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S1. Derivatives of log-likelihood functions

When there are no time effects, by Leibniz’s rule for differentiation with integration, the deriva-

tives of the log-likelihood function (2.5) in the manuscript are, when 0 < β < 1,
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we can obtain another set of derivatives by the Leibniz’s rule,
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Although the log-likelihood function (2.5) is not differentiable at β = 0, there is little interest

in power calculations at β = 0. Nevertheless, if it were the case, a very small perturbation can

be added to β to avoid this problem.
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When there are time effects, the derivatives of the log-likelihood function (2.15) in the

manuscript are as follows,
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Next, we investigate the differentiability of the log-likelihood function (2.15). From (S1.7)−(S1.10),

(2.15) is not differentiable when at least two elements of {µ+γj , µ+β+γj ; j = 1, · · · , J} coincide

at m(θ) or M(θ). It should be noted that the log-likelihood function (2.15) is not differentiable

in a small number of places, such as when β = 0 or when γj = γk for some j and k in {1, · · · , J}.

The first case is not of interest; for the second, steps for which the same time effect is to be

assumed should be combined at the design stage.

S2. Additional Figures and Tables
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(a) µ = 0.05, no time effect

0.05 0.10 0.15 0.20

0.
2

0.
4

0.
6

0.
8

1.
0

Risk difference β

P
ow

er

CV = 0.0, TCR = 1.0
CV = 2.0, TCR = 1.0
CV = 0.6, TCR = 0.7
CV = 2.0, TCR = 0.7
CV = 0.6, TCR = 1.5
CV = 2.0, TCR = 1.5

(b) µ = 0.6, no time effect
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(c) µ = 0.05, very small time effect
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(d) µ = 0.6, very small time effect
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(e) µ = 0.05, moderate time effect
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(f) µ = 0.6, moderate time effect

Fig. S1. Plots of power v.s. the risk difference β, for different baseline risks and different values of CV
and TCR, with the number of steps J = 3, mean cluster size N̄ = 30, number of clusters I = 16, and
ICC = 0.01. There are no time effects (δ = 0) in the first row, very small time effects (δ = 0.0001) in
the second row, and moderate time effects (δ = 0.05) in the third row.
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Fig. S2. Gamma and standard normal densities with the same mean and variance.
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(a) power vs. ICC with µ = 0.2, no time effect
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(b) power vs. ICC with µ = 0.2, moderate time effect

Fig. S3. Comparison between SWD and pCRD. Power vs. ICC, for different baseline risks µ, where the
risk difference β = 0.05, the cluster size N = 90, and the number of steps J = 3. (a) There are no time
effects included in the model. (b) There are moderate time effects in the model.
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Table S1. Finding the required number of partitions for the model with time effects in the PPIUD study
in Tanzania (N = 3600), with different time effects and hypothetical risk ratios

Time effects

δ = −0.0001 δ = −0.0091 δ = −0.0181

Risk ratio Risk ratio Risk ratio
0.8 0.9 0.8 0.9 0.8 0.9

Q=16 0.205 0.068 0.233 0.109 0.305 0.252
Q=32 0.901 0.447 0.970 0.471 0.994 0.477
Q=64 0.973 0.471 0.982 0.498 0.983 0.504
Q=128 0.976 0.480 0.981 0.494 0.984 0.506

S3. The power of SWD and pCRD when there are no time effects

When ICC goes to zero, the variance of cluster random effect τ2 → 0. Using the fact that

limτ→0
1√
2πτ

e−
b2i
2τ2 = δ(bi) and

∫∞
−∞ f(bi)δ(bi)dbi = f(0), where δ(·) is the Dirac delta function

(Pathak, 1993), by the dominated convergence theorem, the log-likelihood (2.4) of the main paper

goes to `0(β) as follows,

`0(θ) =

I∑
i=1

log

(
N∏
n=1

(g−1(µ+ βXin))Yin(1− g−1(µ+ βXin))1−Yin

)
. (S3.1)

When g(·) is an identity link, (S3.1) can be written as follows using Zi = (Zi00, Zi01, Zi10, Zi11),

`0(θ) =

I∑
i=1

log
(
(1− µ)Zi00(µ)Zi01(1− (µ+ β))Zi10(µ+ β)Zi11

)
. (S3.2)

The likelihood (S3.2) is the standard binomial likelihood for the independent two group design.

We derive an expression for the MLE by setting its first derivative equal to zero. Then, the

covariance matrix is given by the inverse of the expected value of the Hessian matrix of `0(β).

Skipping the algebra here, it can be shown that the asymptotic variance of the MLE V ar(β̂) =

µ(1−µ)
IN/2 + (µ+β)(1−µ−β)

IN/2 , which is exactly equal to (3.20) of the manuscript when the ICC goes

to zero. Hence, the MLE from the SWD and the pCRD converge to the same estimator and so

does the power of the two designs, as shown in Figures 4(e) of the manuscript and S3(a). It is
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well known that the pCRD is strongly sensitive to the ICC and that its power decreases as the

ICC increases, while the SWD is relatively insensitive to the ICC (Hussey and Hughes, 2007), as

shown in Figures 4(e) of the manuscript and S3(a). Thus, we have shown that the power of the

SWD based on the MLE variance (2.11) of manuscript is always greater than that of the pCRD

based on variance given by (3.20) of the main paper.
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