen AllPrep DNA/RNA Micro Kit, respectively. Germline DNA was extracted 

from buffy coat prepared from blood for each enrolled patient using the Qiagen Gentra Puregene 

Blood Kit.  

 

Whole-exome sequencing 

DNA was submitted for WES to the High-Throughput Sequencing Center at the 

Children's Hospital of Philadelphia and the Beijing Genomics Institute (BGI). Sequencing was 

performed on the Illumina HiSeq4000 using 100 bp or 150 bp paired-end reads using the 

SureSelect v5 library preparation kit (Agilent). OCT and germline samples were sequenced at 

100x and 50x target coverage, respectively. For FFPE samples, libraries were manually 

generated and quality confirmed prior to sequencing to reach a target data size of 10GB (~50M 

reads) after removal of low-quality reads.  

WES reads were first trimmed for low-quality base-pairs (Trimmomatic v0.36) (20). 

Paired reads and unpaired reads whose partners were removed during trimming were separately 

aligned to hg38 (BWA v0.7.12) (21) and then merged (samtools v1.3.1) (22). Duplicated reads 

were removed (PicardTools v2.6: http://broadinstitute.github.io/picard/) and the remaining reads 

were realigned around indels (GATK v3.6) (23). After processing, median average coverage 
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across target regions was 108x [IQR = 85-123x] for tumors and 70x [IQR = 66-76x] for germline 

samples. 

Three variant callers were used to identify somatic mutations in tumors in reference to 

matching germline samples: MuTect1 v1.1.4 (23), MuTect2 - GATK v3.6 (23), and VarScan 

v2.3.4 (24). Default parameters were used for all steps of read processing and variant calling. 

Variants called by at least 2 of the 3 callers were considered for further analysis. Variants that 

were reported in at least 1 normal sample by VarScan2 or were included in the MuTect2 

generated “panel-of-normals” (PON), which includes variants and recurrent artifacts occurring in 

at least 2 normal samples, were removed from further analysis. Variants were annotated using 

snpEff v4.2 (25). VarScan was used to identify germline variants in normal samples and 

VarfromPDB (26) was used to identify germline variants of clinical significance.  

Three tiers of confidence were assigned to resulting variants – tier I: coverage ≥ 30 reads, 

alternative allele read coverage (AAC) ≥ 6, VAF ≥ 0.10; tier II: coverage ≥ 10 reads, VAF ≥ 

0.10; tier III: reported by at least 2 variant callers but did not meet tier I or II criteria. Since mean 

concordance between sequencing replicates and differentially preserved tumor samples was 

highest when limited to tier I mutations, analyses used tier I mutations unless otherwise stated. 

Coding mutations are defined as those that were annotated as 1 of the following: missense, 

splice-region, nonsense, start-loss, stop-loss, exon-loss, and exonic indel.  

MutSigCV2 (27) was used to identify genes that were significantly mutated (SMGs) 

based on tumor-specific mutation rates, mutation-specific nucleic-acid context, and gene-specific 

length and nucleic-acid composition, using covariates (gene expression, replication timing, and 

chromatin-state) provided by the Broad Institute, as well as a GC covariate provided by Ensembl 

(28). In lieu of the proxy coverage data file provided for MutSigCV2 by the Broad Institute, per-
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base-pair/mutation-type coverage data was generated from aligned sequenced data specifically 

from samples in this cohort. The significance of genes was only considered for those having 

coding mutations in at least 4 samples in the metastatic tumor cohort.  

 

Shallow whole-genome sequencing 

For sWGS, DNA was first sheered to 350bp target size using a Covaris S220 sonicator 

with the following parameters: 18W peak power, 20% duty factor, 50 cycles per burst, 65 second 

duration, 20°C temperature, and water level at 2mm below cap of microTUBE-15. The Illumina 

NeoPrep system was used to prepare libraries of single-end DNA reads, which were sequenced 

on a NextSeq500 to a minimum of 6M 75 bp single-end reads per sample.  

Reads from sWGS were trimmed of low-quality base-pairs, aligned, then removed of 

duplicates using the same WES processing tools described above. A median of 9.8M reads were 

mapped, resulting in median coverage of 0.22x [IQR = 0.18-0.30x]. QDNAseq (29) was then 

used to correct read counts across 15 kbp-wide genomic bins based on sequence mappability and 

GC content, and to remove problematic genomic regions with blacklist status in the 1000 

Genomes Project (30). Hg19 was used as the reference genome for sWGS in order to take 

advantage of existing reference annotations (29). CN values for resulting segments were 

calculated by adjusting QDNAseq “signal” output by tumor-specific cellularity and ploidy 

identified by Sequenza (31). DNA was unavailable for sWGS for 1 primary and 3 metastatic 

tumors that were assayed by WES; CN calls from Sequenza were used as proxy for these 

samples. CNAs within chromosome X were not included in analyses due to a lack of annotated 

“blacklist” regions, which are used by QDNAseq for autosomal chromosomes. 
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Formulas for adjusted, relative, and normalized CN values are given below.  

!"#$%&'"	)* = ,%-./!0 × (304-"5 × 6'00$0!7-&5+ , × [:− 6'00$0!7-&5]) − , × (: − 6'00$0!7-&5)	
6'00$0!7-&5  

7'0!&->'	)* =	!"#$%&'"	)*304-"5 , /47@!0-A'"	)* = 	7'0!&->'	)* × , 

The median distance between K-means clusters of sample-specific CN segments was 

used to identify cut-offs for low-level CNAs (CN loss [CN £ 1.74], CN gain [CN ³ 2.27]) and 

high-level CNAs (deletion [CN £ 1.33], amplification [CN ³ 2.96]). Low-level cutoffs enabled 

the identification of subclonal CNAs, whereas high-level cutoffs were used to limit analysis to 

clonal and/or CNAs with multiple amplification or deletion events. 

GISTIC2 (32) was used to identify focal regions and chromosome arms with significantly 

increased frequencies of alterations (“SARs”, FDR £ 0.10) after providing all CN segments as 

input. Focal regions are defined by GISTIC2 as those containing a high prevalence of CNAs 

smaller than 98% of the length of the chromosome on which they reside. SARs containing sub-

regions that were significantly altered in both primary and metastatic tumor cohorts were 

combined into 1 distinct SAR spanning both identified SARs.  

 

Multi-region sequencing and representative pairs 

MRS was performed on tumors to evaluate variability resulting from intratumor 

heterogeneity and technical sources. To accomplish this, WES and sWGS were performed on 

DNA samples extracted from multiple tissue blocks from the same tumor. In the WES cohort, 3 

regions were sequenced in 2 metastatic tumors, and 2 regions were sequenced in 1 primary and 5 

metastatic tumors. In the sWGS cohort, 3 regions were sequenced in 1 metastatic tumor, and 2 

regions were sequenced in 1 primary and 6 metastatic tumors. For 4 patients, 2 metastases from 

different time-points were assayed. The majority of statistical analyses assessed 1 DNA sample 
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per tumor. Representative primary and metastatic tumor blocks were chosen to optimize the 

similarity of preservation type and estimated tumor cellularity between matched primary and 

metastatic tumors. Of these, 100% of primary tumors and 71% of metastatic tumors were 

preserved in FFPE.  

 

Genomic concordance 

Genomic concordance based on somatic coding mutations was determined by percent-

overlap (Jaccard index) of tier I somatic coding-mutations in a pairwise fashion. Only loci that 

were covered by at least 30 reads by WES in both tumors were considered. Genome-wide CN 

concordance was determined by measuring the correlation (R2) of normalized CN across 15 kbp-

wide bins across the genome (n = 176,901 bins). CN values < 0.50 or > 8.00 were capped at 

those values for this analysis.  

 

External datasets 

 To compare the frequency of genomic events between tumors in our cohort and tumors 

from independent external cohorts, we processed raw sequencing data from 1,043 TCGA-BRCA 

tumors (2) using the same alignment and variant calling pipeline used for our tumor cohort. Input 

fastq files were extracted using biobambam (https://github.com/gt1/biobambam) from pre-

aligned BAM files downloaded from the NIH GDC data portal (https://gdc.cancer.gov/, 

date:10/20/2017). Metadata for the full list of TCGA-BRCA samples included in this analysis are 

included in Supplemental Table 1. Since the number of called variants decreases with larger 

sized PONs, a representative PON was generated that was analogous to the one used for variant 

calling in tumors in our study. First, 20 different PONs were generated using normal and artifact 
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calls from 68 randomly selected normal samples from TCGA-BRCA. The representative PON 

was created using variant and artifacts calls present in at least 9 of 20 sub-selected PONs. 

Variants in this representative PON were removed from TCGA-BRCA.  

In addition, variant calls reported by TCGA from 775 primary tumors were downloaded 

from the NIH GDC Legacy Archive (Level_2.5.3.0) and were re-annotated by snpEff with the 

same version and annotation database configuration used for our data. When using established 

variant thresholds employed by TCGA (2), the number of mutations per tumor sample was 

highly correlated between the variant calling pipelines used in our analysis and by TCGA (R2 = 

0.98, P £ 2.2E-16). In an analogous manner, mutation calls from 211 metastatic tumors (10) 

were also re-annotated using snpEff and are referred to as the Lefebvre et al. dataset throughout 

the manuscript. 

 

SMG frequency comparison  

In order to determine whether metastases are enriched for mutations in SMGs compared 

with primary tumors, mutational frequencies were compared with those from the TCGA-BRCA 

primary tumor dataset (n = 1,042) using mutations called from our variant pipeline using 

stringent filtering criteria (>30x coverage, VAF ³ 0.10, AAC ³ 6) and criteria established by 

TCGA (2) (>8x coverage, VAF ³ 0.10, AAC ³ 2) using a 2-sided Fisher’s exact test. To evaluate 

whether differences in SMG frequencies were dependent on the per-gene read coverage in 

TCGA-BRCA samples, separate additional analyses were iteratively limited to the TCGA-

BRCA samples with highest coverage for a gene of interest (Supplemental Figure 3). 
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Pathway analysis 

Gene sets were downloaded from the KEGG pathway database (n = 320 gene sets) (33). 

Seventy-three gene sets (the last set of gene sets listed in the database) were removed from 

analysis because they did not refer to specific cellular pathways, but to genes involved with 

specific diseases (e.g., Type II Diabetes Mellitus, Prion Diseases). Twelve additional gene sets 

were removed that contained fewer than 10 genes.  

SMPs were identified within primary and metastatic tumors using an implementation of 

the approaches described in POGSEA (34) which compares the observed number of tumors with 

at least 1 mutation in a gene set of interest to the number of mutant tumors identified from 

10,000 randomly chosen sets of genes with the same size as the gene set of interest. Genes were 

sampled from those that are included in at least 1 gene set in KEGG (n = 6,509 genes). The 

Benjamini-Hochberg method was then used to correct for multiple testing and identify the final 

set of SMPs (FDR ≤ 0.10). 

To identify pathways that were preferentially mutated in metastases compared with 

primary tumors, mutations shared between paired tumors (tier I in 1 tumor and tier I-II in the 

paired tumor) were removed and frequencies of private mutations within each pathway were 

compared between tumors from the same patient using a McNemar test. Limiting to private 

mutations allows the analysis to focus on metastatic tumor mutations that were either acquired 

and selected following metastatic dissemination or were selected during dissemination from 

small, undetectable populations of cells within the primary tumor. To address the concern that an 

increased mutation frequency in a given pathway gene set may simply be a consequence of a 

generally increased number of mutations in metastases, the test statistic generated from the 

applied statistical method was compared with a distribution of test statistics generated from 
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10,000 equally-sized, randomly generated gene sets in order to compute a permutation P-value 

(Pperm). Significant metastasis-enriched SMPs were defined as those with P ≤ 0.05, FDR ≤ 0.10, 

and Pperm ≤ 0.10. 

A similar approach was used to compare mutation calls generated by our pipeline for 

1,042 TCGA-BRCA breast primary tumors and calls reported by Lefebvre et al. (10). In this 

approach, TCGA-BRCA mutations were restricted to those satisfying filtering criteria used in 

Lefebvre et al. (coverage ³ 10, VAF ³ 0.10, AAC ³ 5) (10). Since shared mutations cannot be 

removed from external, unpaired datasets, PIK3CA and TP53 mutations were excluded since 

they were typically shared between primary and metastatic tumors in our cohort and because 

they occur at high frequency (>30% in both primary tumors and metastases). Frequencies were 

then compared using a 1-sided Fisher’s exact test and permutation, with significance being 

defined as P ≤ 0.05, FDR ≤ 0.10, and Pperm ≤ 0.10. 

 

Kaplan-Meier curve survival analysis 

RFS curves were generated using Kaplan-Meier estimates and compared using a log-rank 

test to determine if RFS in TCGA-BRCA patients was associated with primary tumor mutations 

for each SMG. Time was defined by period between diagnosis and recurrence, measured in 

months (“Disease_Free_months”), events were defined by whether the patient recurred 

(“Disease_Free_Status”), and strata were defined by mutant status. Re-called TCGA-BRCA 

variants that passed filtering criteria established in (2) were included in the analysis.  

For metastasis-enriched SARs, DSS curves were generated using Kaplan-Meier estimates 

and compared using a log-rank test to determine whether each SAR was associated with 

shortened DSS in METABRIC patients.  
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Immunohistochemistry 

H & E stained slides were reviewed and representative sections chosen from each case 

for immunohistochemical staining (IHC) for 4 markers (Supplemental Methods Table 1). A 

positive control and negative rabbit or mouse isotype control (Leica Biosystems Inc, Buffalo 

Grove, IL, Cat. PA0777 and PA0996) were included in each staining run. Prior to staining, heat-

induced epitope retrieval was performed for 20 min with Leica BondTM Epitope Retrieval 

Solution 1 (Leica, Cat. AR9961). IHC was then performed on 5µm FFPE or OCT sections on a 

Leica Bond III auto-stainer for 15 min according to the manufacturer’s instructions. Slides were 

arranged to eliminate covariates between staining (row, column, and run batch effects) and tumor 

type. Detection was carried out with the Leica Bond™ Polymer Refine Detection System 

(DS9800) with post-primary x 8 min and HRP polymer x 8 min, and Diaminobenzidine (DAB) x 

10 min. Prior to staining OCT sections, slides were removed from -80°C storage and allowed to 

air dry for 30 min to remove moisture, then rinsed in 1X Leica wash buffer (Cat. AR9590) twice 

for 2 min each, fixed in neutral buffered formalin for 10 min and rinsed in 1X Leica Wash 

Buffer. Without allowing slides to dry, slides were loaded onto the Leica Bond III for retrieval 

and staining. Isotype controls, which were performed for each stained section, did not show 

antibody staining in any case. 

Supplemental Methods Table 1 

Antibody Short Name Source Antigen 
Dilution 

Phospho-S6 Ser235/236 (clone 
D57.2.2E) rabbit mAb (cat. #4858) 

p-S6 Cell Signaling, 
Danvers, MA 

1:40 

Phospho-Rb Ser807/811 (clone D20B12) 
rabbit mAb (cat. #8516) 

phospho-RB Cell Signaling, 
Danvers, MA 

1:50 

β-catenin (clone 14) 
mouse mAb (cat. #610154) 

β-catenin BD Biosciences, 
San Jose, CA 

1:250 

Anti-PKA alpha/beta/gamma (catalytic 
subunit) phospho T197 (clone EP2606Y) 
rabbit mAb (cat. #ab75991) 

p-PKA Abcam, 
Cambridge, MA 

1:4000 
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 p-S6 was stained in samples from 2 cohorts: paired primary and metastatic tumors that 

arose within the same patient (15 patients), and matched primary and metastatic tumors that 

arose in separate patients, wherein primary tumors were matched by tumor block age and 

preservation type of the metastasis and for the receptor subtype of the primary tumor from which 

the metastasis arose (16 matched sets, Figure 5), with the exception of 2 primary tumors for 

which receptor status was unavailable. In total, p-S6 staining was performed on 31 metastatic 

tumors from liver (n = 19), distant lymph nodes (n = 6), brain (n = 3), and soft tissue (n = 2), 

with receptor subtypes: HR+/HER2- (n = 18), HR+/HER2+ (n = 4), HR-/HER2- (n = 5),  HR-

/HER2+ (n = 2), and unknown (n = 2). Phospho-RB was stained in a subset of samples from the 

paired (n = 8) and matched (n = 15) tumor cohorts. In total, phospho-RB staining was performed 

on 23 metastatic tumors from liver (n = 16), distant lymph nodes (n = 5), and brain (n = 2), with 

receptor subtypes: HR+/HER2- (n = 14), HR+/HER2+ (n = 2), HR-/HER2- (n = 3), HR-/HER2+ (n 

= 2), and unknown (n = 2). b-catenin and p-PKA were stained in a subset of samples from the 

paired (n = 7) and matched (n = 8) tumor cohorts. In total, b-catenin and p-PKA staining were 

each performed on 15 metastatic tumors from liver (n = 11), distant lymph nodes (n = 2), and 

brain (n = 2), with receptor subtypes: HR+/HER2- (n = 10), HR+/HER2+ (n = 1), HR-/HER2- (n = 

2), HR-/HER2+ (n = 1) and unknown (n = 1). 

Slides were separately scored for staining intensity in invasive tumor and adjacent non-

tumor compartments, each of which was further subdivided into epithelial and stromal sub-

compartments. Within each sub-compartment, the proportion of cells and/or nuclei that were 

marker+ was estimated using the following scoring schema: 0 = no signal, 1 = low signal, 2 = 

moderate signal, 3 = high signal. Mean staining intensities in each sub-compartment were 

calculated using the percent of positive cells as weights. FFPE material was used in the majority 
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of cases, except for 7 metastases in the paired tumor cohort. No significant difference was 

detected in mean p-S6 intensity between metastases preserved in OCT (mean = 0.85) and those 

preserved in FFPE (mean = 1.3, P = 0.55). Scoring of phospho-RB within non-tumor 

compartments could not be performed for the majority of non-liver metastatic tumor samples and 

were excluded from analysis. Scoring for b-catenin and p-PKA were limited to the tumor 

epithelium. 

 

Associations between genomic and clinical attributes 

Six distinct analyses were performed to determine the level of co-occurrence between 

metastasis-specific SMGs, CNAs, and pathways across receptor subtypes, and to evaluate the 

level of association of genomic features with IHC staining and metastatic tumor site. The first 

analysis compared the co-occurrence of mutations between all SMGs and ERBB2 with receptor 

subtype in the entire metastatic tumor cohort. The second analysis tested the association within 

the entire metastatic tumor cohort between metastasis-enriched CNAs (STK11, CDKN2A, PTK6, 

PAQR8) both via low-level CN dichotomized events and continuous CN values, mutations in 

metastasis-enriched SMPs, and receptor subtypes. The third analysis was the same as the second 

but was limited to paired primary and metastatic tumors. The fourth analysis investigated 

enrichment of metastatic tumor site with receptor subtype, as well as mutations and alterations 

within SMGs, SMPs, and SARs. The fifth analysis evaluated the association of p-S6 staining 

intensity and positivity with genomic features identified in this study. Only features that were 

present in at least 3 affected metastases were included: mutations in SMGs (PIK3CA, TP53, 

KMT2C, RUNX1, MYLK, PEAK1, EVC2) and therapeutic targets (ESR1, ERBB2), CNAs (loss of 

TP53, PTEN, RB1, CDKN2A, and STK11; gain of CCNE1, CDK2, CDK4, CDK6, and PTK6), as 
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well as whether metastases harbored ³ 1 or ³ 2 non-PIK3CA mutations in the mTOR Signaling 

pathway. The sixth analysis, which sought to identify covariates of phospho-RB signaling, used 

the same features as the fifth analysis, but also included the number of pRB-inactivating CNAs 

and mutations as features. In the first 4 analyses, Fisher’s exact tests and Wilcoxon rank-sum 

tests were 2-sided. The fifth and sixth analyses used Wilcoxon rank-sum 1-sided tests. For each 

of these analyses, multiple test correction was implemented separately, with FDR values 

provided in the text. 

Two additional analyses tested specific hypotheses and were not amenable to multiple 

test correction. The first tested an association of PAQR8 gain with ESR1/PGR mutations in 

endocrine treated tumors. The second tested an association of high-level CNAs in the mTOR 

pathway (deletion of STK11 and amplification of PTK6) with high-level CNAs in the CDK/RB 

pathway that are (1) predicted to inactivate pRB and (2) exhibited some level of enrichment in 

the total metastatic tumor cohort compared with the primary tumor cohort (P < 0.20, deletion of 

CDKN2A and amplifications of CCNE1, CDK2, CDK4, CDK6). Both tests used 2-sided Fisher’s 

exact tests. 
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Supplemental Figures 

Supplemental Figure 1: Global distribution of HR/HER2 receptor subtype is not 

significantly different between cohorts in the present study and TCGA-BRCA. 

 

Bar-plots show the % of HR/HER2 subtypes in paired primary tumors (dark blue, n = 63), 

metastatic tumors (red, n = 66), and TCGA-BRCA primary tumors (light blue, n = 906) with 

complete receptor subtype information. c2 P-values indicate no significance difference in 

receptor subtype distributions between the 3 cohorts. 
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Supplemental Figure 2: Primary-metastasis tumor pairs cluster by recurrent mutations 

and genome-wide CN. 

 

Dendrograms showing hierarchical clustering of all tumors in the paired tumor cohort using 

recurrent mutations (left) or genome-wide CN similarity across the top 50% most variable 

genomic bins (right). Tumors that co-cluster with their paired tumor are indicated by blue boxes. 

27 out of 28 primary-metastatic tumor pairs cluster by shared mutations. Despite tumors from 

patient P3 appearing to co-cluster, they do not share mutations with each other. A majority of 

tumor pairs co-clustered by genome-wide CN similarity. 

 



 28 

Supplemental Figure 3: Identification of metastasis-specific SMGs is largely independent of 

sequencing coverage in TCGA-BRCA. 

 

The degree to which SMG mutation frequencies are significantly different between metastases in 

the present cohort and TCGA-BRCA primary tumors, as shown across iteratively smaller subsets 

of TCGA-BRCA primary tumors with the highest coverage for each gene in question. Red 

horizontal lines indicate mutation frequencies for metastases in the present cohort. Black dotted 

lines indicate mutation frequencies across increasingly larger subsets of TCGA-BRCA primary 

tumors using high-confidence criteria. TCGA samples are ordered by decreasing sequencing 

coverage, with sample sets left of the grey solid and dashed lines having at least half of the gene 

coding region covered by at least 30 and 10 reads, respectively. Asterisks denote level of 

significance (2-sided Fisher’s exact test, ** FDR<0.01; * FDR<0.10). 
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Supplemental Figure 4: Inference of PTK6 as a driver of 20q amplification. 

 

(Top) Degree to which the difference in normalized CN between paired primary and metastatic 

tumors is significantly different across chr20q (2-sided Wilcoxon signed-rank test). (Bottom) 

Frequencies of CN gain in all assayed primary and metastatic tumors. The metastasis-enriched 

SAR, 20p11.1-q11.21, is indicated by grey lines and tightly corresponds to the centromere of 

chr20 (red box above). Dashed green lines indicate the region with peak significance difference 

between paired primary tumors and metastases, which contains PTK6 and ZBTB46. Dashed 

orange line indicates a region containing ZNF217 where the frequencies of CN gain in both 

primary and metastatic tumors were the highest and most similar to each other. 
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Supplemental Figure 5: Mutations in the mTOR pathway in metastases.  

 

(A) Mutations in the mTOR pathway in metastatic tumors occur within multiple signaling 

modules. Gene names in red indicate genes mutated in ≥1 metastases (1.5%), with frequencies 

provided for genes mutated >1. Frequencies of PTK6 CN gain and STK11 CN loss are indicated. 

Mutations in the mTOR pathway that occurred in primary tumors are provided in Supplemental 

Figure 6. (B) Mutation frequencies of each module in primary (blue) and metastatic (red) tumors. 

Metastases exhibited a significantly higher mutation frequency of the WNT signaling module 

compared with primary tumors (P = 0.010). (C) Co-occurrence analysis showing that primary 

tumors (P) with non-PIK3CA mutations in the mTOR Signaling pathway gene set were more 

likely to give rise to metastases (M) with loss of STK11. (D) Co-occurrence analysis showing 

that PTK6 gain and STK11 loss significantly co-occur in the total metastatic tumor cohort. 
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Supplemental Figure 6: Fewer non-PIK3CA mTOR pathway mutations in primary tumors.  

 

(A) Non-PIK3CA mutations in the mTOR pathway occur infrequently in primary tumors 

compared with metastases. Gene names in red indicate genes mutated at least once in primary 

tumors (4%), with frequencies provided for genes mutated more than once. Frequencies of CN 

gain of PTK6 and CN loss of STK11 are also indicated. (B) Frequencies of tumors with a 

mutation in each of the mTOR signaling modules, as also given in Figure 5. The majority of 

mTOR pathway mutations in primary tumors occur in RTKs and PI3K/AKT signaling 

components. 
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Supplemental Figure 7: mTOR pathway hyperactivation in sub-cohorts of metastases. 

 

Differences in p-S6 staining intensity in primary and metastatic tumors as a function of tumor 

compartment, scoring metrics, and tumor or patient characteristics. Line colors indicate the 

change in p-S6 from primary tumors to their paired or matched metastases (red = increase, blue = 

decrease). P-values indicate the degree to which changes in p-S6 measures are concordant (1-

sided Wilcoxon signed-rank test). (A) Mean p-S6 IHC staining intensity and (B) proportion of p-

S6+ cells in primary-metastasis tumor pairs from individual patients (top), and primary and 

metastatic tumors matched by receptor status, tumor block age and fixation method (bottom). (C-

E) Differences in mean p-S6 intensity within (C) epithelial and stromal compartments in tumor 

and non-tumor tissue, (D) liver and non-liver metastases, and (E) metastases in patients with, or 

without, exposure to endocrine therapy. 
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Supplemental Figure 8: Identification of p-S6 covariates. 

 

Evaluation of genomic features as biomarkers of mTOR activity (p-S6 staining intensity) in 

metastases (1-sided Wilcoxon rank-sum tests). Gene names refer to mutations, unless in 

reference to low-level CN gain or loss. “mTOR (≥X)” indicate the presence of at least X number 

of non-PIK3CA mutations in the mTOR Signaling pathway gene set. HR+, HER2+, and TNBC 

refer to receptor subtypes of assayed metastases. Manhattan plot indicating levels of significance 

for associated features with either mean p-S6 intensity or percent cells with p-S6 scores ≥1, ≥ 2, 

or = 3. The dash line indicates a P-value cutoff of 0.05.  
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Supplemental Figure 9: Loss of PTEN and mutations in PIK3CA are not associated with 

mTOR activity. 

 

(A, B) Mean p-S6 staining intensity in primary (left) and metastatic (right) tumors for those 

mutant (“mt”, red) or WT (“wt”, blue) for (A) loss of PTEN and (B) mutation in PIK3CA. P-

values indicate that mean p-S6 activity was not significantly different in tumors mutant for these 

genes (2-sided Wilcoxon rank-sum test). (C) Mean p-S6 staining in metastases as a function of 

the number of mTOR pathway mutations in each tumor. Mean p-S6 staining intensity in 

metastases was significantly correlated with the total number of mutations in the mTOR 

Signaling pathway gene set when including PIK3CA (left) or excluding PIK3CA (right) 

mutations from the analysis (univariate linear regression). 
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Supplemental Figure 10: Frequencies of low- and high-level CNAs in the CDK/RB 

pathway. 

 

Frequencies of CN gain (red) and CN loss (blue) within primary and metastatic tumors are 

shown for genes downstream of p16INK4A/p14ARF and/or upstream of pRB. Low-level CNAs (CN 

gain and loss) and high-level CNAs (amplification and deletion) are shown as lighter and darker-

colored bars, respectively. 
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Supplemental Figure 11: Preferential inactivation of pRB in sub-cohorts of metastases.  

 

(A) Mean phospho-RB IHC staining intensity and (B) proportion of phospho-RB+ cells in 

primary-metastatic tumor pairs arising in the same patient (top), or in different patients that were 

matched by receptor status, tumor block age and preservation type (bottom). (C-E) Differences 

in mean phospho-RB intensity in paired and matched (C) liver and non-liver metastases, (D) 

metastases in patients with, or without, exposure to endocrine therapy, and (E) epithelial and 

stromal compartments within tumors. Colored lines indicate the change in phospho-RB measures 

for primary tumors compared with their paired or matched metastases (red = increase, blue = 

decrease, 1-sided Wilcoxon signed-rank test).  
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Supplemental Figure 12: Co-occurrence of alterations in the mTOR and CDK/RB 

pathways.  

 

(A-C) Patients whose primary tumors exhibited genomic alterations in either the mTOR or 

CDK/RB pathways were more likely to give rise to metastases bearing genomic alterations in the 

other pathway. Each column represents a primary-metastasis tumor pair from 1 patient. (A, B) 

CN values (shaded bars) of STK11 and CDKN2A in primary (P) and metastatic (M) tumors from 

the same patient ordered by CN values in the metastatic tumor. P-values indicate the degree of 

correlation (univariate linear regression). (C) Primary tumors that harbored a non-PIK3CA 

mutation in the mTOR Signaling pathway gene set (green, P) were more likely to give rise to 

metastatic tumors with lower values of CDKN2A (blue, M) (2-sided Wilcoxon’s signed-rank 

test). (D) High-level CNAs that are predicted to activate mTOR or inactivate pRB are correlated 

within the total metastatic tumor cohort. Each column represents a metastasis from 1 patient. 
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Blue bars indicate tumors with STK11 deletion or CDKN2A deletion. Red bars indicate tumors 

with amplification of PTK6, CCNE1, CDK2, CDK4 or CDK6. P-value indicates level of co-

occurrence of at least 1 mTOR-activating or pRB-inactivating CNA in tumors (green) (2-sided 

Fisher’s exact test). 

 

Supplemental Figure 13: Mutations in the WNT Signaling pathway gene set in metastases.  

 

Annotated KEGG diagram indicating each gene mutated in the WNT Signaling pathway gene set 

within metastases (red). All mutation frequencies are 1.5%, unless otherwise indicated.  
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Supplemental Figure 14: Mutations in the cAMP Signaling pathway gene set in metastases.  

 

Annotated KEGG diagram indicating each gene mutated in the cAMP Signaling pathway gene 

set in metastases (red). All mutation frequencies are 1.5%, unless otherwise indicated.  
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Supplemental Figure 15: Mutations in the Focal Adhesion pathway gene set in metastases. 

 

(A) Annotated KEGG diagram indicating each gene mutated in the Focal Adhesion pathway 

gene set in metastases (red). All mutation frequencies are 1.5%, unless otherwise indicated. (B, 

C) Co-occurrence of mutations and alterations in the Focal Adhesion and mTOR Signaling 

pathway gene sets. Bars indicate the presence of mutations or CNAs in paired primary tumors 

(P) and paired metastases (M). (B) A large proportion of metastases exhibit mutations specific to 

the mTOR Signaling pathway gene set and to the Focal Adhesion pathway gene set with trending 

co-occurrence (2-sided Fisher’s exact test). Tumors that only harbor mutations in genes that are 

included in both pathways are in light green. (C) Primary tumors with a mutation in the Focal 

Adhesion pathway gene set were more likely to give rise to metastases with STK11 loss (2-sided 

Fisher’s exact test). 
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Supplemental Figure 16: Summary of genomic features implicated in metastases

 

Clinical and genomic features of primary tumors (top) and metastases (bottom). From left to 

right: receptor subtype; presence of mutations in primary tumor-associated SMGs, genes 

encoding ER, PR, and HER2, and metastasis-specific SMGs; presence of low and high-level 

CNAs in known ‘driver’ genes for primary breast cancer, metastasis-enriched CNAs, and 

additional genes whose encoded proteins both inactivate pRB and exhibit trending enrichment in 

metastases. Far-right: presence of non-PIK3CA/TP53 mutations in SMPs and gene families 

(HKMTs) that are preferentially mutated in metastases. Frequencies of each feature are given at 

the bottom for TCGA-BRCA primary tumors as well as for primary and metastatic tumors in the 

present study. Mutation frequencies of SMGs, clinical receptors, and pathways within TCGA-

BRCA were calculated based on mutations re-called using the same variant calling pipeline 

employed in our study and variant thresholds established in (2). Frequencies of low- and high-
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level CNAs in TCGA-BRCA result from a GISTIC2 analysis reported by TCGA that used array 

competitive genomic hybridization assays and per-sample CNA level cut-offs. 

 

 

Supplemental Tables 

Supplemental Table 1: Sheet 1: Clinical annotation for each genomically assayed patient, 

including information on metastatic tumor site, receptor subtype, summary treatment 

information, and whether the paired primary tumor from the same patient was genomically 

assayed. Sheet 2: Clinical annotation provided by TCGA is given for the 1,044 primary tumors 

used as a reference set throughout the study. 

 

Supplemental Table 2: Sheet 1: MutSigCV2 output used to identify the 15 SMGs identified in 

the total metastatic tumor cohort. Sheet 2: Mutations in clinically relevant receptors (ESR1, 

ERBB2, PGR). Sheet 3: Mutations in SMGs determined by MutSigCV2. Sheet 4: Comparison of 

SMG frequencies between metastatic tumors in our cohort and TCGA-BRCA primary tumors 

using low and high-confidence variant calling thresholds. Variants within the TCGA-BRCA data 

set were re-called using the same variant calling pipeline employed in this study. 

 

Supplemental Table 3: Sheets 1-4: GISTIC2 results for genomically assayed primary and 

metastatic tumors. Sheet 5: Analysis of differences in normalized copy number and CNA 

frequencies in SARs identified by GISTIC2 between paired primary and metastatic tumors and 

between total tumor cohorts. 
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Supplemental Table 4: Sheets 1-3: SMPs identified in paired primary tumors, paired 

metastases, and all metastases, respectively. Sheet 4: Mutation frequencies and enrichment P-

values for each pathway. Sheet 5: Information on mutations detected in metastasis-enriched 

SMPs. 

 

Supplemental Table 5: Sheets 1 and 2: SMPs identified within the TCGA-BRCA primary 

tumor cohort and the Lefebvre et al. metastatic tumor cohort, respectively. Sheet 3: Mutation 

frequencies and enrichment P-values are given for each pathway. 

 

Supplemental Table 6: The number of WT and mutant samples for each p-S6 biomarker within 

the paired primary-metastatic tumor cohort assayed by p-S6 IHC, as well as resulting P-values 

when comparing p-S6 intensities.  
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