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Section 1: Cohorts’ demographic information 
 
Our discovery and replication cohorts, after quality control (QC), includes 3,134 and 598 adults (age≥19 

years old) from Lima, Peru (Methods). In both discovery and replication cohorts, height in centimeters was 

measured by trained healthcare staff upon recruitment of study participants. In addition to height, a number 

of other varaibles such as sex, age, and  socioeconomic factors were also collected (Methods). In this 

section, we display the height and age distribution for males and females in the discovery and replication 

cohorts. 
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Figure S1.1: Discovery cohort's demographic information. A) Density plot of height for all the Peruvian 
males (N = 1,795 (57%)) and females (N = 1,339 (43%)) included in this study after quality control (e.g. 
after removing low quality samples, individuals below 19 years old and height outliers (土 3 standard 
deviations (sd) from the mean). Males were significantly taller than females (Male mean = 165.2 cm (sd = 
6.7), Female mean = 153.4 cm (sd = 6.4), t = 50.321, degrees of freedom (df) = 2954.6, unpaired t-test two-
sided p-value < 2.2x10-203).  B) Age was not significantly different between males and females (t-value  = 
-1.70, df = 2860.2, unpaired t-test two-sided p-value = 0.09). Boxplots show median and interquartile range 
(IQR).  
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Figure S1.2: Replication cohort's demographic information. A) Density plot of height for all the 
Peruvian males (N = 234 (39%)) and females (N = 364 (61%)) included in the replication cohort after 
quality control. Males were significantly taller than females (Male mean = 165.4 cm (sd = 6.8), Female 
mean = 153.1 cm (sd = 6.4), t = 22.063, df = 475.31, unpaired t-test two-sided p-value = 8.5x10-75).  B) Age 
was not significantly different between males and females (t = 0.70633, df = 468.43, unpaired t-test two-
sided p-value = 0.48). Boxplots show median and interquartile range (IQR). 
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Section 2: The correlation between height and Native American ancestry proportion 
 
 
In our cohort, we observed a negative correlation between height and Native American ancestry proportion 

(Pearson’s correlation coefficient (r) = -0.28, p-value = 9.3x10-58, Figure S2.1). Native American ancestry 

remained significantly associated with lower height after including age, sex, African, and Asian ancestry 

proportions, and a genetic relatedness matrix (GRM) calculated using PC-Relate1 (Methods) to account for 

relatedness (Table S2.1). We repeated this analysis after adding a random effect to account for the 

individual’s household as proxy environmental factors that might not be captured by household-level 

socioeconomic variables (Methods). Native American ancestry remained significantly associated with 

lower height after including the household random effect (Table S2.2). Finally, to ensure adequate control 

for environmental factors, we randomly assigned height to individuals within each household 10,000 times 

and recalculated the Native American ancestry effect size using a linear mixed model with age, sex, African, 

and Asian ancestry proportions, and a GRM calculated using PC-Relate1 as covariates to generate an 

empirical null distribution. We compared the null distribution with the observed Native American ancestry 

effect size from the original data to generate an empirical permutation p-value (Figure S2.2).   
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Figure S2.1: Native American ancestry is negatively associated with height. Greater Native American 
ancestry proportion is associated with lower height (N=3,134 individuals, Pearson’s correlation coefficient 
(r) = -0.28, confidence interval (CI) = -0.31 - -0.25, t-value = -16.36, df = 3132, one-sample t-test two-sided 
p-value = 9.3x10-58). The x-axis represents Native American ancestry proportion from ADMIXTURE 
analysis at K = 4 clusters. The y-axis represents the height (cm).   
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Table S2.1: Native American ancestry is significantly associated with a lower height. The base model 
is a linear mixed model accounting for age, sex, African and Asian ancestry proportions, and a genetic 
relatedness matrix (GRM) to account for population structure and genetic relatedness (N = 3,134 
individuals). The effect sizes for African, Asian, and Native American ancestry are given relative to 
European ancestry. For example, the effect size 14.55 cm for the Native American ancestry should be 
interpreted as being 100 Native American compared to being 100 European decreases height by -14.55 cm. 
ASI: Asian, AFR: African, EUR: European, NAT: Native American. CI: confidence interval, df: degrees 
of freedom. For each covariate, we used the χ2 difference test to compare nested models, p-values are two-
sided p-values χ2 derived from the corresponding χ2 statistics. Numbers are rounded to two decimal places. 
 

covariate effect size (cm) 2.5% CI 97.5% CI  χ2 statistic p-value χ2 (df=1) 

age -0.10 -0.12 -0.09 -12.96 1.5x10-37 

Gender (male) 11.33 10.90 11.77 50.57 < 10-203 

AFR proportion -3.25 -7.46 0.97 -1.51 0.13 

ASI proportion -10.73 -17.34 -4.11 -3.18 0.001 

NAT proportion -14.55 -16.59 -12.52 -14.00 2.4x10-43 
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Table S2.2: Native American ancestry remains significantly associated with lower height after the 
inclusion of a random household effect. Native American ancestry remained significantly associated with 
lower height after we included a random household effect as a proxy for socioeconomic and environmental 
factors in addition to age, sex, African and Asian ancestry proportions, and a GRM (N = 3,134 individuals). 
The effect sizes for African, Asian, and Native American ancestry are given relative to European ancestry. 
For example, the effect size -14.75 cm for the Native American ancestry should be interpreted as being 100 
Native American compared to being 100 European decreases height by 14.75 cm. ASI: Asian, AFR: 
African, EUR: European, NAT: Native American. CI: confidence interval, df: degrees of freedom. For each 
covariate, we used the χ2 difference test to compare nested models, p-values are two-sided p-values derived 
from the corresponding χ2 statistics. Numbers are rounded to two decimal places. 
 

covariate effect size (cm) 2.5% CI 97.5% CI  χ2 statistic χ2 p-value (df=1) 

age -0.10 -0.12 -0.09 -12.43 1.1x10-34 

Gender male 11.47 11.03 11.91 51.20 < 10-203 

AFR proportion -3.57 -7.77 0.64 -1.66 0.10 

ASI proportion -11.62 -18.28 -4.95 -3.42 0.001 

NAT proportion -14.75 -16.83 -12.68 -13.94 7.20x10-43 

Household* 2.08 1.54 2.53 NA 7.40x10-7 

*Household effect size is calculated as the standard deviation (sd) in the model's intercept. 
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Figure S2.2: Permuting height within households. To ensure adequate control for environmental factors 
that might affect the correlation between height and Native American ancestry, we randomly reassigned 
individuals’ height values within each household while keeping all the other covariates untouched in our 
cohort (N = 3,134). We then tested the association of Native American ancestry with height using a linear 
mixed model with age, sex, African, and Asian ancestry proportions, and a GRM calculated using PC-
Relate1 as covariates and calculated the effect size for Native American ancestry in this model. We repeated 
the permutation and association testing 10,000 times to derive an empirical null distribution of effect sizes. 
None of the permutations resulted in a greater effect size than that of the original data (permutation effect 
size ranging from -5.62 cm to 5.85 cm, permutation mean effect size = 0 cm, observed effect size = -14.75 
cm, one-sided permutation test p-value < 10-4). The Native American ancestry effect sizes are given relative 
to European ancestry. For example, the effect size 14.75 cm for the Native American ancestry should be 
interpreted as being 100 Native American compared to being 100 European decreases height by 14.75 cm.  
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Section 3: Accounting for population structure and identity-by-descent in association analysis  
 
 
In GWAS presence of both recent genetic relatedness such as family structure or more distant genetic 

relatedness such as population structure can lead to biased estimation of allele frequencies and spurious 

association results2. In our original single variant association analysis, we included age and sex as fixed 

covariates and included a GRM generated using GEMMA3 to correct for both relatedness and population 

structure (Methods). To ensure adequate control for population structure we included additional covariates 

such as population PCs, ancestry proportions, or household level socioeconomic scores (to capture 

confounding socioeconomic factors that might be related to indigeneity) in our model and repeated the 

associated analysis. Inclusion of these additional covariates did not affect the effect size or the strength of 

the association between rs200342067 and height (Table S3.1). Suggesting that our association results are 

not affected by population structure.  

 

Genetic relatedness due to structure, such as recent admixture, can manifest itself as increased allele sharing 

between individuals. As a result, using relatedness estimation methods developed for non-admixed 

populations can lead to inflated estimation of genetic relatedness in admixed populations. To ensure that 

our choice of GRM has not biased our association results, we repeated our height using PC-Relate1 GRM. 

PC-Relate1 accounts for population structure in calculating relatedness between admixed individuals and 

correct for this structure using PCs derived from unrelated individuals 1,4. Moreover, to ensure local 

(chromosome level) allele sharing between individuals does not bias the relatedness estimation, we 

generated 23 GRMs using PC-Relate1 leaving one chromosome out each time5 and tested the association 

of variants on each chromosome with height using the GRM that did not include that chromosome. We 

observed similar results to our original GWAS using the PC-Relate GRMs confirming that our choice of 

GRM or biased estimation of relatedness estimations does not derive our findings (Figure S3.1).  
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Another potential source of bias in recently admixed populations is the possible non-random mating in 

recent ancestral generations which can lead to the presence of autozygosity segments in the genome of 

individuals that are not related by pedigree2. The presence of these autozygosity segments can lead to biased 

estimates of allele frequencies and makes individuals within the same subpopulation appear more related 

than they truly are2. To ensure that the presence of autozygosity segments does not bias our relatedness 

estimates, we first used Refined IBD 6 to estimate the level of autozygosity in our cohort. We found 

autozygosity segments in 1,927 of the 3,134 individuals (61%), with lengths ranging from 0.2 Mb to 575.3 

Mb (interquartile range (IQR) = 1.7 - 12.9 Mb). Autozygosity segments accounted for less than 1% and 5% 

of the accessible genome (5.7x109 bp) in 97% and 99.7% of the individuals respectively (Methods, Figure 

S3.2). Next, we inferred the amount of pairwise IBD sharing between the individuals in our cohort (N = 

3,134 individuals) using Refined IBD6  and calculated the proportion of pairwise IBD by dividing the total 

length of IBD segments by the length of the accessible genome (Methods). Finally, we compared the 

pairwise IBD sharing proportions calculated in this way with pairwise kinship coefficient estimations using 

PC-Relate1 on all chromosomes (Methods). Overall, the two methods produced relatedness estimates that 

were highly concordant (Pearson’s r = 0.55, p-value < 2.2x10-203, Figure S3.3). This result is in line with 

previous studies comparing the performance of variant-based and haplotype-based relatedness inference 

methods4.  We also repeated the single variant association analysis at rs200342067 locus using a genetic 

relatedness matrix generated using either PC-Relate1 or Refined IBD6 as the random effect with age, sex, 

and 10 principal components as fixed effects and observed similar association results at this locus regardless 

of the choice of GRM (Table S3.1). Collectively these results indicate that the association between 

rs200342067 and height is not the result of the presence of autozygosity in our cohort.  
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Table S3.1: Additional correction for population structure or the choice of GRM does not affect the 
association between rs200342067 and height. Inclusion of additional covariates such as population PCs 
or ancestry proportions or repeating the association analysis using different GRMs did not change the effect 
size or strength of the association between rs200342067 and height (N = 3,134 individuals): Numbers are 
rounded to two decimal places. Association p-values are two-sided Wald test p-values. se: standard error, 
SES: socioeconomic status. 
 

Covariates effect size (cm) se z-score Wald p-
value 

Age, gender, GEMMA GRM -2.22 0.36 -6.17 6.8x10-10 

Age, gender, 10 PCs, GEMMA GRM -2.22 0.36 -6.17 6.8x10-10 

Age, gender, 10 PCs, SES, GEMMA GRM -2.22 0.36 -6.17 6.8x10-10 

Age, gender, 20 PCs, GEMMA GRM -2.22 0.36 -6.16 7.3x10-10 

Age, gender, ASI, AFR, EUR, GEMMA GRM -2.22 0.36 -6.17 6.8x10-10 

Age, gender, 10 PCs, PC-Relate GRM -2.22 0.36 -6.19 6.0x10-10 

Age, gender, 10 PCs, Refined IBD GRM -2.10 0.36 -5.79 7.0x10-9  
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Figure S3.1: Single variant association analysis using PC-Relate1 GRM. We generated 23 GRMs, 
leaving one chromosome out each time and tested the association for variants on each chromosome using 
the PC-Relate GRM generated without that chromosome (N = 3,134 individuals and 7,756,401 variants). 
Five SNPs overlapping the coding sequence of FBN1 passed the genome-wide significance threshold (two-
sided p-value < 5x10-8, dotted red line). Of these one variant, rs200342067, is a missense variant in FBN1 
and the other four are intronic variants. We did not observe any inflation in test statistics (λ = 1.08). 
Association p-values are two-sided Wald test p-values.  
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Figure S3.2: Distribution and the genomic proportion of autozygosity (homozygousity-by-decent, 
HBD) segments in our cohort (N = 3,134 individuals). A) Segment lengths range from 0.2 Mb to 575.3 
Mb (IQR = 1.7 - 12.9 Mb). B) Autozygosity segments accounted for less than 1% and 5% of the accessible 
genome in 97% and 99.7% of the individuals respectively. Zoomed in facets are shown within each plot.  
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Figure S3.3: Comparison between PC-Relate kinship coefficient estimates and IBD proportion 
calculated using Refined IBD6, IBD segments. The relatedness estimates were highly concordant between 
the two methods (Pearson’s r = 0.56 (CI = 0.55 - 0.56), t-value = 1478.70, df = 4,909,400, one-sample t-
test two-sided p-value < 2.2x10-203). Each dot represents the pairwise kinship estimates between two 
individuals (N = 3,134 individuals and 4,909,411 pairwise combinations). X-axis: Refind IBD, IBD 
proportions. Y-axis: PC-Relate kinship coefficients. Red line: parent-offspring, green line: full siblings, 
blue line: second-degree relative, yellow line: third-degree relative, black: unrelated.  
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 Section 4: Gene-based association analysis 
 
In this section, we display the gene-based association analysis (N = 3,134 individuals and 25,000 genes) 
results for both rare (MAF < 1%) and common (MAF ≥ 1%) variants. 

 

 
 
Figure S4.1: Gene-based association analysis. A) Rare (MAF < 1%) variants gene-based analysis using 
SKAT7 (N = 3,134 individuals). The dotted red line corresponds to the genome-wide significance threshold 
of 2x10-6 for 25,000 tested genes. No genes reached the genome-wide significance threshold. Association 
p-values are two-sided Wald test p-values. B) Gene-based meta-analysis of common (MAF ≥ 1%) variants 
using GCTA fastBAT8 (N = 3,134 individuals). The dotted red line corresponds to the genome-wide 
significance threshold of 2x10-6 for 25,000 tested genes. No genes reached the genome-wide significance 
threshold. Association p-values are two-sided Wald test p-values.  
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Section 5: Polygenic Risk Score analysis 
 

In our initial PRS analysis, we calculated PRS using the reported conditional effect sizes of 2,993 common 

height-associated variants found in a European height meta-analysis (N ~ 700,000 individuals) and were 

present in our Peruvian cohort (N = 3,134 individuals, Figure S5.1, Methods). After considering the 

possibility that the choice to use conditional effect sizes may have mitigated heritability explained, we 

repeated the PRS analysis using the unconditional effect sizes of 2,195 height-associated variants that 

reached genome-wide significance before conditional analysis in the original study and were also present 

in our cohort (Methods). The PRS calculated in this way explained 7.2% (CI = 5.6 – 9.1, p-value = 4.0x10-

53, Figure S5.2) of height phenotypic variance in our cohort. The PRS calculated using unconditional and 

conditional effect sizes are highly correlated (Pearson’s r = 0.77, and the amount of height variance 

explained by them is not statistically different (z-score = -1.85, two-sided p-value = 0.06, Figure S5.1E). 

 

Previous studies 9–11  suggested that the lower predictive power of European-biased PRSs in non-European 

populations might reflect that different variants are responsible for the height variance in non-European 

populations or that the lead European variants do not tag the same causal variants in non-European 

populations. To test whether the PRS calculated using European effect size explain a higher proportion of 

height variance in individuals with higher European ancestry proportion, we divided our cohort into two 

groups with high (≥ 0.22, top quartile, N = 784 individuals) and low (< 0.22, N = 2,350  individuals) 

proportions of European ancestry. PRS explained a significantly higher proportion of height phenotypic 

variance (z-score = 2.27, p-value = 0.02) in individuals with high European ancestry proportion (Pearson’s 

r2 = 9.8% (CI = 6.2 - 14.1), p-value = 2.2x10-19) compared to the individuals with low European ancestry 

proportion (r2 = 5.1% (CI = 3.5 - 7.0), p-value = 9.0x10-29, Figure S5.3). Altogether these results suggest 

that the reduced effect of PRS in Peruvians may be at least in part related to genetic differences.  
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Differences in the sex composition of different cohorts might also affect the predictive power of PRS 12. In 

our cohort, PRS explained similar (z-score = -0.72, p-value = 0.47) proportions of height phenotypic 

variance in men (N = 1,795, Pearson’s r2 = 7.2% (CI = 5.1 – 9.7), p-value = 5.6x10-31) and women (N = 

1,339, Pearson’s r2 = 6.0% (CI = 3.7 – 8.6), p-value = 1.4x10-19, Figure S5.4).  
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Figure S5.1: Polygenic risk score (PRS) analysis using conditioned effect sizes of variants that reached 
genome-wide significance before or after conditional analysis. We used conditional effect sizes from 
2,993 independent, common height-associated variants that reached genome-wide significance before or 
after conditional analysis in the Yengo et al 2018 meta-analysis (N ~ 700,000 European individuals)13 and 
were present in our cohort (N = 3,134 Peruvian individuals) to derive the PRS. A) Out of 2,993 variants, 
1,519 (51%) show directionally consistent effects, and 199 (7%) had p-value < 0.05 in our Peruvian GWAS. 
B) Higher PRS values are associated with increased height (Pearson’s r = 0.22 (CI = 0.18 - 0.25), t-value = 
12.36, df = 3132, one-sample t-test two-sided p-value = 2.7x10-34).  C) Histogram showing the PRS 
distribution. D) Previously identified height-associated variants explained only 6.1% of height phenotypic 
variance in our cohort (Pearson’s r2 = 0.061 (CI = 0.046 - 0.078), t-value = 14.29, df = 3132, one-sample t-
test two-sided p-value = 6.8x10-45), x-axis: PRS, y-axis: height residuals after adjustments for age and sex 
as fixed effects and a GRM as a random effect. E) The majority (99%) of previously identified common 
height-associated variants (N = 3,290) have effects less than 5 mm per allele (dashed red line: cutoff 
corresponding to 5 mm effect size, the smaller plot shows the zoomed-in tail of the main plot). 
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Figure S5.2: Polygenic risk score (PRS) analysis using unconditioned effect sizes of variants that 
reached genome-wide significance before conditional analysis. We used effect sizes from 2,195 common 
height-associated variants that reached the genome-wide significance threshold in the Yengo et al 2018 
primary analyses (e.g before conditional analysis, N ~ 700,000 European individuals)13 and were present 
in our cohort (N = 3,134 Peruvian individuals) to derive the PRS. A) Out of 2,195 variants, 1,101 (50%) 
showed directionally consistent effects, and 155 (7%) had p-value < 0.05 in our Peruvian GWAS. B) Higher 
PRS values are associated with increased height (Pearson’s r = 0.23, (CI = 0.20 - 0.26), t-value = 13.21, df 
= 3132, one-sample t-test two-sided p-value = 8.4x10-39). C) Histogram showing the distribution of PRS. 
D) The 2,195 variants that were included in the analysis explained 7.2% of height phenotypic variance in 
our cohort (Pearson’s r2 = 0.072 (CI = 0.055 - 0.091), t-value = 15.64, df = 3132, one-sample t-test two-
sided p-value = 4.0x10-53), x-axis: PRS, y-axis: height residuals after adjustments for age and sex as fixed 
effects and a GRM as a random effect. E) The PRS values calculated using the primary effect sizes of 2,195 
primary height-associate variants (y-axis) and the PRS calculated using the conditional effect sizes of 
primary and conditional height-associate variants (x-axis) are highly correlated (Pearson’s r = 0.77 (CI = 
0.75 - 0.80), t-value = 66.49, df = 3132, one-sample t-test two-sided p-value < 2.2x10-203). Each point 
represents the mean for a PRS decile (calculated using conditional effect sizes, x-axis) and the average of 
PRS generated using primary effect sizes for that decile (y-axis). The red (x-axis) and black (y-axis) error 
bars are confidence intervals.   
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Figure S5.3: PRS analysis in individuals with a high or low proportion of European ancestry. A) PRS 
based on previously identified height-associated variants in the European population explain a higher 
proportion of height phenotypic variance in individuals with high European ancestry proportion (≥ 0.22, N 
= 784, Pearson’s r2 = 9.8% (CI = 6.2 - 14.1), t-value = 9.24, df = 782, one-sample t-test two-sided p-value 
= 2.2x10-19) compared to B) the individuals with low European ancestry proportion (< 0.22, N= 2,350, 
Pearson’s r2 = 5.1% (CI = 3.5 - 7.0), t-value = 11.30, df = 2,348, one-sample t-test two-sided p-value = 
9.0x10-29). In both analyses Height was adjusted for age, sex, genetic relatedness but not population 
structure ( PC-Relate GRM). x-axis: PRS, y-axis: covariate-adjusted height residuals.  



21 
 

 

 
Figure S5.4: PRS analysis in men and women. A) PRS based on previously identified height-associated 
variants in the European population explain similar proportions of height phenotypic variance in men (N = 
1,795, Pearson’s r2 = 7.2% (CI= 5.1 – 9.7), t-value = 11.80, df = 1,793, one-sample t-test two-sided p-value 
= 5.6x10-31) and B) women (N= 1,339, Pearson’s r2 = 6.0% (CI= 3.7 – 8.6), t-value = 9.20, df = 1,337, one-
sample t-test two-sided p-value = 1.4x10-19). Sex-specific height values are adjusted for age, genetic 
relatedness, and cryptic population structure (GEMMA GRM). x-axis: PRS, y-axis: covariate-adjusted 
height residuals.  
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Section 6: Positive selection at rs200342067 locus in Peruvians form the 1000 Genomes Project  

 
In the 1000 Genomes Project14 data, the genomic region overlapping rs200342067 shows absolute 

integrated Haplotype Score (|iHS|) values > 2 15,16 in certain European, South Asian, East Asian, and South 

American populations suggesting that this region is is under positive selection in these populations (Table 

S6.1). To test whether variants overlapping this region are also under positive selection in the Peruvian 

population, we used the integrated Selection of Allele Favored by Evolution (iSAFE) 17 to search for 

variants under positive selection in a 1.2Mb region around rs200342067. Using iSAFE, the top positive 

selection signal in this locus (15q21.1) comes from rs12441775 an intronic variant overlapping FBN1. This 

allele shows evidence of positive selection (iHS < -2) in certain European, South Asian, and South 

American populations including the Peruvian population 15,16 (Table S6.2). Since rs12441775 is located 

77kb upstream of rs200342067, we considered the possibility that positive selection at rs12441775 led to 

an increased frequency of rs200342067 in the Peruvian population. However, rs12441775*G 

(derived/major) and rs200342067*C (derived/minor) alleles are out of phase with each other, for example 

in the Peruvian individuals from the 1000 Genomes Project14 rs12441775*G and rs200342067*C do not 

co-occur on the same extended haplotypes (Figure S6.1) suggesting that positive selection at 

rs12441775*G does not derive the increased allele frequency of rs200342067*C in the Peruvian population. 

We also checked the haplotype structure of rs200342067*C and rs1426654*A allele in SLC24A5 (located 

266kb upstream of FBN1), an allele that is known to be under strong positive selection 18. We observed that 

rs200342067*C and rs1426654*A alleles are out of phase with each other for example in the Peruvian 

individuals from the 1000 Genomes Project14 these two alleles do not co-occur on the same extended 

haplotypes (Figure S6.1). Moreover, FBN1 and SLC24A5 are in different topologically associating 

domains (TADs, Figure S6.2) suggesting that rs200342067 or other variants in FBN1 are unlikely to have 

been selected due to their regulatory effect on SLC24A5 suggesting that positive selection at rs1426654*A 

or other SLC24A5 variants is unlikely to derive the increased allele frequency of rs200342067*C in the 

Peruvian population.  
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Table S6.1: Positive selection at FBN1 locus. FBN1 overlaps genomic regions that are under putative hard 
selective sweeps (|iHS| > 2) in East Asian (EAS), European (EUR), American (AMR), and South Asian 
populations (SAS) from the 1000 Genomes Project14. A subset of these intervals (highlighted in green) 
overlap rs200342067 specifically. This table is a subset of supplementary table 3 from Johnson and Voight, 
2018, Nature Evolution and Ecology, study15,16. pop: the 1000 Genomes project population and (super 
population), start pos: start position of the interval on chromosome 15 (GRCh37), stop pos: stop position 
of the interval on chromosome 15 (GRCh37), start rs: id of the first variant in the interval, stop rs: id of the 
last variant in the interval, tag rs: id of the variant with the lowes |iHS| in the interval, tag pos:  position of 
the variant with the lowes |iHS| on chromosome 15 (GRCh37), tag stdiHS: standardized iHS value of the 
tag variant. bp: base pair. 
 

pop start rs start pos 
(bp) stop rs stop pos (bp)  tag rs tag pos (bp) tag stdiHS 

PUR (AMR) rs18405587
7 48255052 rs4775762 48744005 rs10152385 48544388 4.803 

PJL (SAS) rs75043581 48281768 rs56286136 48755814 rs8030205 48540936 4.956 

GBR (EUR) rs76770579 48285747 rs35716640 48800163 rs191970530 48540022 6.622 

CLM (AMR) rs1869456 48287801 rs79973522 48696347 rs77929857 48659007 5.286 

IBS (EUR) rs13968884
5 48314143 rs1820488 48713996 rs8025278 48595192 4.35 

ITU (SAS) rs1377686 48321081 rs363836 48722884 rs8030205 48540936 4.517 

TSI (EUR) rs12907018 48519932 rs11686860
9 48816785 rs1872303 48658712 4.484 

CEU (EUR) rs17350938 48589981 rs57829342 48808830 rs74961364 48730562 3.569 

JPT (EAS) rs4775750 48652764 rs11854943 48861287 rs143594551 48818908 -3.473 

PJL (SAS) rs75227249 48763008 rs16961323 48959082 rs16961125 48841044 4.821 

ITU (SAS) rs17363371 48847615 rs10851470 48970280 rs12101348 48941369 3.227 
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Table S6.2: iHS results for rs12441775 in the 1000 Genomes Project14 data. This table is a subset of the 
standardized iHS values for all 26 populations in the 1000 Genomes Project14 provided by Johnson and 
Voight, 2018 35 study15,16. African populations are highlighted in purple. pop: the 1000 Genomes project 
population and (super population), DAF: derived allele frequency (rs12441775*G is the derived allele), 
stdiHS: standardized iHS value.  
 

pop DAF (%) stdiH 

ACB (AFR) 6.77 -1.556 

ASW (AFR) 10.66 -1.851 

ESN (AFR) 0.51 NA 

GWD (AFR) 3.10 -0.693 

LWK (AFR) 3.03 -1.091 

MSL (AFR) 1.76 NA 

YRI (AFR) 0.46 NA 

CLM (AMR) 57.98 -2.119 

MXL (AMR) 67.97 -2.09 

PEL (AMR) 60.59 -2.16 

PUR (AMR) 61.54 -2.264 

CDX (EAS) 50 -0.983 

CHB (EAS) 45.63 -0.837 

CHS (EAS) 47.62 NA 

JPT (EAS) 30.29 -1.07 

KHV (EAS) 46.46 -1.777 

CEU (EUR) 71.72 -2.077 

FIN (EUR) 60.61 -1.329 

GBR (EUR) 65.93 -1.273 

IBS (EUR) 66.36 -1.308 

TSI (EUR) 73.36 -2.122 

BEB (SAS) 51.74 -1.405 

GIH (SAS) 61.65 -1.44 

ITU (SAS) 62.75 -3.017 

PJL (SAS) 59.9 -3.021 
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STU  (SAS) 55.39 -2.032 

 

 
 
Figure S6.1: Extended haplotypes around rs200342067 in the Peruvians from the 1000 genomes 
project14. Side-by-side stacked barplot of haplotypes carrying rs1426654*(A/G), rs200342067*(C/T), and 
rs12441775*(C/G) (N = 85). None of the haplotypes carrying rs200342067*C allele (AF = 4.1%) carries 
rs1426654*A allele (AF in PEL = 28%) or rs12441775*G allele (AF in PEL = 61%). X-axis: count of 
derived and alternate alleles for rs200342067 and rs1426654. Y-axis: individual haplotypes.   
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Figure S6.2: Hi-C results in HUVE cell line for FBN1 locus. FBN1 and SLC24A5 are in different 
topologically associating domains (TADs) and there is no evidence of physical interaction between the two 
genes. rs200342067's position is shown with a vertical green line. 
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Section 7: The coast-non-coast axis within the Peruvian population 
 
 
In the Peruvian Genome Project19 (PGP) cohort (N = 150), the rs200342067 variant is more frequent in the 

individuals from coastal regions compared to the individuals from the Andes or the Amazon (MAF = 9.7%, 

1.7%, and 0% for Coast, Andes and Amazon respectively, coast vs. non-coast two-sided Fisher’s exact test 

p-value = 0.0005, Table S7.1). To alleviate any concerns regarding the possible confounding effect of 

population structure on the observed association between rs200342067 and height in the Peruvian 

population, we first performed PCA analysis in the PGP cohort using 247,940 common (MAF ≥ 5%) 

variants that were shared between the PGP and LIMAA (N = 3,134) cohorts (Figure S7.1A-B). We then 

tested the association of the first ten PCs with coast-non-coast status in the PGP cohort. We observed that 

the first three PCs were significantly associated with coast-non-coast status in the PGP cohort (p-value < 

0.005, Bonferroni correction for ten tests, Table S7.2) showing that a coast-non-coast axis, captured by the 

first three PCs, is present in the Peruvian population 

 

We then used the SNP loadings from the PGP PCA analysis described above to infer population PCs in the 

LIMAA cohort (Figure S7.1C-D). Next, we tested the association between the first 3 PCs of LIMAA cohort 

(calculated using the SNP loadings in PGP, N = 150) and Native American ancestry proportion, height, or 

rs200342067 minor allele count using a linear mixed model with age, and sex, as fixed effects and a genetic 

relatedness matrix to account for genetic relatedness as random effect (Methods, significance threshold < 

0.016, Bonferroni correction for three tests). The first three PCs were significantly associated with Native 

American ancestry (p-value < 5.7x10-7, Table S7.3). PC1 and PC2 were significantly associated with 

rs200342067 (p-value < 8.6x10-4,effect size = 0.02 (se = 0.006), p-value = 0.009 for PC1 and effect size = 

0.02 (se = 0.006), p-value = 0.001 for PC2, Table S7.3) This result is in line with the observed higher 

frequency of rs200342067 in populations from the coastal regions in Peru (Figure S7.1, Table S7.1).   

PC1 and PC3 were significantly associated with height (p-value < 8.1x10-6, Table S7.3). To ensure that the 

observed association between rs200342067 and height is independent of the population structure within 
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Peru, we repeated this association using a linear mixed model with following covariates: age, sex, the first 

10 PCs (calculated as described above using the variant weights in PGP, N = 150), and a genetic relatedness 

matrix to account for genetic relatedness and population structure (calculated using GEMMA3). Inclusion 

of these PCs did not affect the effect size or the strength of the observed association between rs200342067 

and height (N= 3,134, MAF = 4.7%, effect size = -2.3 cm (se = 0.36), p-value = 3.0x10-10, Table S7.4). 

 

Collectively these results suggest that, as described before19, (1) a cost-non-coast population substructure 

exists within the Peruvian population, (2) this structure is consistent with the observed higher frequency of 

rs200342067 in populations from the coastal regions in Peru, and (3) this structure does not explain the 

association between rs200342067 and height. 
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Table S7.1: Comparison of rs200342067 minor/major allele count between populations from different 
geographical regions in Peru. In the PGP cohort19 (N = 150), rs200342067 is significantly more frequent 
in Coastal populations than in populations from the Andes and the Amazon. 
 

region Gender rs200342067 
C/C 

rs200342067 
C/T 

rs200342067
T/T total 

Amazon-PGP 
F 0 0 15 15 

M 0 0 13 13 

Andes-PGP 
F 0 1 45 46 

M 0 1 29 30 

Coast-PGP 
F 0 7 27 34 

M 0 2 10 12 

total   0 11 130 150 
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Figure S7.1: Association of population PCs with coast-non-coast status. PCA analysis of genotyping 
data from 150 Peruvians from three geographical regions in Peru (PGP cohort, N= 150 individuals)19 only 
common (MAF  5%) variants that were also present in our cohort (LIMAA cohort, N= 3,134 individuals) 
were included in the analysis (N = 247,940 variants). Principal components are inferred using SNP weights 
calculated in the PGP cohort. The amount of variance explained by each PC is shown in the parentheses. 
Each dor represents one individual. A-B) PC1, PC2, and PC3, for better visualization only individuals from 
the PGP cohort are shown C-D) PC1, PC2, and PC3 individuals from the LIMAA cohort (yellow dots) as 
well as the individuals from the PGP cohort are shown together.   
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Table S7.2: Association of the first ten PCs in the PGP cohort (N = 150) with coast-non-coast status. 
The first three PCs were significantly associated with coast-non-coast status (ANOVA, Bonferroni 
correction threshold for ten tests: p-value < 0.005). df: degrees of freedom; PC: principal component, r2: 
the proportion of variance explained, P-values are two-sided p-values. Numbers are rounded to two decimal 
places. 
 

PC categories F-value df r2 ANOVA p-value 

1 coast vs. non-coast 47.19 1 0.24 1.7x10-10 

2 coast vs. non-coast 38.99 1 0.21 4.3x10-9 

3 coast vs. non-coast 76.03 1 0.34 5.3x10-15 

4 coast vs. non-coast 0.02 1 0.0001 9.0x10-1 

5 coast vs. non-coast 0.14 1 0.001 7.1x10-1 

6 coast vs. non-coast 0.68 1 0.005 4.1x10-1 

7 coast vs. non-coast 0.35 1 0.002 5.6x10-1 

8 coast vs. non-coast 0.18 1 0.001 6.7x10-1 

9 coast vs. non-coast 0.17 1 0.001 6.8x10-1 

10 coast vs. non-coast 0.39 1 0.003 5.4x10-1 
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Table S7.3: Association between height (cm), Native American ancestry proportion, or rs200342067 
minor allele count and the first three PCs. We calculated the association between the first three PCs and 
each dependent variable (e.g height (cm), Native American ancestry proportion, or rs200342067 minor 
allele count) using a linear mixed model with the first three PCs of LIMAA cohort (N = 3,134) calculated 
using SNP loading in PGP cohort19 (N = 150), age, sex, and the PC-Relate1 GMR to account for relatedness 
as covariates. For comparison, we repeated the same analysis using the PCs calculated LIMAA cohort 
directly. P-values are two-sided Wald test p-values. PC: principal component, se: standard error, NAT: 
Native American ancestry, MAC: minor allele count. Numbers are rounded to two or the closet non-zero 
decimal places. 
 

dependant 
varaible PC 

PCs calculated using PGP SNP 
weights   

PCs calculated using LIMAA 
genotypes directly 

Effect size (se) Wald p-value Effect size (se) Wald p-value 

Height (cm) 

PC1 -1.51 (0.12) 2.6x10-36 -1.99 (0.11)  3.8x10-73 

PC2 -0.21 (0.13) 0.11 -0.30 (0.11) 0.006 

PC3 0.58 (0.13) 8.1x10-6 -0.26 (0.11) 0.02 

NAT (% 
increase) 

PC1 0.13 (0.002)  < 2.2x10-203 0.15 (0.0004)  < 2.2x10-203 

PC2 0.01 (0.002)  5.7x10-7 0.01 (0.0004)  6.1x10-138 

PC3 -0.04 (0.002) 5.5x10-89 0.006 (0.0004) 7.3x10-51 

rs200342067 
(MAC) 

PC1 0.02 (0.006)  8.6x10-4 0.02 (0.006)  8.6x10-4 

PC2 0.02 (0.006)  8.6x10-4 0.005 (0.005)  0.32 

PC3 -0.01 (0.006)  0.09 -0.002 (0.005) 0.70 
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Table S7.4: Correction for population PCs derived from the PGP cohort does not affect the 
association between rs200342067 and height. Inclusion of population PCs inferred using SNP weights 
calculated in the PGP cohort19 (N = 150), as covariates did not change the effect size or strength of the 
association between rs200342067 and height in the LIMAA cohort (N = 3,134 individuals): Numbers are 
rounded to two decimal places. Association p-values are two-sided Wald test p-values. se: standard error. 
 

Covariates effect size (cm) se z-score Wald p-
value 

Age, gender, GEMMA GRM -2.22 0.36 -6.17 6.8x10-10 

Age, gender, 10 PCs, GEMMA GRM -2.22 0.36 -6.17 6.8x10-10 

Age, gender, 10 PCs inferred using SNP loadings in 
the PGP cohort, GEMMA GRM -2.30 0.36 -6.39 1.7x10-10 
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Section 8: Clinical and molecular context of rs20034206 
 

The majority of disease-causing mutations previously reported in FBN1 are mutations that lead to Marfan 

or Marfan-like syndromes and are associated with a taller stature 20. Moreover, the majority of these 

mutations are either loss-of-function mutations or missense mutations that lead to reduced protein function, 

gain-of-function mutations are not common in this gene 20. However, FBN1 mutations that reduce protein 

function can also lead to clinical phenotypes opposite to what is observed in Marfan Syndrome 20 (Table 

S8.1). For example, loss-of-function FBN1 mutations that lead to defective interaction between microfibrils 

and cell surface can lead to acromelic dysplasia syndromes, a group of syndromes characterized by short 

stature, short hands and feet, stiff joints, and a hypermuscular build 20. Similarly, deletions in FBN1 

transforming growth factor-β (TGFβ)-binding protein-like domain 5 (TB5) cause dominant forms of Weill–

Marchesani syndrome a Mendelian disorder characterized by short stature21. To investigate the possible 

clinical effects of rs200342067 we performed dermatological and rheumatological clinical exams on 11 

individuals from our cohort: 2 homozygous (C/C) cases, 2 heterozygous (C/T) cases, and 7 matched 

controls with reference (T/T) genotype (Table S8.2, Methods). 

Musculoskeletal examination on these individuals did not reveal any obvious differences in the range of 

motion of knees, hips, wrists, and proximal interphalangeal and metacarpophalangeal joints of the second 

and third digits (Table S8.2). One C/C genotype individual had notably thicker skin upon a total body skin 

examination and appeared much older than the stated age. The other C/C genotype individual had no 

clinically abnormal cutaneous findings and none of the C/T or T/T individuals had an abnormal skin exam 

(Table S8.2). 

 

The rs200342067 variant changes the conserved T (major/ancestral) allele to a C (minor/derived) allele in 

FBN1 (g.48773926T>C, Figure S8.1). This mutation leads to an amino acid change (E1297G) in fibrillin-

1 calcium binding epidermal growth factor domain 17 (cbEGF-domain 17). Previous mechanistic studies 

of missense mutations in fibrillin-1 cbEGF domains have primarily focused on the six highly conserved 
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cysteines or residues that are involved in disulfide bond formation or the calcium binding consensus 

sequence (Figure S8.2). rs200342067 (fibrillin-1 E1297G) is located between a conserved cysteine residue 

and a conserved calcium-binding asparagine residue, both of these residues are identical in all cbEGF 

domains in fibrillin-1 (Figure S8.2). It is believed that E1297 in cbEGF domain 17 is involved in calcium-

binding22.  Calcium binding at fibrillin-1 cbEGF domains stabilizes the protein by making the microfibrils 

more rigid and protecting them from degradation by proteases23. The short fragmented and less packed 

phenotype seen in the skin of rs200342067 C/C individuals compared to T/T individuals might reflect the 

higher susceptibility of mutated fibrillin-1 to proteolysis compared to the wild-type protein. 

 

cbEGF domains are structurally conserved and have high sequence similarity 24 (Figure S8.2) as a result it 

might be expected that missense mutations at structurally similar positions in other fibrillin-1 cbEGF 

domains should lead to a similar phenotype as E1297G. However, the few previous studies that have 

reported amino acid changes at similar positions in other fibrillin-1 cbEGF-like domains have associated 

this change with Marfan syndrome 25. In line with previous reports 26,27, this observation highlights the 

importance of domain context for studying the molecular effect of fibrillin-1 mutations 26,27. For example, 

mutations that change a calcium-binding asparagine to serine in cbEGF33 (N2183S) lead to increased 

proteolytic susceptibility whereas the same mutation in the same position in cbEGF32 (N2144S) does not 

affect proteolytic susceptibility27. Moreover, different cbEGF domains in fibrillin-1 are involved in the 

interaction with different ECM molecules28, it is thus possible that similar mutations in different fibrillin-1 

cbEGF domains affect interaction with different molecules and lead to different molecular phenotypes. The 

points discussed here emphasize the need for future functional studies to understand the mechanism via 

which E1297G affect fibrillin-1 deposition in skin and height.  
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Table S8.1: Disease, phenotypes, and traits caused by mutations in FBN1. Mutations in FBN1 can lead 
to clinical phenotypes that, among other symptomes, show abnormally tall or short staturt.  
 

Disease OMIM ID Inheritance Most common height phenotype (if any) 

Acromicric dysplasia 102370 AD short statuture 

Ectopia lentis 129600 AD  

Geleophysic dysplasia 614185 AD short statuture 

Marfan lipodystrophy syndrome 616914 AD tall statuture 

Marfan syndrome 154700 AD tall statuture 

MASS syndrome 604308 AD tall statuture 

Stiff skin syndrome 184900 AD short statuture 

Weill-Marchesani syndrome 608328 AD short statuture 

Shprintzen-Goldberg syndrome 182212 AD tall statuture 
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Table S8.2: Demographic information of clinical examination participants. Skin biopsies were 
obtained from 11 including: 2 with C/C, 2 with C/T, and 7 with T/T genotypes at rs200342067. rheum: 
rheumatological, derm: dermatological, MAC: minor allele count, EUR: European ancestry proportion, 
AFR: African ancestry proportion, NAT: Native American ancestry proportion, ASI: Asina ancestry 
proportion. 
 

  age gende
r 

height 
(cm) 

EUR 
(%) 

AFR 
(%) 

NAT 
(%) 

ASI 
(%) 

rs200342067*
C (MAC) 

Skin 
biopsy 

rheum 
exam 

derm 
exam 

Individual 1 64 F 146 2.0 0.3 97.5 0.2 2 yes none thick 
skin 

Individual 2 35 F 144 21.3 0.0 78.2 0.5 2 yes none none 

Individual 3 30 F 146 5.2 0.3 93.2 1.3 1 no none none 

Individual 4 60 M 164 16.6 2.4 81.0 0.1 1 no none none 

Individual 5 56 M 164 12.5 0.3 86.5 0.8 0 no none none 

Individual 6 37 F 160 20.1 1.6 78.2 0.1 0 yes none none 

Individual 7 30 F 167 7.2 0 92.8 0 0 no none none 

Individual 8 60 F 157 4.7 0 95.3 0 0 yes none none 

Individual 9 46 F 153 7.1 0 92.9 0 0 no none none 

Individual 
10 44 F 150 3.2 0.2 95.2 1.5 0 no none none 

Individual 
11 36 F 154 8.7 0.3 67.8 23.2 0 no none none 
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Figure S8.1: Multiple sequence alignment around rs20034206 in 37 eutherian mammals. rs200342067 
changes a conserved T allele (ancestral, shown in red) to a C allele (derived). Sequence alignments were 
obtained from Ensembl GRCh37 release 95. 
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Figure S8.2: Multiple amino acid sequence alignment of fibrillin-1’s cbEGF domains. The primary 
structure of fibrillin-1 cbEGF domains consists of six cysteine residues (highlighted purple) that are 
involved in forming three disulfide bonds and five conserved residues involved in calcium binding 
(highlighted green). fibrillin-1 E1297G (shown in red) is located in the cbEGF domain 17 (red rectangle) 
and is surrounded by a conserved cysteine and a conserved asparagine residue. Protein sequences were 
obtained from Uniprot (Uniprot ID = P35555). 
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