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Supplementary Notes 
 

Supplementary Note 1. Defining and classifying candidate cis-regulatory elements 
(cCREs) 
Our approach to defining candidate cis-regulatory elements (cCREs) is guided by the 

understanding that robust biochemical signatures, including chromatin accessibility, particular 

histone modifications, and the binding of certain transcription factors, are preferentially associated 

with cis-regulatory elements. Chromatin regions highly accessible to the DNase I endonuclease—

DNase hypersensitive sites, or DHSs—are associated with all major classes of cis-regulatory 

elements48,71; therefore, we define cCREs as a subset of representative DHSs (rDHSs), a non-

redundant set of DHSs identified in the DNase-seq datasets of 706 human and 173 mouse 

biosamples surveying diverse cell and tissue types (Supplementary Table 9; Supplementary 

Methods). We further require all cCREs to be flanked by nucleosomes with at least one of two 

histone marks—histone H3 lysine 4 trimethylation (H3K4me3) or histone H3 lysine 27 acetylation 

(H3K27ac)—or bound by the transcription factor CTCF (Fig. 3); these three types of signals define 

a cCRE’s candidate function. We use H3K4me3 to annotate candidate promoters, as this histone 

mark is highly enriched around active transcription start sites (TSSs)41,72,73. H3K27ac was used 

to annotate candidate enhancers, as it is known to mark active enhancers as well as active 

promoters44,74,75. CTCF binding sites form their own class; they can serve as insulators that 

interrupt promoter-enhancer interactions76,77, or function as an architectural protein facilitating 

physical interactions between distant chromatin loci46,78. Using this classification system (Fig. 3), 

described in detail in the rest of Supplementary Note 1, we identified a total of 0.9 million cCREs 

in the human genome (Supplementary Table 10) and 0.3 million cCREs in the mouse genome 

(Supplementary Table 11), occupying 7.9% and 3.4% of these genomes, respectively, with the 

smaller number of mouse cCREs owing to a sparser biosample coverage of our mouse epigenetic 

datasets. 

 

To further test the accuracy of combining DNase, H3K27ac, and H3K4me3 signals for annotating 

enhancers and promoters, we compared these three features with six other histone marks 

(H3K4me1, H3K4me2, H3K9ac, H3K36me3, H3K9me3, and H3K27me3) and DNA methylation 

for predicting enhancer activity and gene expression (Supplementary Methods and detailed in 

Supplementary Note 2). We assayed all 10 of these epigenetic signals and gene expression in 

mouse embryonic day 11.5 (e11.5) tissues during this phase of ENCODE; also available were 

hundreds of enhancers active in each of four mouse e11.5 tissues—midbrain, hindbrain, neural 

https://paperpile.com/c/u8V0MG/A6BBX+YaYCn
https://paperpile.com/c/u8V0MG/DughE+EPTTX+vwPY9
https://paperpile.com/c/u8V0MG/JhxKz+eWhJC+bAuwJ
https://paperpile.com/c/u8V0MG/hwd4Y+KwaqA
https://paperpile.com/c/u8V0MG/97aTl+ZlU9y
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tube, or limb—identified by transgenic mouse assays from the VISTA database 

(https://enhancer.lbl.gov/)79. The in vivo transgenic mouse assays are widely used for evaluating 

enhancer function, and the assays are high throughput in the tissue axis because they report the 

enhancer activity for each region in all mouse tissues. At the time of our evaluation (2015), around 

2,000 TSS-distal regions in the human and mouse genomes had been tested by e11.5 transgenic 

mouse assays. Evaluated against these VISTA enhancers (Supplementary Table 12), DNase 

(evaluated on DHS) and H3K27ac signals (averaged over the ± 1 kb window centered on a DHS 

mid-point) were the best single features for predicting tissue-specific enhancers (Supplementary 
Fig. 1a, b for four features and Supplementary Table 13 for all 10 features). We then used RNA-

seq to evaluate the performance of these 10 epigenetic signals in predicting gene expression 

levels, and found H3K4me3 (averaged over the ± 1 kb window centered on a DHS mid-point) to 

be the best single feature (Supplementary Fig. 1c for DNase and H3K4me3; Supplementary 
Table 14 for all ten features).  

  

Many uses of cCREs are based on the regulatory role associated with their biochemical 

signatures. Thus, we putatively defined cCREs in one of the following annotation groups based 

on each element’s dominant biochemical signals across all available biosamples (subsequently 

filtered by per-biosample analysis to yield the final set of cCREs, described below) as well as its 

proximity to the nearest annotated TSS (Supplementary Fig. 2a, 2b for human and 2f, 2g for 

mouse):  

1) putative cCREs with promoter-like signatures (cCRE-PLS, GRCh38: 34,803, mm10: 

23,762) fall within 200 bp (center to center) of an annotated GENCODE TSS and have high 

DNase and H3K4me3 signals (evaluated as DNase and H3K4me3 max-Z scores, defined as the 

maximal DNase or H3K4me3 Z scores across all biosamples with data; see Methods). 

2) putative cCREs with enhancer-like signatures (cCRE-ELS) have high DNase and 

H3K27ac max-Z scores and must additionally have a low H3K4me3 max-Z score if they are within 

200 bp of an annotated TSS. The subset of cCREs-ELS within 2 kb of a TSS is denoted proximal 

(cCRE-pELS, GRCh38: 141,830, mm10: 72,794), while the remaining subset is denoted distal 

(cCRE-dELS, GRCh38: 667,599, mm10: 209,040).   

3) putative DNase-H3K4me3 cCREs have high H3K4me3 max-Z scores but low H3K27ac 

max-Z scores and do not fall within 200 bp of a TSS. (GRCh38: 25,537, mm10: 10,383) 

4) Finally, putative CTCF-only cCREs have high DNase and CTCF max-Z scores and low 

H3K4me3, H3K27ac, and CTCF max-Z scores. (GRCh38: 56,766, mm10: 23,836) 

 

https://enhancer.lbl.gov/
https://paperpile.com/c/u8V0MG/KQD4y
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The four core marks annotating cCREs have different spatial resolutions, which dictate a different 

approach for computing the signal level for each mark. DHSs are relatively sharp (150-350 bp 

wide; rDHSs are a subset of DHSs, hence, have the same resolution), corresponding to the core 

TF binding regions of a regulatory element. CTCF also has a high spatial resolution, and CTCF 

ChIP-seq peaks often coincide with DHSs. Therefore, we computed DNase and CTCF signals by 

directly averaging over the rDHS region. H3K4me3 and H3K27ac signals, in contrast, are more 

diffuse, low at the center of a cCRE, which has open chromatin, and elevated in flanking 

nucleosomal regions several hundred bps upstream and downstream of the core cCRE. To 

account for the diffuse signals of H3K4me3 and H3K27ac, we appended 500 bp (corresponding 

to roughly two nucleosomes) to both sides of each rDHS and computed the levels of H3K4me3 

and H3K27ac signals by averaging over the padded region, which were then used to compute 

their Z-scores in a specific biosample and max-Z scores across all biosamples (Supplementary 

Methods). In essence, rDHSs specify the locations of cCREs, while H3K4me3, H3K27ac, and 

CTCF signals suggest the activity types of cCREs.  

 

Analogous to annotating a protein-coding gene irrespective of whether its mRNA is expressed 

broadly or specifically, this cCRE classification using max-Z scores across all biosamples is 

agnostic about the identity and number of cell types that provided the chromatin evidence. 

Building upon this cell type-agnostic cCRE classification, we then classified cCREs on a per-

biosample basis using their DNase, H3K4me3, H3K27ac, and CTCF signals in the 25 human and 

15 mouse biosamples where all four types of assays were performed. Supplementary Fig. 3a 

and 3b illustrate the biosample-specific classification in GM12878 cells and the count of each 

group of cCRE in this biosample. Supplementary Fig. 3c delineates the classification for these 

25 human and 15 mouse biosamples, and Supplementary Table 15 lists the counts of each 

group of cCREs for the 25 human biosamples. Two additional groups are defined for the per-

biosample classification: a low-DNase group, containing all cCREs with low DNase signals (Z-

score < 1.64) in the biosample (regardless the signals of the other three marks), and a DNase-

only group, containing cCREs with high DNase Z-scores (Z-score ≥ 1.64) but low H3K4me3, 

H3K27ac, and CTCF Z-scores within that biosample. Therefore, there are seven possible 

groups (PLS, pELS, dELS, CTCF-only, DNase-H3K4me3, DNase-only, and low-DNase) in a 

particular biosample, as shown for human cCREs in GM12878 cells (Supplementary Fig. 3a). 

To facilitate subsequent discussions, we collectively call the first six groups of cCREs as high-

DNase cCREs in a biosample, sometimes also as cCREs defined in a sample. 
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Assessed using the 25 fully assayed human biosamples, 13 ± 2% cCREs are in one of the six 

high-DNase groups and the enhancer groups of cCREs (pELS and dELS together) outnumber 

the promoter group (PLS) by three-fold, and a higher fraction of PLS cCREs are shared among 

biosamples than ELS cCREs (Supplementary Table 15). We further compared the cell type 

specificity among the six groups of high-DNase cCREs across the 25 biosamples, and as 

expected, cCREs-PLS are the least cell type-specific and cCREs-dELS and DNase-H3K4me3 

cCREs are the most cell type-specific (Supplementary Fig. 3d). These group classifications are 

supported by the binding of many chromatin-associated proteins, especially RNA polymerase 

(Pol) II, EP300 (a histone acetyltransferase that prefers to bind enhancers), and RAD21 (another 

chromatin architecture protein like CTCF). cCREs-PLS are most enriched in Pol II binding, while 

cCREs-ELS are most enriched in EP300 binding but have a weak Pol II signal, and CTCF-only 

cCREs are most enriched in the RAD21 signal (Extended Data Fig. 2d). 

 

The per-biosample classification is illustrated for three cell type-specific loci in humans: SPI1 in B 

cells, NPAS4 in bipolar neurons, and HNF4 in hepatocytes (Supplementary Fig. 4). SPI1 

encodes the transcription factor PU.1, which activates genes during B cell development. The SPI1 

locus shows three cCREs, one PLS at its promoter, one upstream dELS, and one downstream 

CTCF-only. The PLS and dELS show high histone mark signals only in B cells and are classified 

as low-DNase in bipolar neurons and hepatocytes (Supplementary Fig. 4a), consistent with the 

function of SPI1 in these cell types. NPAS (Neuronal PAS Domain Protein 4) is a transcription 

factor that functions in both excitatory and inhibitory brain neurons. Accordingly, in bipolar 

neurons, the NPAS locus has one PLS and three DNase-H3K4me3 cCREs at the promoter and 

two CTCF-only cCREs up and down-stream. The PLS and DNase-H3K4me3 cCREs show no 

signal in B cells and hepatocytes. However, there is a DNase-only cCRE in the first intron of NPAS 

in B cells and hepatocytes and another DNase-only cCRE upstream in hepatocytes. We asked 

what transcription factors might bind to these DNase-only cCREs and found that they 

corresponded to two high-signal ChIP-seq peaks of NRSF (Neural-Restrictive Silencer Factor, 

also named RE1 Silencing Transcription Factor or REST) in GM12878 and HepG2, two cell lines 

in the same lineages as B cells and hepatocytes, respectively (Supplementary Fig. 4b). Thus, 

we hypothesize that the NPAS locus is repressed by NRSF in non-neuronal cell types. HNF4A 

(Hepatocyte Nuclear Factor 4 Alpha) is a transcription factor that regulates hepatic genes. Its 

promoter is surrounded by one PLS and three ELS in hepatocytes, and all of these cCREs have 

low signals in B cells and bipolar neurons. In summary, the per-biosample classification of cCREs 
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distills the information in the four core assays to suggest the regulatory functions of key genomic 

elements.  

 

In addition to the 25 human biosamples and 15 mouse biosamples that are fully covered by the 

four assays (which we call Type A samples), hundreds of additional samples had partial coverage 

by ENCODE data. We assigned these samples as Type B (with DNase and one or two other 

marks), Type C (no DNase but one to three other marks) and Type D (DNase but no other marks), 

and devised a tier system (Box 1 and Supplementary Fig. 5) for the final selection of cCREs 

from putative cCREs, with the latter based on maximal signal across all biosamples as defined 

above. The cCREs defined in fully covered (Type A) biosamples are designated as Tier 1a (N = 

534,913 in human and 244,595 in mouse), reflecting our highest confidence in them. Type B 

biosamples can also define cCREs that have high signals of DNase and one other mark in the 

same biosample, but these cCREs are assigned Tier 1b (N = 179,048 in human and 22,245 in 

mouse), reflecting the incomplete assay coverage of the biosamples from which they came. 

Finally, we pair up a Type C biosample (using its histone mark or CTCF data) with a Type B or D 

biosample (using its DNase data) to define Tier 2 cCREs (N = 212,574 in human and 50,975 in 

mouse) that do not have high signals of DNase and one other mark in the same biosample 

because of missing data. All combinations of sample coverage for Tier 2 cCREs are enumerated 

in Supplementary Fig. 5. With Tiers 1a, 1b, and 2 combined, there are 926,535 human and 

339,815 mouse cCREs, occupying 7.9% and 3.4% of the human and mouse genomes, 

respectively (Supplementary Fig. 2c, d for human and 2h, i for mouse).  

 

For Type B and D biosamples, which had DNase-seq data but were missing one or more ChIP-

seq data types, we provide partial assignment of cCREs (Supplementary Fig. 3e). Because our 

cCRE classification requires DNase signal, we do not provide per-biosample cCRE classification 

for Type C biosamples and just designate the presence of high or low signals (Supplementary 
Fig. 3f). 
 

The tier assignments largely reflect the assay availability but not biological differences between 

the two organisms (Supplementary Fig. 2e, j). Users of the Registry of cCREs can use the tier 

system to filter cCRE sets according to the completeness of the supporting data. As more DNase-

seq and ChIP-seq data become available, we will update the tier assignments of all cCREs; 

meanwhile, we distinguish low signal from missing data while annotating cCREs in individual 

biosamples and in the analyses throughout this paper, and in the SCREEN web resource. 
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Supplementary Note 2. Testing various epigenetic signals for predicting enhancers 
and promoters. 
We asked which of the ten epigenetic signals were predictive of VISTA enhancers in each of four 

tissues: midbrain, hindbrain, neural tube, and limb. For each of these four tissues, our positive 

test set comprised all VISTA regions that tested positive in that tissue, while our negative set 

contained the remaining VISTA regions (most of the negative regions showed no activity in any 

tissue, while a small number of negative regions showed activity in another tissue). The VISTA 

regions used in our analysis are listed in Supplementary Table 12, and the method of 

comparison is detailed in Supplementary Methods. We first tested two ways of anchoring the 

window for computing the average signal of DNase or the histone marks: DHSs or the ChIP-seq 

peak summit of five histone marks known to have relatively punctate peaks (H3K27ac, H3K9ac, 

H3K4me3, H3K4me2, and H3K4me1). We found that, on average, anchoring on DHSs led to 

slightly but consistently better performance (evaluated as the area under the precision-recall 

curve or AUPR; Supplementary Table 13a and Supplementary Fig. 1a, b). These results verify 

our rationale that DHSs have higher resolution than histone marks. Next, anchoring the window 

on DHSs, we evaluated all ten epigenetic signals for predicting VISTA enhancers 

(Supplementary Table 13b). DNase signal was the most predictive feature for enhancer activity 

in three of four tissues (hindbrain, neural tube, and limb), with the AUPR = 0.38, 0.31, and 0.45, 

respectively, while for midbrain enhancers, H3K27ac (AUPR = 0.42) was the most predictive 

feature followed by DNase (AUPR = 0.39; Supplementary Table 13b and Supplementary Fig. 
1b). Signals of other histone marks and DNA methylation achieved average AUPR ranging from 

0.26 by H3K4me1 to 0.15 by DNA methylation (Supplementary Table 13b).  

 

We further tested averaging the rank by DNase and the rank by each of the other nine signals, 

still anchoring enhancer predictions on DHSs (Supplementary Table 13b). The average rank of 

the DNase and H3K27ac signals resulted in the same AUPR as ranking by DNase signal alone 

(average AUPR = 0.38). The average rank of DNase and another signal improved AUPR over the 

rank of the other signal alone, e.g., the average AUPR of the average rank of DNase and 

H3K4me1 was 0.34, compared with 0.26 for ranking by H3K4me1 alone. Incorporating additional 

histone marks or DNA methylation using a linear model did not further improve performance (data 

not shown). We did not test more complex models because of the small number of VISTA 

enhancers—only 200-300 genomic regions tested positive in each tissue.  

 



 12 

We further evaluated whether an adaptation of the above-described enhancer prediction model 

could be used to map cell type-specific promoter regions, judged by the correlation between the 

level of each epigenetic signal and the nearest transcript’s expression level measured by RNA-

seq in the e11.5 midbrain, hindbrain, neural tube and limb. Again, we tested two ways of anchoring 

the epigenetic signals, on DHSs or H3K4me3 peaks, and evaluated the aforementioned ten 

features—DNase, eight histone marks, and DNA methylation (Supplementary Methods). When 

anchored on TSS-proximal DHSs, H3K4me3 correlates the strongest with expression level 

(Spearman’s correlation coefficient ρ = 0.75 averaged over the four tissues), slightly better than 

H3K9ac (ρ = 0.74), but substantially better than the remaining marks (Supplementary Table 14a; 

Supplementary Fig. 1c for the midbrain). This correlation is substantially higher than that of the 

H3K4me3 signal centered on H3K4me3 peaks (ρ = 0.60) or the DNase signal centered on TSS-

proximal DHSs (ρ = 0.45). Repeating this analysis with human RNA-seq data in GM12878, K562, 

and HepG2 cells yielded consistent results (ρ = 0.72, 0.73, and 0.71, respectively; 

Supplementary Table 14b). In conclusion, the high spatial precision offered by DHSs improves 

the accuracy of H3K4me3 for predicting gene expression levels.  

 

Supplementary Note 3. Contribution of ENCODE Phase III data to the Registry of 
cCREs. 
The additional data from ENCODE Phase III greatly increased the comprehensiveness of the 

Registry of human cCREs. The numbers of high-signal rDHSs that would have resulted from using 

only ENCODE Phase II data (1.3 M), only Roadmap Epigenomics data (1.3 M), or a combination 

of these two sets of data (1.7 M) are substantially lower than the number (2.1 M) when ENCODE 

Phase III data are included (Supplementary Fig. 6a). Saturation analysis of cCREs stratified by 

class suggests that with the current collection of datasets we are nearly saturated for cCREs-

PLS, DNase-H3K4me3, and CTCF-only but not for cCRE-ELS, particularly cCREs-dELS 

(Supplementary Fig. 6b). Accordingly, ENCODE III data increased the number of human cCREs 

by 22% compared with ENCODE II and Roadmap combined, with the increase most evident for 

dELS, DNase-H3K4me3, and CTCF-only cCREs (Supplementary Fig. 6c). The shift of data 

production in ENCODE Phase III to focus on primary cells and tissues was one reason behind 

the increased coverage of cCREs. We defined human cCREs using just cell line data, just primary 

cell data, or just tissue data. Data from tissues substantially augmented the counts of all 

categories of cCREs, and primary cell data made further contributions to the cCRE count 

(Supplementary Fig. 6d). In addition to the quantitative increase in cCREs, the tissue and 
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primary cell data greatly expanded the diversity of biosamples covered by ENCODE cCREs, 

which should aid investigations of transcriptional regulation in more cell and tissue types. 

 

Supplementary Note 4. Coverage of the Registry. 
Our working hypothesis in defining the Registry of cCREs based on rDHSs is that a collection of 

rDHSs derived from hundreds of DNase-seq experiments would represent a large fraction of all 

cis-regulatory elements in the genome and that a new biosample is likely to use as its regulatory 

repertoire a subset of the cCREs already in the Registry. To test this hypothesis, we examined 

the chromatin and CTCF ChIP-seq data from human biosamples that lacked DNase-seq data and 

found that, on average, 93% of H3K4me3 peaks, 83% of H3K27ac peaks, and 97% of CTCF 

peaks called in these cell types (false discovery rate or FDR < 0.01) corresponded to a cCRE, 

i.e., they were detected in another cell type with DNase-seq data (Supplementary Fig. 7a-c). 

Similarly, among the mouse biosamples that had chromatin and CTCF data but lacked DNase 

data, 90% of H3K4me3 peaks, 70% of H3K27ac peaks, and 83% of CTCF peaks overlapped 

cCREs (Supplementary Fig. 7g-i). The slightly lower percentages in mouse than in human were 

due to the fewer number of DNase-seq datasets from mouse and correspondingly the lower 

coverage of the mouse Registry. To investigate why some ChIP-seq datasets had poor coverage 

by the Registry, we plotted the percent overlap of cCRE-overlapping ChIP-seq peaks in a dataset 

against the average -log(FDR) of all peaks in the dataset, which is an indicator of the average 

quality of ChIP-seq peaks identified by the peak calling algorithm. The biosamples with poor 

Registry coverage tended to have low average -log(FDR) in both human and mouse 

(Supplementary Fig. 7d-f, 7j-l). We visually inspected two mouse H3K4me3 datasets with the 

lowest coverage (CD-1 megakaryocyte and GR1-ER4 in mouse, Supplementary Fig. 7j) and 

confirmed that the peaks that were not covered by cCREs had low signals and were likely false 

positives by the peak calling algorithm. The low-coverage CTCF dataset in human subcutaneous 

adipose tissue (Supplementary Fig. 7f) also had low quality, with only 736 peaks. 

 

To further evaluate the human Registry, we compared it with the ~101,000 TSSs annotated by 

GENCODE59 and the ~84,000 regulatory elements identified by the FANTOM Consortium80 using 

the Cap Analysis of Gene Expression (CAGE) assay58. We found that 50% of human GENCODE 

TSSs and 70% of stringent FANTOM CAGE clusters were contained within a human cCRE. The 

FANTOM TSSs that did not overlap a cCRE were usually detected in a cell or tissue type that 

was not represented or fully covered by four assays in the ENCODE dataset, e.g., subtypes of 

neuronal cells, reproductive tissues, and pituitary gland. These data support the 

https://paperpile.com/c/u8V0MG/FMwA9
https://paperpile.com/c/u8V0MG/JQsDT
https://paperpile.com/c/u8V0MG/qkYIt
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comprehensiveness of the ~900,000 annotated cCREs in our human Registry, but also suggest 

that additional cCREs will be found in cell types yet to be assayed by ENCODE. In particular, the 

current human Registry is likely to underrepresent cCREs specific to embryonic tissues, stem and 

progenitor cells, specialized brain cells, dynamic responses, and disease states. Closing this gap 

will require isolation and characterization of such cell states, a significant undertaking that should 

be aided by new biological understandings of the nature and complexity of human tissues, new 

experimental models that include the ability to differentiate pluripotent cells into many other cell 

types, and new technologies for profiling low-cell-count samples and single cells.  

 

In conclusion, the human Registry of cCREs appears to be comprehensive: It covers more than 

80% of elements marked by H3K4me3 or H3K27ac or bound by CTCF (FDR < 0.01) in any 

biosample and 50-70% TSSs in GENCODE and FANTOM collections. A cautionary note is that 

we do not yet know the extent of our coverage of highly cell-type-specific cCREs that are active 

in rare cell types (numerically minor in their tissues of origin) that have not yet been sensitively 

assayed. The mouse Registry is less comprehensive than the human Registry, but we expect that 

it will continue to grow with experiments performed on additional biosamples.  

 

Supplementary Note 5. Comparison of the Registry of cCREs with other 
approaches of defining CREs. 
There are many approaches that can be used to identify regulatory elements by using epigenetic 

signals. ENCODE Phase II developed machine-learning techniques such as ChromHMM81 and 

Segway82, while the FANTOM Consortium leveraged the distinct transcriptional signatures at 

regulatory elements83. Our approach for building the cCRE Registry is simpler but allows broader 

coverage of cell types when assay coverage is sparse. Overall, our cCRE predictions compare 

favorably with the ChromHMM-based and FANTOM-produced collections. 

 

We first compared cCRE calls with ChromHMM states in the same cell or tissue type. For human 

cCREs, we performed the comparison in GM12878, which was an ENCODE II tier I cell type1 and 

continued to be used for many assays in ENCODE III.  Most cCREs-PLS (86%) defined in 

GM12878 overlapped a ChromHMM promoter also defined in GM12878, and most cCREs-dELS 

(83%) overlapped a ChromHMM enhancer (Supplementary Fig. 8a). By comparison, most 

cCREs-pELS were classified as promoters by ChromHMM (80% pELS overlapped ChromHMM 

promoters, and 19% pELS overlapped ChromHMM enhancers), because the low spatial 

resolution of ChromHMM states caused their promoters to “spill over” to the neighboring cCREs-

https://paperpile.com/c/u8V0MG/52RB1
https://paperpile.com/c/u8V0MG/8qXny
https://paperpile.com/c/u8V0MG/aAio9
https://paperpile.com/c/u8V0MG/36QXQ
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pELS (Supplementary Fig. 8b). Furthermore, DNase-H3K4me3 cCREs mostly overlap 

ChromHMM TSS, CTCF-only cCREs mostly overlap ChromHMM insulators, and DNase-only 

cCREs mostly overlap low-signal ChromHMM enhancers, providing additional information on 

these groups of cCREs. Reciprocally, ChromHMM states were enriched in their corresponding 

cCRE types, although they had larger overall genome footprints than did cCREs (Supplementary 
Table 16a, c).  

 

We observed similarly strong agreement between the cCREs defined in five e11.5 and six e14.5 

mouse tissues with their respective ChromHMM states called using eight histone marks 

(H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K27ac, H3K36me3, H3K9me3, and H3K27me3) 

in the corresponding tissues and time points 84. On average, 98% of cCREs-PLS overlapped 

ChromHMM promoters, and 67% of cCREs-ELS overlapped ChromHMM enhancers 

(Supplementary Fig. 8c). DNase-H3K4me3 cCREs mostly overlap the ChromHMM TSS and 

bivalent-TSS states (61% and 34%, respectively). Reciprocally, the ChromHMM TSS and 

bivalent-TSS states overlapped most extensively with PLS as opposed to other groups of cCREs, 

while the high-signal enhancer ChromHMM state overlapped most extensively with ELS 

(Supplementary Table 16b, d). The positions in TSS, enhancer, and insulator ChromHMM states 

that overlapped cCREs had significantly higher evolutionary conservation than the positions in 

the corresponding ChromHMM states that did not overlap cCREs, suggesting the higher 

resolution of cCRE pinpointed the most relevant functional sequences (Supplementary Table 
16e).  

 

We also compared cCREs-ELS with the 65,423 candidate human enhancers defined by the 

FANTOM Consortium. Their predictions are quite different in origin, being based entirely on CAGE 

data and having been drawn from hundreds of cell and tissue types80,83, with which ENCODE has 

only partial overlap. Nevertheless, 66% of the FANTOM enhancer set overlapped with a cCRE. 

The intersect set of cCREs with FANTOM enhancers (~5% of cCREs) also display significantly 

higher chromatin and Pol II signals (Supplementary Fig. 9a-e) and higher evolutionary 

conservation (Supplementary Fig. 10c) than the remaining 95% of cCREs.  Thus, the FANTOM 

set seems to correspond in several aspects to our top cCREs. 

 

Given the importance of transcription at enhancer elements, we further sought to quantify 

transcribed cCREs-ELS and to elucidate the differences between the transcriptional patterns at 

cCREs-ELS and cCREs-PLS, using the 59,011 coding and non-coding RNAs in the FANTOM 

https://paperpile.com/c/u8V0MG/cyGPf
https://paperpile.com/c/u8V0MG/JQsDT+aAio9
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CAGE Associated Transcriptome (CAT) collection80. These FANTOM CAT transcripts fall into 

eleven categories, and we observed large differences between the categories in terms of the 

percentage of CAT transcripts in the category with their 5 ́-ends within 2 kb of a cCRE. The CAT 

transcripts in the protein-coding and small-RNA categories had their 5 ́-ends predominantly near 

cCREs-PLS, while the CAT transcripts in the eRNA-like categories80 had their 5 ́-ends 

predominantly near cCREs-dELS (Extended Data Fig. 3e, redrawn in Supplementary Fig. 9f). 
Overall, a majority of FANTOM CAT transcripts were annotated by cCREs. Because cCREs-ELS 

vastly outnumber FANTOM CAT RNAs, ~19% of cCREs-ELS fall within 2 kb of the TSS of a 

FANTOM CAT lncRNA. 

 

In summary, our Registry of cCREs overlaps significantly with existing collections of regulatory 

elements, yet has its distinct advantages—it has higher resolution than ChromHMM states and is 

more comprehensive than FANTOM enhancers and CAT RNAs.  

 

Supplementary Note 6. Evolutionary conservation of cCREs. 
Our prediction of cCREs from biochemical features, not from interspecies comparisons, allowed 

an unbiased examination of their evolutionary conservation. Focusing on the 8% of the human 

genome that is evolutionarily highly constrained (GERP++ sites85), the percentage of constrained 

nucleotides in each group of cCREs correlated positively with the major biochemical signal 

(DNase-seq; Supplementary Fig. 10a). Judged by average phyloP score69, a quantitative 

measure of evolutionary conservation, all groups of cCREs are more conserved than randomly 

chosen genomic regions (3-8 times by group; Extended Data Fig. 2b). We also mapped out the 

correspondence between human and mouse cCREs using LiftOver (Extended Data Fig. 2c), and 

the cCREs that have homologs in the other species have higher phyloP scores than the cCREs 

that do not have homologs in the other species (Supplementary Fig. 10b). The entire sets of 

human and mouse cCREs were depleted in repetitive elements (Supplementary Table 17), but, 

consistent with previous reports86,87, the human CTCF-only cCREs were enriched in long terminal 

repeats (1.6 fold; Chi-square p-value = 4.0E-77) and the mouse CTCF-only cCREs in SINE 

elements (1.7 fold; p-value = 4.5E-40). Thus, cCREs show a strong trend of evolutionary 

conservation that is associated with the strength of the predictive signal, but many individual 

cCREs are species specific. 

 

https://paperpile.com/c/u8V0MG/JQsDT
https://paperpile.com/c/u8V0MG/JQsDT
https://paperpile.com/c/u8V0MG/E9OxT
https://paperpile.com/c/u8V0MG/TVssf
https://paperpile.com/c/u8V0MG/DwCPM+DmM2m
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Supplementary Note 7. cCREs encompass the binding sites of most transcription 
factors. 
Our definition of cCREs does not incorporate transcription factor binding information other than 

that of CTCF, allowing for unbiased integrative analyses of cCREs with the wealth of ENCODE 

ChIP-seq data on chromatin-associated proteins, most of which are transcription factors (TFs). 

ENCODE aims to generate ChIP-seq data for as many TFs as possible; these data have been 

processed by an ENCODE uniform pipeline to define ChIP-seq peaks, genomic regions 

significantly bound by a TF. Overall, there is excellent overlap between TF ChIP-seq peaks and 

cCREs—a median ENCODE TF ChIP-seq dataset has 90% of its peaks overlap a cell type-

agnostic cCRE (Extended Data Fig. 3b, redrawn in Supplementary Fig. 11a for reference). 

There are only 12% of ChIP-seq experiments for which fewer than 70% of peaks overlapped 

cCREs, and many of these experiments belonged to TFs with known repressive activities, e.g., 

MAFF, MAFK, ZNF274, and ATF7 (Supplementary Table 18). Three cell lines, K562, HepG2, 

and GM12878, have been extensively assayed by ENCODE for TF ChIP-seq, with hundreds of 

factors profiled in each. We observed high overlap between TF peaks with cell type-specific 

cCREs predicted to be active in these cell types, with median TF ChIP-seq datasets in GM12878, 

HepG2, and K562 having 78%, 84%, 74% of their peaks overlapping cCREs in the respective cell 

types (Supplementary Fig. 11b). Given that, on average, only 13 ± 2% of all cCREs have high-

DNase signals in a particular biosample (Supplementary Table 15), the high percentages of TF 

peaks overlapping cCREs in the corresponding cell type support the high accuracy of our 

approach to classifying cell type-specific cCREs. Many of the experiments with low overlaps with 

cell type-specific cCREs also belonged to TFs with repressive activities.  

 

We further examined the overlap between cCREs and genomic regions bound by multiple TFs 

according to the TF ChIP-seq data (Supplementary Fig. 11c). In each of the three 

aforementioned cell types, we observed that genomic regions bound by more TFs were more 

likely to overlap cCREs (both cell type-agnostic and cell type-specific cCREs). We also analyzed 

each group of cCREs (Supplementary Fig. 11d, in HepG2 cells) and found that cCREs-PLS 

were bound by the most TFs (median = 39 TFs in HepG2 cells) followed by cCREs-pELS and 

cCREs-dELS (median = 22 and 29 TFs respectively). All six groups of cCREs overlapped more 

TF peaks than Low-DNase cCREs (p < 1E-230 in HepG2 cells, Wilcoxon rank-sum tests). As 

expected, the CTCF-only cCREs were specifically enriched in the binding of CTCF and other 

cohesin components (Rad21, SMC3). These analyses indicate that the Registry of cCREs 
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captures the majority of the TF cis-regulatory landscape and also reveals the need for including 

data from more repressive factors in improving the Registry of elements. 

 

Supplementary Note 8. The local transcription landscape at cCREs. 
We explored the transcriptional landscape of nascent RNAs surrounding cCREs using public 

GRO-seq data in GM12878 and PRO-seq data in primary CD4+ T-cells88,89. Both cCREs-PLS 

and cCREs-dELS exhibit evidence of bidirectional transcription, albeit with distinct patterns and 

levels (Extended Data Fig. 3c-d, and Supplementary Fig. 12a-d, with a and c being redrawn 

for reference). cCREs-PLS show a strong burst of asymmetrical transcription, with the sense-

strand signal peaking higher than the antisense-strand signal. The transcription level around 

cCREs-dELS, on average, is maximal at 10% of the highest level around cCREs-PLS. 

 

We further observed that the bidirectional transcription patterns were consistent with our definition 

of cCREs in a cell type-specific manner.  The cCREs defined in both CD4+ T cells and GM12878 

cells tended to show bidirectional transcription in both cell types (Supplementary Fig. 12e-f, two 

left panels), while the cCREs defined in only one of the two cell types exhibited bidirectional 

transcription more strongly in their defining cell type than in the other cell type (Supplementary 
Fig. 12e-f, comparing the solid bars, the two middle panels have higher percentages in CD4+ T 

cells than in GM12878 cells, whereas the two right panels have higher percentages in GM12878 

cells than in CD4+ T cells). Overall, a large majority of cCREs-ELS show bidirectional transcription 

(92.2% in GM12878 and 76.6% in CD4+ T cells; Supplementary Fig. 12). Our results suggest 

that nascent transcriptional patterns at cCREs are correlated with their epigenetic profiles in a cell 

type-specific manner. The incorporation of such information offers a fruitful avenue for future 

research in defining and classifying candidate regulatory elements, and we are exploring such 

approaches during ENCODE IV. 

 

Supplementary Note 9. The expression patterns of genes around cCREs. 
Genes near cCREs defined in a biosample tend to be expressed in that biosample. To focus our 

analysis, we examined three human cell types from distinct lineages—cardiac muscle cells, 

hepatocytes, and neural progenitors—and compared the cCREs-PLS predicted to be active in 

each cell type (by DNase and H3K4me3 signals) with genes expressed in the corresponding cell 

type (measured by RNA-seq). We found that genes with TSSs (GENCODE V24 basic TSSs) 

overlapping cCREs-PLS had the highest expression, followed by genes with TSSs overlapping 

other high-DNase cCREs, then genes with TSSs overlapping low-DNase cCREs 

https://paperpile.com/c/u8V0MG/PEGAw+gYJWG
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(Supplementary Fig. 11e). Genes without a cCRE at their TSSs had the lowest overall 

expression in all three cell types. Reciprocally, most genes (~85%) expressed in each cell type 

(> 1 tag per million; TPM) had a cell type-specific cCRE-PLS at their TSS (Supplementary Fig. 
11f). 
 

The high resolution of our cCREs allowed us to investigate their nearby transcriptional activities 

at the TSS level. RAMPAGE is a 5 ́-complete cDNA sequencing assay developed during 

ENCODE III that can capture the transcript levels of individual TSSs18, and eight of the 25 human 

biosamples covered by DNase, H3K4me3, H3K27ac, and CTCF assays also have RAMPAGE 

data. We found that cCREs-PLS were enriched for the strongest RAMPAGE peaks (median 

among the eight biosamples: 51% cCREs-PLS overlapped RAMPAGE peaks and TSS 

expression at these RAMPAGE peaks = 14.2 TPM), followed by cCREs-pELS (8.6% cCREs-

pELS overlapped RAMPAGE peaks; TSS expression = 3.3 TPM), while other groups of cCREs 

showed even lower overlap with RAMPAGE peaks than cCREs-pELS although at similar median 

expression levels (~3 TPM; Extended Data Fig. 3a). These results indicate that our cCREs-PLS 

correspond to active TSSs and our classification of cCREs-pELS as a subtype of ELS and not a 

subtype of PLS is consistent with transcription.  

 

We asked which group of cCREs preferred to be located near tissue-specific genes as opposed 

to housekeeping genes, defined using the RNA-seq data across tissue-timepoints in the mouse 

developmental series (1,000 genes with the highest and lowest tissue specificity, respectively; 

see Methods). We found that a significantly higher percentage of housekeeping genes had a 

nearby cCRE-pELS than did tissue-specific genes (median = 60% vs. 31%; p = 7.5E-9) and the 

reverse was true for cCRE-dELS (5.9% vs. 13.4%; p = 1.7E-7; Supplementary Fig. 11g and 

Supplementary Table 20). For the remaining groups of cCREs, PLS follows the same trend as 

pELS, while DNase-H3K4me3 and DNase-only follow the same trend as dELS (Supplementary 
Table 20). These results suggest that tissue-specific genes and housekeeping genes may be 

regulated by different types of cCREs-ELS, with housekeeping genes predominantly by cCREs- 

pELS, while tissue-specific genes by both cCREs-pELS and cCREs-dELS. 

 

Supplementary Note 10. Differential gene expression and cCRE activity during 
mouse fetal development. 
To study the epigenetic landscape of mammalian development, we performed ChIP-seq of eight 

histone marks and RNA-seq at daily intervals between embryonic day 10.5 (e10.5) and postnatal 

https://paperpile.com/c/u8V0MG/IuZJI
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day 0 (P0), with 6-12 tissues sampled per day, totaling 66 samples. This wealth of data offers a 

highly detailed picture of the impact of regulatory element activity on gene expression during 

development. We performed differential gene expression analysis between all available pairs of 

tissues and embryonic timepoints (Supplementary Methods; Supplementary Table 21 lists the 

RNA-seq datasets used) and investigated the differential epigenetic signal profiles of cCREs 

surrounding the differentially expressed genes. The results of this systematic analysis can be 

accessed via a web-based resource called SCREEN (Search Candidate cis-Regulatory Elements 

by ENCODE; http://screen.encodeproject.org, Box 2), and the locus centered on each 

differentially expressed gene can be visualized along with the differential H3K27ac signals of 

cCREs at the locus, providing a resource for the exploration of gene-cCRE relationships. 

 

We illustrate the utility of this differential gene-cCRE resource with mouse cCRE EM10E0842983, 

which may function as an enhancer regulating Apoe, a protein expressed in the liver and involved 

in cholesterol metabolism90. The Apoe locus depicted by SCREEN reveals that the expression of 

Apoe (in log2TPM) is 5.1-fold higher at P0 than at e11.5 (Supplementary Fig. 13a), supporting 

previous findings of increased Apoe expression at birth in rats91. Nearby apolipoprotein C genes 

Apoc1, Apoc2, and Apoc4 are likewise overexpressed at P0 (green boxes in Supplementary Fig. 
13a).  Accordingly, cCREs-PLS and cCREs-ELS also show higher H3K4me3 and H3K27ac 

signals at P0 than at e11.5 (red and yellow dots in Supplementary Fig. 13a). Among these 

cCREs, an ELS, EM10E0842983, overlaps a mouse hepatic control region (HCR). The H3K27ac 

signal at EM10E0842983 is highly correlated with Apoe expression across the seven 

developmental time points (Pearson’s correlation r = 0.94; p-value = 1.3E-3; Supplementary Fig. 
13b, c). EM10E0289438 has high H3K27ac signal primarily in the liver (Supplementary Fig. 13d 

shows the mouse biosamples with the highest H3K27ac signals). 

 

The mouse HCR that contains EM10E0842983 is homologous to two human HCRs (HCR.1 and 

HCR.2), which are 21 kb downstream of APOE’s TSS92. HCR.1 AND HCR.2 have high sequence 

similarity (85%) as a result of a 10 kb duplication of the region around APOC1. EM10E0842983 

has three homologous human cCREs-ELS: EH38E1957033 in HCR.1 and EH38E1957037 and 

EH38E1957038 in HCR.2 (Supplementary Fig. 13e, f). Previous studies demonstrated that 

human HCR.1 and HCR.2 differ in tissue specificity. In transgenic mice, HCR.1 led to a broad 

Apoe expression, including hepatic and non-hepatic tissues, while HCR.2 resulted in a liver-

specific Apoe expression92. Consistent with these previous results, SCREEN illustrates that the 

human cCRE that overlap HCR.1 (EH38E1957033) has high H3K27ac signals in liver and many 

http://screen.encodeproject.org/
https://paperpile.com/c/u8V0MG/QreGr
https://paperpile.com/c/u8V0MG/XVLVb
https://paperpile.com/c/u8V0MG/MQFjC
https://paperpile.com/c/u8V0MG/MQFjC
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other tissue types, such as the gastrointestinal system and brain, whereas the two cCREs in 

HCR.2 (EH38E1957037 and EH38E1957038) have liver-specific H3K27ac signals 

(Supplementary Fig. 13e,f).  
 

As illustrated in this example, integration of differential gene expression with the differential 

epigenetic signals of nearby cCREs across a panel of cell and tissue types, in particular in the 

context of human-mouse comparison, can aid the identification of cCREs that regulate gene 

expression programs. The mouse developmental series data provide time courses for gene 

expression and cCRE epigenetic signals, and a high correlation between the two types of time 

courses provides support for their regulatory relationship. The difference in tissue specificity 

between the mouse cCRE and the three homologous human cCREs in this example also provides 

a glimpse of evolutionary innovation—one of the human cCREs (EH38E1957033) is no longer 

liver-specific, and it may have taken on a different function from the other cCREs.  

 

Supplementary Note 11. Testing cCREs with transgenic mouse assays. 
To assess the accuracy of cCRE with enhancer-like signatures (ELS), we experimentally tested 

151 genomic regions, each centered on a cCREs-ELS, using transgenic mouse assays49. We 

used the average rank of the DNase and H3K27ac signals to identify previously untested, TSS-

distal (> 2 kb from the nearest GENCODE-annotated transcription start site or TSS) cCREs-ELS 

in the mouse e11.5 midbrain, hindbrain, and limb, and the boundaries of the tested regions were 

defined using the overlapping H3K27ac ChIP-seq peaks (Supplementary Methods). An initial 

transgenic reporter survey by ENCODE found that active constructs are concentrated in the top 

quartile of H3K27ac signal52. To explore this relationship further, for each tissue, we tested 20, 15 

and 15 regions around the ranks of 1-20, 1,500-1,520, and 3,000-3,020, respectively. The results 

are in Supplementary Table 22a-c, and representative e11.5 transgenic mouse embryos for the 

enhancers that validated in the expected tissues are shown in Supplementary Fig. 14. The rank 

based on DNase and H3K27ac could predict activity with reasonable precision, as indicated by 

the area under the precision-recall curve of 0.67, 0.56, and 0.59 for midbrain, hindbrain, and limb, 

respectively, substantially higher than the values at ~0.3 for random predictions (Supplementary 
Fig. 15a). Consistently, higher ranking regions were more likely than lower ranking regions to 

show enhancer activity in their predicted tissue (Fig. 4a; e.g., 60% test positive for ranks 1-20, 

40% for ranks 1,500-1,520, and 27% for ranks 3,000-3,020 in midbrain). This testing was 

performed when our Registry of cCREs was first established, and we subsequently improved our 

method for building the Registry (moving to the newer human genome build GRCh38, improving 

https://paperpile.com/c/u8V0MG/58bof
https://paperpile.com/c/u8V0MG/niojL
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our method for defining rDHSs, and adding the TSS-proximal ELS or pELS and DNase-H3K4me3 

groups of cCREs), and a reanalysis with the current version of cCREs confirmed this correlation 

between epigenetic signal and validation rate (Supplementary Fig. 15b). For completeness, the 

original ranks and new ranks are provided in Supplementary Table 22d-f. 

In a parallel study described in a companion paper14, regions based on H3K27ac peaks in e12.5 

forebrain (N = 50), heart (N = 45) and limb (N = 45) tissues were selected for testing using e12.5 

transgenic mouse assays (these regions are listed in Supplementary Table 22g). We analyzed 

these data prospectively and observed similar validation rates for cCREs defined in the 

corresponding tissues (Supplementary Fig. 15c) as for e11.5 cCREs described above. The 

e12.5 cCREs in the corresponding tissues that map to the tested regions are listed in 

Supplementary Table 22h-j. A study described in another companion paper52 tested a set of 

human regions and some mouse regions. We also analyzed the mouse regions prospectively 

(Supplementary Fig. 15d) and list all of their tested regions in Supplementary Table 22k-l along 

with the cCREs that overlap them. In total, Supplementary Table 22 summarizes all transgenic 

mouse experiments performed during ENCODE Phase III. 

When a predicted enhancer region tested as active in multiple tissues, these tissues typically had 

high H3K27ac signals across the region (Fig. 4b). For example, a predicted enhancer in the 

hindbrain (Fig. 4b, mm1489) was also active in the midbrain and neural tube, and accordingly, 

high H3K27ac signals were observed in all three neuronal tissues (H3K27ac data for midbrain 

and hindbrain are shown in Fig. 4b but not shown for neural tube). More often, even though high 

H3K27ac signals were observed in multiple tissues, reporter activity was detected in only one or 

a subset of these tissues. For example, mm1502 was active only in midbrain, but high H3K27ac 

signals were observed in other brain tissues as well, and mm1444 was active in hindbrain and 

midbrain, but high H3K27ac signals were observed even in non-brain tissues as well. In contrast, 

an enhancer that was exclusively active in the limb (mm1492 in Fig. 4b) showed high H3K27ac 

signals only in the limb. These results suggest that cCREs-ELS defined using DNase and 

H3K27ac signals correspond to active enhancers whose tissue selectivity patterns often match 

or reflect a tissue-subset of their H3K27ac signal patterns. 

The overall validation rates for these predictions (43-46% across the three tissues) are lower than 

those of an earlier study93 (78-82% in forebrain, limb, and midbrain) but higher than those of two 

other earlier studies—32% in forebrain94 and 38% in heart95 using transgenic mouse assays. The 

https://paperpile.com/c/u8V0MG/Six6F
https://paperpile.com/c/u8V0MG/niojL
https://paperpile.com/c/u8V0MG/GtnoT
https://paperpile.com/c/u8V0MG/P8j35
https://paperpile.com/c/u8V0MG/b0yvy


 23 

higher validation rate by Visel et al. may be partly due to the requirement of evolutionary 

conservation in picking the regions for testing93, which was not imposed on our enhancer 

predictions. Our results support this hypothesis. If we stratify our tested regions by conservation 

(Supplementary Fig. 15e), we observe that all highly conserved elements (average phyloP score 

across the element ≥ 1) tested positive (p = 0.03, Fisher's Exact Test). The enhancer predictions 

that yield negative results in transgenic mouse assays could be due to a number of reasons: false-

positive predictions, enhancers that are longer than the fragments that were able to be tested, 

enhancers active at other time points, enhancers that are active only in combination with other 

enhancers, or low-activity enhancers below the detection limit of the assay. During ENCODE 

Phase IV, we continue to evaluate the accuracy of cCREs using the data generated by ENCODE 

Functional Characterization Centers with massively parallel reporter assays, STARR-seq, various 

flavors of CRISPR assays, and transgenic mouse assays. 

 

Supplementary Note 12. Comparing cCREs with active regions identified by high-
throughput reporter assays 
To further evaluate evidence for activity of cCREs, we compared the cCREs defined in two cell 

lines (GM12878 and K562) with public data on regions tested using two different types of high-

throughput reporter assays in the respective cell types50,51. In both comparisons, regions that 

overlapped cCREs annotated in the corresponding cell type validated at a higher rate than the 

regions that did not overlap cCREs. 

 

Tewhey et al.50 tested 25,295 regions that contained variants from cis-expression quantitative trait 

loci (eQTL) identified in human lymphoblastoid cell lines (LCLs). They performed massively 

parallel reporter assays (MPRA) on these regions containing either allele of the variants, and 

3,103 of the regions were deemed active for one or both alleles in GM12878 cells (also known as 

NA12878 in the 1000 Genomes Project). Active regions (MPRA+) were significantly more likely 

to overlap GM12878 cCREs than inactive regions (22.0% vs. 3.9%; at least 25% bps of the cCRE 

needs to overlap, Fisher’s exact p-value = 2.5E-235). DNase signals of the tested cCREs in 

GM12878 were predictive of their MPRA activities: 12 of the top 1,000 ranked cCREs in GM12878 

overlapped an MPRA-tested region, and 11 of these were MPRA+ (MPRA test positivity = 91.7%). 

The test positivity was 62.5% and 53.2% for the top 3,000 or 5,000 cCREs, for which 48 and 79 

cCREs overlapped tested regions respectively. The overall test positivity for all cCREs annotated 

in GM12878 (N = 103,021, from 103,195 GRCh38 lifted down to hg19 to compare with the MPRA 

data in hg19) was 44.0% (1,372 GM12878 cCREs overlapped a tested region), more than thrice 

https://paperpile.com/c/u8V0MG/GtnoT
https://paperpile.com/c/u8V0MG/7GDDq+mz5Qj
https://paperpile.com/c/u8V0MG/7GDDq
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higher than the overall validation rate of all tested regions (12.3%). The overall test positivity for 

cCREs-PLS was 62.6% and cCREs-ELS was 33.6% (39.8% for cCREs-dELS and 28.8% for 

cCREs-pELS; Fig. 4c).  

 

Notably, cCREs-dELS (TSS-distal cCREs with enhancer-like signatures) with high epigenetic 

signals in LCLs were more predictive of MPRA activity than cCREs-dELS in other lymphoid 

biosamples (Wilcoxon rank-sum test p = 1.0E-3), which were in turn more predictive than cCREs-

dELS in non-lymphoid cell types (p = 1.1E-13; the three rightmost bars in Supplementary Fig. 
15f). However, the opposite trend was observed for PLS (promoter-like signature), pELS (TSS-

proximal with enhancer-like signatures), and for all high-DNase cCREs in general, i.e., these three 

groups of cCREs in lymphoid biosamples were less predictive of MPRA activity than were the 

corresponding groups of cCREs in other biosamples (Supplementary Fig. 15f, the 9 bars from 

left, in three sets), which seems counterintuitive.  

 

Further analysis revealed that the counterintuitive trends observed for cCREs-PLS, cCREs-pELS, 

and high-DNase cCREs were due to the ascertainment bias of the 25,295 tested regions—they 

were chosen from eQTLs in LCLs50. cCREs that are specific for non-lymphoid biosamples are 

unlikely to overlap these tested regions, while those cCREs in non-lymphoid biosamples that do 

overlap these regions are likely active across many biosamples, and such ubiquitous cCREs are 

expected to validate at a higher rate than cell type-specific cCREs. Indeed, substantially fewer 

cCREs-PLS in non-lymphoid biosamples than in lymphoid biosamples overlapped the tested 

regions, and the number of overlapping cCREs-PLS were nearly perfectly anti-correlated with the 

percentage of these regions that tested positive (Pearson’s correlation r = −0.91, p = 1.4E−203; 

Supplementary Fig. 15g). A similarly strong anticorrelation was observed for cCREs-pELS and 

high-DNase cCREs (r = −0.80 and −0.85, p = 2.8E−117 and 8.9E−143). In sharp contrast, such 

a correlation was absent for cCREs-dELS (r = 0.04, p=0.3), although ~54% more cCREs-dELS 

in lymphoid biosamples than in non-lymphoid biosamples overlapped the tested regions. The lack 

of a correlation for cCREs-dELS is because few dELS are ubiquitously active (Supplementary 
Fig. 3d). The above detailed analysis reveals that one must be cautious when performing cross-

cell type comparisons of a genome-wide set of annotations (0.9 M cCREs in this case) with 

another set that is chosen in a specific cell type (the 25,295 regions picked from LCL eQTLs).  

 

The other high-throughput reporter assay that we compared human cCREs with was the SuRE 

assay51, which tested 100 million 0.2–2 kb DNA fragments across the entire human genome for 

https://paperpile.com/c/u8V0MG/7GDDq
https://paperpile.com/c/u8V0MG/mz5Qj


 25 

their autonomous promoter activities in K562 cells. cCREs-PLS defined in K562 were validated 

at 73% by base, higher than pELS (69%) and dELS (46%) defined in K562, and all these rates 

are much higher than the background rate of 4% (Fig. 4d). Moreover, for all these groups of 

cCREs, those defined in K562 were validated at a significantly higher rate than cCREs defined in 

other myeloid biosamples, which were, in turn, validated at higher rates than cCREs defined in 

other biosamples (Supplementary Fig. 15h). Thus, the cCREs defined by epigenetic signals in 

specific cell types are consistent with their activities in the corresponding cell types. 

 

Considering both the transgenic mouse assay results in the previous section and the reporter 

assay overlaps in this section, we estimate the test positivity to be ~65% for top 1000 cCREs in 

each biosample. The test positivity is 20-40% for all cCREs, which is still well above background. 

The failure of some cCREs to test positively likely reflects both the inherent limitations of our 

biochemical signal-based approach and also limitations of transgenic mouse assays and reporter 

assays. Overall, the assays do not test cCREs in their native chromosomal context: (i) the reporter 

assays did not test DNA segments with their native target promoters, and promoter choice is 

known to affect the sensitivity and cell type specificity; (ii) the reporter assays do not test 

combinatorics, and some cCREs may be active only when combined with others, even much 

further away; (iii) other aspects of native epigenomic and topological context are not recapitulated 

in reporter constructs; and (iv) the short MPRA-tested regions, in particular, may not contain the 

full sequence required for enhancer activity, while the longer transgenic segments might even 

include unintended repressing elements. On the other hand, we also acknowledge the possibility 

that not all open chromatin regions marked by high levels of H3K27ac function as enhancers; 

therefore these regions will not test positive in functional characterization experiments. Ongoing 

work in Phase IV of ENCODE by our Functional Characterization Centers, as well as work in the 

wider community, are using CRISPR-based assays that can maintain native chromosomal 

context96 and comparing them with other assays to better illuminate the full range of regulatory 

activity in cCREs. 

 

Supplementary Note 13. Using the Registry of cCREs and SCREEN for interpreting 
GWAS variants. 
Most variants discovered in genome-wide association studies (GWAS) lie outside of coding 

regions and are enriched in known or suspected regulatory regions1,29,30,95,97,98. With the broad 

coverage of biosamples and rich epigenetic and transcription factor binding data associated with 

the cCREs, all made available via a web-based resource called SCREEN (Search Candidate cis-

https://paperpile.com/c/u8V0MG/VLDGM
https://paperpile.com/c/u8V0MG/36QXQ+b0yvy+3XT3e+GxU8w+DjMXx+ossQl
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Regulatory Elements by ENCODE; http://screen.encodeproject.org, Box 2), the Registry of 

cCREs can be particularly useful for annotating GWAS variants. We have analyzed 3,751 GWAS 

from the NHGRI-EBI catalog99,100, surveying 2,321 phenotypes (Supplementary Table 23). We 

first determined which tag single-nucleotide polymorphisms (SNPs) from these studies and their 

neighboring SNPs in linkage disequilibrium (LD) were located in the cCREs predicted to be active 

in each biosample by epigenetic signals, and then used this information to suggest candidate 

regulatory functions for the SNPs. For the GWAS with 25 or more SNPs in a human population 

with LD data, we further identified the biosamples with significant enrichment of cCREs 

overlapping these SNPs (Supplementary Fig. 16a-c). Here, we delve into several GWAS to test 

how cCREs and SCREEN can aid exploratory analyses of annotating GWAS SNPs. 

 

The first SNP we investigated, rs1250568, is in LD with three tag SNPs—rs1250542101, 

rs1250540102, and rs1782645103—of several GWAS on multiple sclerosis. SNPs reported in these 

GWAS are enriched for cCREs with high epigenetic signals in T cells and B cells as well as in the 

lymphoblastoid cell line GM12878, which has substantial ENCODE data (Supplementary Fig. 
16c, left panel). rs1250568 lies in cCRE-PLS EH38E1482633 (Supplementary Fig. 16d), and 

data in GM12878 reveal that the SNP resides in a ChIP-seq peak of the transcription factor ELF1, 

likely disrupting an ELF1 motif site (Supplementary Fig. 16e). ELF1 is primarily expressed in 

lymphoid cells and is involved in the IL-2 and IL-23 immune response pathways; both pathways 

are implicated in multiple sclerosis104,105. RNA Pol II ChIA-PET data in GM12878 link 

EH38E1482633 with ZMIZ1, the gene containing rs1250568 within an intron, and PPIF, a 

downstream gene (Supplementary Fig. 16f). ZMIZ1 was proposed to be a causal gene in the 

GWAS101,102—it is in the androgen receptor signaling pathway and is expressed at lower levels in 

multiple sclerosis patients than in controls106. While PPIF has not been implicated in multiple 

sclerosis, our exploratory analysis suggests that it might be. It encodes a peptidyl-prolyl cis-trans 

isomerase, which is a component of the mitochondrial permeability transition pore. Knockdown 

or knockout of Ppif led to neuroprotective effects in mouse disease models of multiple 

sclerosis107,108. We propose that PPIF may function in lymphocytes to promote demyelination of 

neighboring neurons.  

 

The second GWAS example contains 75 SNPs significantly associated with red blood cell 

phenotypes109. These SNPs fall into 45 LD blocks (r2 ≥ 0.7) with 91% of the blocks containing at 

least one SNP that overlaps a cCRE, and these cCREs have high H3K27ac signals in blood cells, 

particularly in K562, an erythroleukemia cell line, reproducing previous reports on the K562 

http://screen.encodeproject.org/
http://screen.encodeproject.org/
https://paperpile.com/c/u8V0MG/8sK93+s8ndG
https://paperpile.com/c/u8V0MG/R0VSD
https://paperpile.com/c/u8V0MG/dvzzw
https://paperpile.com/c/u8V0MG/QnSSL
https://paperpile.com/c/u8V0MG/b0KeC+58Ynt
https://paperpile.com/c/u8V0MG/R0VSD+dvzzw
https://paperpile.com/c/u8V0MG/rNoCJ
https://paperpile.com/c/u8V0MG/RFisb+1ySYK
https://paperpile.com/c/u8V0MG/OheJj
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enrichment2,110. Ulirsch et al. performed MPRA on K562 cells to functionally characterize 2,756 

SNPs in LD with these 75 SNPs and validated 32 of them (referred to as MPRA functional 

variants, MFVs). They noted that 28% of these 32  MFV+ SNPs overlap with K562 DHSs110. We 

observed that 47% of the MFV+ SNPs overlap cCREs, while only 15% of the MFV− SNPs did 

(3.1-fold enrichment; p = 2.4E-5), and the enrichment was even higher for cCREs predicted to be 

active in K562—22% vs. 4% (5.0-fold enrichment; p = 4.3E-4; Supplementary Fig. 17a). Ulirsch 

et al. further validated three of the 32 MFV+ SNPs using CRISPR/Cas9 to create isogenic clonal 

deletions across each MFV (median size was 13 nucleotides) in K562 cells110. Two of these SNPs, 

rs1175550 and rs1546723, overlap cCREs-PLS in blood cell types, while the other SNP, 

rs737092, overlaps a cCRE-ELS (EH38E2124446; Supplementary Fig. 17b). Ulirsch et al. found 

that rs737092 affects the expression of a gene RBM38 coding an RNA-binding protein, whose 

TSS is 22.7 kb away. Consistent with this result, EH38E2124446 shows high H3K27ac and 

DNase signals in K562 and other blood cell types (Supplementary Fig. 17c). Its homologous 

mouse cCRE, EM10E0721638, also has high DNase and H3K27ac signals in blood cell types 

and fetal liver (Supplementary Fig. 17d)—liver is a major contributor of hematopoiesis during 

development111. Promoter-capture Hi-C (CHi-C) data linked rs737092 with RBM38 in CD34+ 

hematopoietic progenitor cells112, as noted by Ulirsch et al. We capture this cCRE-gene link for 

EH38E2124446 in SCREEN. 

 

The third example involves an SNP (rs2742624) that was identified by integrative analysis of 

genomic data (DNase-seq, ChIP-seq of H3K27ac and transcription factors, and expression 

quantitative trait loci or eQTL) on the prostate cancer cell line LNCaP and subsequently validated 

by transient transfection and CRISPR/Cas9 deletion of a 168-bp region containing the SNP in the 

same cell line113. The CRISPR/Cas9 data revealed that rs2742624 modulated the expression of 

UPK3A, a gene 3,984 bp away113. SCREEN shows that rs2742624 overlaps EH38E2169396, a 

cCRE-ELS with the highest DNase Z-score in LNCaP cells (Supplementary Fig. 18a-c). There 

are no ENCODE H3K27ac ChIP-seq data on LNCaP, but this cCRE-ELS has a high H3K27ac 

signal in PC-3 and vCaP, two other prostate cancer cell lines. SCREEN further shows eQTL data 

linking EH38E2169396 to UPK3A in multiple tissues, including prostate (Supplementary Fig. 
18d), consistent with the CRISPR/Cas9 results of Jin et al.  UPK3A encodes uroplakin 3A, a group 

of transmembrane proteins that form a highly specialized biomembrane in terminally differentiated 

urothelial cells. Additional eQTL and Hi-C data in SCREEN link EH38E2169396 to two other 

genes FAM118A and FBLN1, providing ideas for additional experiments. Thus, SCREEN can 

https://paperpile.com/c/u8V0MG/NHeaL+gCALK
https://paperpile.com/c/u8V0MG/gCALK
https://paperpile.com/c/u8V0MG/gCALK
https://paperpile.com/c/u8V0MG/80CXu
https://paperpile.com/c/u8V0MG/lbtr9
https://paperpile.com/c/u8V0MG/71XHR
https://paperpile.com/c/u8V0MG/71XHR
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expedite the integrative analyses that prioritize SNPs for further experimental testing without 

requiring the user to write any computer programs. 

 

The fourth example examines a SNP (rs12740374) associated with 18 phenotypes (as a lead 

SNP for three phenotypes and in LD with a lead SNP for 15 phenotypes), including cholesterol 

levels, coronary diseases, and metabolite levels (Supplementary Table 23b). The SNP overlaps 

EH38E1374646, a cCRE-ELS with high epigenetic signals across many biosamples, including 

hepatocytes, brain tissue, intestinal tissue, and stem cells (63/136 H3K27ac and 209/462 DNase 

experiments, Supplementary Fig. 19a-c). Warren et al. demonstrated through iPSC 

differentiation and CRISPR/Cas9 assays that this region controls different genes depending on 

the tissue context114. SCREEN shows ChIA-PET interactions and eQTLs between this cCRE-ELS 

and multiple genes, including CELSR2, PSRC1, and SORT1, corroborating previous results of 

functional testing (Supplementary Fig. 19d).  

 

In our final example, SNP rs13025591 has been reported by two studies to be associated with 

schizophrenia (p = 8E-8 and 6E-6)115,116. rs13025591 does not lie within a cCRE; however, it is 

located in an LD block that contains three other SNPs and six cCREs (Supplementary Fig. 20a) 

in three introns of the AGAP1 gene, which is highly expressed in neurospheres, spinal cord, and 

mouse fetal brain regions (Supplementary Fig. 20b). The SNPs in this LD block are associated 

with cognitive and neural phenotypes, including educational attainment, cognitive performance, 

anxiety disorder, and schizophrenia99,100. An adjacent cCRE (EH38E2086160) has high H3K27ac 

signals in neuronal cells and high DNase signals in fetal brain tissues and eye, but less so in other 

tissues, and they displayed signatures of candidate enhancers in neural cells (Supplementary 
Fig. 20a, with mini-peaks displayed by the Signal Profile tool of SCREEN). The signal strength of 

the DHSs in the brain appears to decline with fetal age. We then turned to the orthologous Agap1 

locus in mouse, which has three cCREs defined in the brain (Supplementary Fig. 20c), for a 

systematic study of the variation of signal strength with fetal age. Across 12 tissues at eight 

timepoints of fetal development, one of the mouse cCREs-dELS, EM10E0042440, has the highest 

H3K27ac signals in brain regions (Supplementary Fig. 20d), and the mouse Agap1 gene is 

predominantly expressed in fetal brain tissues (Supplementary Fig. 20e). EM10E0042440’s 

H3K27ac signals in the forebrain, midbrain, and hindbrain increased over time, reaching a 

maximum on e13.5. Then, similar to the homologous human cCRE, H3K27ac signals at the 

mouse cCRE decreased after e13.5 through birth (Supplementary Fig. 20f). These results 

suggest that this cCRE is active during a narrow window of brain development. We tested this 

https://paperpile.com/c/u8V0MG/1hp2u
https://paperpile.com/c/u8V0MG/VmYYw+51Krr
https://paperpile.com/c/u8V0MG/8sK93+s8ndG
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cCRE-dELS using e12.5 transgenic mouse assays and found that it showed enhancer activity 

exclusively in the central nervous system (Supplementary Fig. 20g). 

 

These five examples illustrate that the Registry of cCREs can aid the exploration of diverse 

biochemical data in hundreds of human and mouse biosamples and facilitate the generation of 

scientific hypotheses to guide further experimentation. The last example highlights the particular 

strength of the Registry in its inclusion of both human and mouse cCREs and the definition of 

homologous cCREs between these two species. ENCODE has extensive data on mouse tissues 

during fetal development; this is particularly valuable because human developmental tissues are 

impractical to obtain. Thus the homologous mouse cCREs can complement the human cCREs in 

applications, such as interpreting GWAS variants associated with developmental diseases, 

especially those that affect the brain. SCREEN enables users to identify the biosamples that are 

likely implicated in diseases, explore possible mechanisms by which cCREs and SNPs may cause 

the disease, and prioritize new SNPs and identify novel disease-linked regions for further testing. 

These examples place the Registry and SCREEN in the greater context of ENCODE data and 

illustrate the utility of the ENCODE resource for studying mammalian biology. 
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Supplementary Methods 
  

Analysis to support the choice of DNase, H3K4me3, and H3K27ac signals for 
defining cCREs 
Testing single features for predicting VISTA enhancers 

We downloaded all regions from the VISTA Enhancer database in November 2015. Merging 

overlapping regions yielded 1,994 unique regions. Because we had histone mark ChIP-seq, 

DNase-seq, and RNA-seq data for the hindbrain, limb, midbrain, and neural tube at embryonic 

day 11.5, we used the VISTA regions active in these four tissues at e11.5 for testing the epigenetic 

signals. There were 301, 271, 193, and 228 active regions in the midbrain, hindbrain, neural tube, 

and limb, respectively (Supplementary Table 12). To aid the clarity of our description, we use 

VISTA regions to include both positive and negative regions and VISTA enhancers to mean only 

those positive regions. 

  

We first determined the best method for anchoring enhancer predictions, i.e., whether to center 

the genomic regions on DNase hypersensitive sites (DHSs), H3K27ac peaks, H3K9ac peaks, 

H3K4me3 peaks, H3K4me2 peaks, or H3K4me1 peaks as predicted enhancers, ranked by their 

corresponding signals. We did not test H3K36me3, H3K27me3, H3K9me3, or DNA methylation 

for anchoring enhancer predictions because these signals are too diffuse. Because DHSs and 

histone mark peaks have different widths, we standardized comparisons by resizing all peaks to 

the same width of 300 base pairs, centered on the midpoint of DHSs or the summit of histone 

peaks (the position in the peak with the highest ChIP signal), and used these 300-bp regions as 

enhancer predictions. 

  

We intersected predicted enhancers anchored on DHSs or histone mark peaks with all VISTA 

regions. If a VISTA region overlapped a predicted enhancer by at least 1 bp, we assigned the 

region the score of the DHS or ChIP-seq peak, i.e., its average signal across the DHS or peak. If 

a VISTA region overlapped multiple DHSs or peaks, we assigned it the maximal score of the 

overlapping DHSs or peaks. If a VISTA region did not overlap any DHSs or peaks, we assigned 

it a minimal score of 0. To evaluate the performance of each method, we calculated the area 

under the Precision-Recall curve (AUPR). Precision is defined as the percentage of predictions 

that are true positives (i.e., active VISTA regions in a tissue). Recall, which is the same as 

sensitivity, is the percentage of true positives that are predicted as positives. To plot a PR curve, 

we first ranked all VISTA regions (1,994 regions in total) from the highest score to the lowest 
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score. We then stepped down this ranked list and computed the precision and recall for the VISTA 

regions above each rank and drew this pair of precision-recall values on the graph. The beginning 

of a PR curve can be spiky because only the top few predictions are included in the precision and 

recall calculations. Because not all VISTA enhancers overlap a DHS or a histone mark peak (nor 

are they expected to overlap based on the diverse ways that VISTA elements have been selected 

over time), the PR curves stop at various positions before they reach the 100% recall. The area 

under a PR curve is computed until its stopping point. 

  

Averaged over the four tissues, DHSs performed the best as the anchor for enhancer predictions, 

followed by H3K27ac peaks as the second-best choice as the anchor (Supplementary Fig. 1a, 
Supplementary Table 13a). Another reason that DHSs are a better choice than H3K27ac for 

anchoring enhancer predictions is that there are more DHSs than H3K27ac peaks called for each 

tissue. 

  

We then tested different metrics for ranking all 300-bp regions anchored on DHSs: DNase signal 

(averaged over the ± 250 bp window centered on the DHS mid-point), each of the aforementioned 

eight types of histone marks (averaged over the ± 1 kb window centered on a DHS mid-point or 

centered on the summit of a ChIP-seq summit), and DNA methylation (averaged over the ± 1 kb 

window centered on a DHS mid-point or centered on the summit of a ChIP-seq summit). Again, 

the DNase signal was better than the H3K27ac signal (average AUPR = 0.38 and 0.34, 

respectively), and they were far better than the other epigenetic signals (Supplementary Table 
13b). We further tested the average rank of DNase and each of the other nine epigenetic signals, 

i.e., we obtained the rank of DNase signal and the rank of another epigenetic signal for each 300-

bp window anchored on a DHS and then averaged the two ranks and used the average rank as 

the metric. Averaged over the four tissues, the best performing metric was the average rank of 

H3K27ac and DNase signals (Supplementary Fig. 1b, Supplementary Table 13b). 

 

Prediction of expression levels using TSS-proximal DNase and histone mark signals 

To test methods of promoter prediction, we used transcript expression values from the ENCODE 

RNA-seq uniform processing pipeline. We computed Pearson correlations between the ranks of 

TSS-proximal (± 2 kb) DHSs or H3K4me3 peaks (by DNase signal or H3K4me3 signal) and the 

ranks of the expression levels of nearby transcripts (Supplementary Fig. 1c, Supplementary 
Table 14). We tested all four combinations of ranking schemes (DHSs ranked by DNase signal, 

H3K4me3 peaks ranked by DNase signal, DHSs ranked by H3K4me3 signal, and H3K4me3 
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peaks ranked by H3K4me3 signal) for mouse tissues (e11.5) and human cell lines GM127878, 

K562, and HepG2. The method with the highest correlation was anchoring predictions on DHSs 

and ranking by the H3K4me3 signal. 

  

Identification and classification of cCREs 
DNase-seq data curation 

We used all DNase-seq datasets (defined as individual replicates of DNase-seq experiments) 

available on the ENCODE portal as of September 1, 2018, with SPOT scores > 0.3 

(Supplementary Table 9c, h). For each dataset, we specifically downloaded from the ENCODE 

Portal "enrichment" files, which were bed files containing HOTSPOT false discovery rate (FDR) 

scores across all positions in the entire human or mouse genome. 

  

Calling DNase peaks 

For each DNase-seq enrichment file, we called peaks using an iterative thresholding method. We 

used this iterative peak calling method because deeply sequenced datasets globally have more 

significant FDRs and, as a result, calling peaks at one FDR threshold would lead to wider peaks 

in more deeply sequenced datasets. Starting with an FDR of 1E-2, we filtered out positions in the 

enrichment files that were above this significance cutoff. Using bedtools merge117, we then 

merged adjacent regions to create DNase-peaks. We discarded all regions shorter than 50 bp. 

We repeated the process 4940 times, each time making the FDR more stringent by a factor of 10 

(i.e., 1E-3, 1E-4, 1E-5, etc.) until we reached 1E-4942, the computational limit for long doubles. 

Once we called peaks at these 4940 thresholds, we combined peaks as follows. Starting at 1E-

2, we retained all peaks between 50 bp and 350 bp. Then at the next threshold (1E-3), we retained 

all peaks between 50 and 350 bp that did not overlap any of the previously retained peaks. We 

repeated this process until the 1E-4942 threshold, resulting in a list of unique DNase peaks 

between 50 bp and 350 bp in width. 

  
Filtering DNase peaks 

For each DNase-seq dataset, we calculated the average DNase signal (sequence-depth 

normalized as the number of reads per one million total reads, or RPM) across the positions in 

each peak. We then retained all DNase peaks that were: (i) between 150 and 350 bp in width, (ii) 

had an FDR below 1E-3, (iii) had a signal higher than the 10th percentile among the peaks in all 

DNase-seq datasets in each species. This 10th percentile (0.1508 RPM for GRCh38 and 0.1454 

https://paperpile.com/c/u8V0MG/oT4PJ
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RPM for mm10) was calculated from 100,000 randomly selected DNase peaks. After this filtering, 

we retained 65 million (70.5%) GRCh38 and 13 million (66.5%) mm10 peaks. 

  

Merging DNase peaks to define rDHSs 

Using bedtools merge117, we clustered DNase peaks across all DNase-seq experiments. For each 

cluster of DNase peaks, we selected the peak with the highest signal (normalized by sequencing 

depth of the respective sample) as the representative DNase hypersensitive site (rDHS) for the 

cluster. All DNase peaks that overlapped with this rDHS by at least one bp were considered as 

being already represented by the rDHS and removed from future rounds of clustering. We then 

repeated the clustering using the remaining DNase peaks, once again identifying the peak with 

the highest signal as the rDHS to represent each cluster and removing all the overlapping DNase 

peaks. We repeated this process until it finally resulted in a list of non-overlapping rDHSs 

representing all DNase peaks in all samples, totaling 2.27 and 1.23 million rDHSs in human 

(GRCh38) and mouse (mm10), respectively. 

  

Further filtering of rDHSs by comparing with cDHSs 

To reduce the number of false positives, we performed one last filtering step using a list of 

independently derived consensus DHSs (cDHSs) generated by the Stamatoyannopoulos 

laboratory. Using bedtools intersect117, we intersect the list of rDHSs and the list of cDHSs. We 

retained rDHSs if they met the following criteria: (i) contained an entire cDHS, (ii) overlapped a 

cDHS by at least 135 bp, or (iii) overlapped a cDHS by at least 1 bp and was at the 90th percentile 

for DNase signal. Both the 135 bp cutoff and the 90th percentile signal cutoff were determined by 

identifying the inflection points on overlap curves. This filtering results in 2.2 million (97%) 

GRCh38 and 1.2 million (97%) mm10 rDHSs. 

  

Assigning cCREs to Tiers 

Once we completed the cell type-agnostic state and group classifications of cCREs (Methods, 

Box 1, Supplementary Fig. 2), we had the pertinent mark for each cCRE in each biosample (i.e., 

H4K3me3 for PLS and DNase-H3K4me3, H3K27ac for ELS, and CTCF for CTCF-only cCREs), 

for concordancy testing and Tier classification. To perform the concordancy test, we examined 

whether the high DNase signal and the high signal of the pertinent mark of each cCRE were 

concordantly from the same biosample, taking into account missing data in those biosamples not 

completely covered by the four core assays. 

  

https://paperpile.com/c/u8V0MG/oT4PJ
https://paperpile.com/c/u8V0MG/oT4PJ
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We use a cCRE with a cell type-agnostic group classification of PLS to illustrate the steps of the 

contingency test—the pertinent signal for this cCRE would be H3K4me3. If this cCRE has a high 

DNase signal and a high H3K4me3 signal from the same biosample, then it passes the 

concordancy test and is deemed a Tier 1 cCRE. There may be multiple biosamples in which this 

cCRE has high signals for both DNase and H3K4me3. If at least one of the biosamples is covered 

by all four core assays, then this cCRE is in Tier 1a (Supplementary Fig. 3a-c); otherwise, it is 

in Tier 1b. Alternatively, if the high DNase signal and a high H3K4me3 signal for this cCRE are 

never in the same biosample, there may be multiple reasons. The concordancy test cannot be 

performed on the cCRE if all the biosamples in which it has a high DNase signal do not have 

H3K4me3 ChIP-seq data and all the biosamples in which it has a high H4K3me3 signal do not 

have DNase-seq data; the reason is missing data, and the cCRE is classified as Tier 2. Another 

scenario is that the concordancy test could be performed on the cCRE, and it failed for some 

biosamples but could not be performed in other biosamples due to missing data. For example, if 

the cCRE has a high DNase signal and a low H3K4me3 signal in all of the biosamples with both 

DNase-seq and H3K4me3 ChIP-seq data, and furthermore, the cCRE has a high H3K4me3 signal 

in other biosamples with H3K4me3 ChIP-seq data but no DNase-seq data, then the cCRE failed 

the concordancy test for the former set of biosamples but could not be tested for the latter set of 

samples. Such cCREs are classified as Tier 3. If the missing DNase-seq assay can be performed 

on the latter set of samples in the future and the cCRE gets a high DNase score, then the cCRE 

would be reclassified as a Tier 1 cCRE. 

  

The above cCRE-PLS example can be extended to other cCRE groups. To facilitate the 

enumeration of all possible scenarios of missing data, we grouped biosamples into four types 

(Supplementary Fig. 5): Type A samples were covered by all four assays, Type B samples had 

data from DNase-seq and at least one of the ChIP-seq assays, Type C samples only had ChIP-

seq data, and Type D samples only had DNase-seq data. Tier 1a and 1b cCREs can only be from 

Type A or Type B samples, respectively (Supplementary Fig. 5). Tier 2 cCREs come from a 

combination of a Type C biosample with a Type D or B biosample, and all possible combinations 

of biosample types are illustrated in Supplementary Fig. 5. 

  

To compare group classification between different biosamples, we extracted cell type-specific 

cCREs for biosamples with all four core assays (25 for human and 15 for mouse). For the three 

cell type-agnostic groups PLS, pELS, and dELS, we calculated the percentage of cCREs that 

were classified in a different group in at least one biosample. For example, we selected all cell 
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type-agnostic cCREs-PLS, then looked at their classifications across the 25 human biosamples. 

If they were only ever classified as PLS, DNase-only, or low-DNase, they were assigned to the 

red majority group. If they were ever classified as pELS, even in just one of the 25 biosamples, 

they were assigned to the orange pELS group. cCREs that switch to multiple groups in different 

biosamples were denoted in black, e.g., a cell type-agnostic PLS that became pELS in one 

biosample and CTCF-only in another biosample. To visualize this group switching, we selected 

two cCREs-ELS that switch between DNase-H3K4me3 and ELS (Extended Data Fig. 1c) and 

between ELS and CTCF-only (Extended Data Fig. 1d).  

 

Total genomic coverage of cCREs 
To determine the genomic coverage of GRCh38 and mm10 cCREs (Supplementary Fig. 2c, h), 

we first calculated the total number of basepairs occupied by each group of cCREs, then divided 

it by the respective mappable genome. We defined the GRCh38 and mm10 mappable genomes 

as follows. For GRCh38, we calculated the total length of the genome using chromosomes from 

http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/hg38.chrom.sizes (3,209,458,105 bp) 

and then subtracted out "blacklisted regions" as defined in 

"wgEncodeDacMapabilityConsensusExcludable.bed" (in ENCFF163ZHO), resulting in a 

mappable genome size of 3,209,441,065 bp. For mm10, we calculated the total length of the 

genome using chromosomes from https://hgdownload-

test.gi.ucsc.edu/goldenPath/mm10/bigZips/mm10.chrom.sizes (2,730,871,774 bp) and then 

subtracted out blacklisted regions in "mm10.blacklist.bed" (in ENCSR681OIW), resulting in a 

mappable genome size of 2,730,790,314 bp. 

 

Contributions from ENCODE Phases II and III and Roadmap to rDHSs and cCREs 
To estimate the contributions of ENCODE and Roadmap data for making rDHSs, we randomly 

sub-sampled DNase datasets and counted the number of resulting rDHSs (Supplementary Fig. 
6a). Specifically, we randomly selected n biosamples, where n is between 25–525 in bins of 25. 

We then selected all corresponding DHSs for these biosamples (including their biological 

replicates) and calculated the number of resulting rDHSs using the rDHS selection pipeline 

described above. We performed the selection for 100 times for each bin. We also calculated the 

number of resulting rDHSs using ENCODE Phase II DNase-seq data only, Roadmap DNase-seq 

data only, and ENCODE Phase II plus Roadmap DNase-seq data (dots in Supplementary Fig. 
6a). Furthermore, we partitioned the cCREs that resulted from each consortium (Supplementary 
Fig. 6b) by biosample type (Supplementary Fig. 6c). 

http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/hg38.chrom.sizes
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/hg38.chrom.sizes
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/hg38.chrom.sizes
http://hgdownload-test.cse.ucsc.edu/goldenPath/mm10/bigZips/http:/hgdownload-test.cse.ucsc.edu/goldenPath/mm10/bigZips/
https://hgdownload-test.gi.ucsc.edu/goldenPath/mm10/bigZips/mm10.chrom.sizes
https://hgdownload-test.gi.ucsc.edu/goldenPath/mm10/bigZips/mm10.chrom.sizes
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cCRE coverage of H3K4me3, H3K27ac, and CTCF ChIP-seq peaks in biosamples 
without DNase-seq data 
To determine the comprehensiveness of the Registry, we overlapped cCREs with ChIP-seq peaks 

(H3K4me3, H3K27ac, and CTCF) from biosamples lacking DNase data (Supplementary Fig. 7). 

Using bedtools merge117, we merged all ChIP-seq peaks within 200 bp of one another and 

assigned each merged peak the maximal -log(FDR) score of the contributing peaks. We then 

filtered out all peaks with -log10(FDR) < 2. Using bedtools intersect117 with the "-u" flag, we 

intersected the merged peaks with cCREs and counted the number of unique peaks that 

overlapped at least one cCRE. To test if the low overlap for a ChIP-seq dataset was linked with 

lower quality peaks, we plotted the percent overlap with cCREs vs. the average peak -log10(FDR) 

for each ChIP-seq experiment. 

  

Overlap of cCREs with ChromHMM states 

We compared cCREs to the chromatin states called by ChromHMM in both human29 and mouse84. 

For human, we analyzed the ChromHMM regions for GM12878 cells (ENCFF001TDH) and lifted 

the GRCh38 cCREs down to the hg19 genome. For mouse, we analyzed 15 combinations of 

tissue and developmental time points (e11.5 and e14.5) for which we had DNase, H3K4me3, and 

H3K27ac data. We overlapped PLS, pELS, dELS, and DNase-H3K4me3 cCREs with ChromHMM 

states derived from eight histone marks in the same tissue at the same time point. 

  

We combined similar ChromHMM states in human to generate seven broad states: active 

promoter (state 1) and weak promoter (state 2) are combined into TSS; poised promoter (state 3) 

corresponds to TSS bivalent; strong enhancer (states 4 and 5) are combined into high-signal 

enhancer; weak enhancer (states 6 and 7) are combined into low-signal enhancer; insulator (state 

8) corresponds to insulator; transcription transition (state 9), transcription elongation (state 10), 

and weak transcription (state 11) are combined into transcription; repressed (state 12), 

heterochromatin low (state 13), repetitive/CNV (state 14; CNV: copy number variation), and 

repetitive/CNV (state 15) are combined into repressed. For the mouse, we combined similar 

ChromHMM states in human to generate six broad states: active TSS (TssA) and flanking TSS 

states (TssAFlnk1 and TssAFlnk2) are combined into TSS; TSS bivalent (TSSBiv) corresponds 

to TSS bivalent; enhancer (Enh) and weak enhancers (EnhWk1 and EnhWk2) are combined into 

high-signal enhancer; poised enhancers (EnhPois1 and EnhPois2) are combined into low-signal 

https://paperpile.com/c/u8V0MG/oT4PJ
https://paperpile.com/c/u8V0MG/oT4PJ
https://paperpile.com/c/u8V0MG/3XT3e
https://paperpile.com/c/u8V0MG/cyGPf
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enhancer; transcription and weak transcription (Tx1, Tx2, and TxWk) are combined into 

transcription; heterochromatin and quiescent states (HetFac, HetCons, Quies) are combined into 

repressed. 

  

To determine the ChromHMM states of cCREs, we intersected each cCRE with all ChromHMM 

states using bedtools117 and selected the state that overlapped the largest number of base pairs; 

i.e., each cCRE was assigned to its majority ChromHMM state. We overlapped the GM12878 

cCREs with the ChromHMM states calculated the majority state for each cCRE (Supplementary 
Fig. 8a). For cCRE-pELS, we observed an enrichment in the ChromHMM TSS state. To test 

whether this enrichment was caused by the low spatial resolution of the ChromHMM TSS state, 

we plotted the percentage of pELS that fell into each ChromHMM state as a function of distance 

from the nearest transcription start sites (TSSs) annotated by GENCODE (Supplementary Fig. 
8b). We also calculated the percentage of each mouse cCRE with the ChromHMM states 

annotated in the same tissue and time point (Supplementary Fig. 8c). 

  

For both human and mouse, we also performed the complementary analysis where we analyzed 

what percentage of each ChromHMM state overlapped a cCRE. We analyzed the overlap in two 

ways. First, we calculated the percentage of individual chromHMM states that overlapped a 

cCRE. Second, we looked at the total percentage of base pairs in each state that overlapped 

cCREs active in the biosample. The results are tabulated separately (Supplementary Table 16). 

  

Comparison of cCREs with FANTOM enhancers 
To compare cCREs-ELS with enhancer annotations of the FANTOM consortium, we downloaded 

the set of 65,423 permissive human FANTOM5 enhancers 

(http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/human_permissive_enhancers_pha

se_1_and_2.bed.gz), which we lifted up to the GRCh38 genome using UCSC liftOver (N=65,407). 

We then intersected the FANTOM enhancers with cCREs-dELS using bedtools intersect117 with 

default parameters. We plotted histograms of DNase, H3K4me3, H3K27ac, H3K4me1, and Pol II 

max-Z signal between cCREs-ELS that overlap FANTOM enhancers, and those that did not 

(Supplementary Fig. 9a-e). 

  

To compare against a wider set of FANTOM annotations, we downloaded a set of 473,134 TSS 

annotations from the FANTOM CAGE associated transcriptome (CAT) project 

https://paperpile.com/c/u8V0MG/oT4PJ
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/human_permissive_enhancers_phase_1_and_2.bed.gz
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/human_permissive_enhancers_phase_1_and_2.bed.gz
https://paperpile.com/c/u8V0MG/oT4PJ


 38 

(http://fantom.gsc.riken.jp/5/suppl/Hon_et_al_2016/data/assembly/lv3_robust/FANTOM_CAT.lv

3_robust.info_table.ID_mapping.tsv.gz). Because of the single-nucleotide resolution of these 

FANTOM TSSs, we lifted the GRCh38 cCREs down to the hg19 genome before applying bedtools 

intersect117 (default parameters). Of the FANTOM TSSs that overlapped cCREs, we calculated 

the percentage that overlapped PLS, pELS, or dELS stratified by the RNA annotation (11 types) 

provided by FANTOM CAT project (Supplementary Fig. 9f). 
 

Evolutionary conservation of cCREs 
For average conservation score analysis on each set of cCREs (Extended Data Fig. 2b, 

Supplementary Fig. 10b, c), we calculated the average evolutionary conservation (calculated 

from the phyloP69 score per genomic position from the alignment of 100 vertebrate genomes 

http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP100way/hg38.phyloP100way.bw), for 

cCREs by the group in the ± 250 bp window from the center of each cCRE. We analyzed 

conservation stratifying by cCRE group, homology with the mouse genome, and overlap with 

CAGE peaks (Supplementary Fig. 10c). For the analysis of ranked overlap with GERP++ 

regions (Supplementary Fig. 10a), we binned PLS, pELS, dELS, and CTCF-only cCREs by their 

DNase max-Z values (at a 0.1 interval). We then calculated the total number of bases in each bin 

of cCREs that overlapped a GERP++ region85 as defined in 

http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_elements.tar.gz lifted up to 

the GRCh38 genome using UCSC liftOver70. 

 

Homologous human and mouse cCREs 
Using UCSC's liftOver tool with a minimum match score of 0.5, we lifted GRCh38 cCREs to the 

mm10 genome (GRCh38-mm10 cCREs) and mm10 cCREs to the GRCh38 genome (mm10-

GRCh38 cCREs) (Extended Data Fig. 2c). We labeled cCREs that did not map to the other 

genome as "No homology". For the cCREs that did map, we intersected them with cCREs in the 

other species (i.e., GRCh38-mm10 cCREs with mm10 cCREs and mm10-GRCh38 cCREs with 

GRCh38 cCREs) using bedtools intersect117. Those cCRE pairs that mapped to the other genome 

and intersected reciprocally (in both from human to mouse and from mouse to human directions) 

were labeled "Homology and cCRE". cCREs that lifted over but did not map to cCREs in the other 

species reciprocally were labeled "Homology only". 

  

http://fantom.gsc.riken.jp/5/suppl/Hon_et_al_2016/data/assembly/lv3_robust/FANTOM_CAT.lv3_robust.info_table.ID_mapping.tsv.gz
http://fantom.gsc.riken.jp/5/suppl/Hon_et_al_2016/data/assembly/lv3_robust/FANTOM_CAT.lv3_robust.info_table.ID_mapping.tsv.gz
https://paperpile.com/c/u8V0MG/oT4PJ
https://paperpile.com/c/u8V0MG/TVssf
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP100way/hg38.phyloP100way.bw
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP100way/hg38.phyloP100way.bw
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP100way/hg38.phyloP100way.bw
https://paperpile.com/c/u8V0MG/E9OxT
http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_elements.tar.gz
http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_elements.tar.gz
http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_elements.tar.gz
https://paperpile.com/c/u8V0MG/fmWeo
https://paperpile.com/c/u8V0MG/oT4PJ
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Repeat and transposon contents of cCREs 
Annotations of repetitive elements were downloaded from UCSC Genome Browser (human: hg38 

rmsk.txt; mouse: mm10 rmsk.txt). We considered all retrotransposons, transposons with long-

terminal repeats (LTRs), short interspersed elements (SINEs), long interspersed elements 

(LINEs), and non-transposon repeats. We overlapped these transposons and repeats that were 

not within the blacklist regions with all cCREs by the group (PLS, pELS, dELS, DNase-H3K4me3, 

and CTCF-only, respectively), and tallied the total overlapping base pairs (Supplementary Table 
17). P-values were estimated using Chi-squared tests with 1,000 base pairs counted as one 

observation. 

  

Transcription factor support for the group classification of cCREs 
For cCREs defined in GM12878, we calculated their average RNA Polymerase II 

(ENCFF600UCV), EP300 (ENCFF977NLF), and RAD21 (ENCFF916YVI) ChIP-seq signals using 

UCSC's bigWigAverageOverBed. We plotted the average ChIP-seq signal levels at cCREs 

stratified by their group classifications (Extended Data Fig. 2d). 

 
Overlapping of cCREs with transcription factor ChIP-seq peaks 
We downloaded IDR conservative peaks from the ENCODE portal for ChIP-seq experiments of 

chromatin-associated proteins (most of them were transcription factors). For each experiment, we 

intersected the ChIP-seq peaks with cell type-agnostic cCREs using the bedtools intersect 

function117 and calculated the percentage of ChIP-seq peaks that overlapped at least one cCRE 

(Extended Data Fig. 3b, Supplementary Table 18). For ChIP-seq experiments in GM12878, 

HepG2, and K562, we also calculated the overlap of ChIP-seq peaks with all high-DNase groups 

of cCREs defined in the corresponding cell type (Supplementary Fig. 11a-d). 

  

We analyzed the extent that cCREs overlapped the ChIP-seq peaks of chromatin-associated 

proteins stratified by the number of bound proteins using ChIP-seq data from GM12878, K562, 

and HepG2 (Supplementary Fig. 11c). We performed the analysis in each of the cell types 

separately and excluded RNA Pol II and elongation factors from the analysis. We first merged the 

narrow peaks of all chromatin-associated proteins that passed the irreproducibility discovery rate 

(IDR) test using the “merge” function from bedtools117 with a minimum of 1 bp overlap. We filtered 

out the resulting merged peaks that were greater than 2 kb from the downstream analysis. For 

the remaining merged peaks, we counted the number of proteins bound per peak and determined 

https://paperpile.com/c/u8V0MG/oT4PJ
https://paperpile.com/c/u8V0MG/oT4PJ
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the percentage of peaks that overlapped with cell type-agnostic cCREs as well as with the cCREs 

defined in the corresponding cell type, using bedtools intersect117. 

  

For the cCRE-centric analysis (Supplementary Fig. 11d), we intersected HepG2 cCREs with 

HepG2 ChIP-seq peaks. To ensure a 1:1 correspondence between ChIP-seq peak and cCREs, 

we performed the intersection using the summit position in each ChIP-seq peak (the position with 

the highest ChIP signal). For each cCRE group, we calculated the number of overlapping ChIP-

seq summits. 

 

Bidirectional transcription at cCREs 
We downloaded BigWig signal files from GEO for GRO-seq in GM12878 (GEO accession 

GSM1480326) and PRO-seq in CD4+ T cells (GEO accession GSM1613181) for the plus and 

minus strands. For each cell type, we selected active cCREs-PLS (n=20,113 for GM12878 and 

n=17,119 for CD4+ T-cell) and cCREs-dELS (DNase Z-score >1.64, n=34,041 for GM12878 and 

n=30,023 for CD4+ T-cell). We grouped cCREs-PLS according to the genomic strand on which 

the nearest TSS resides. For each cCRE, we computed GRO-seq and PRO-seq signal density 

2kb upstream to 2kb downstream of the cCRE center in non-overlapping 25-bp bins on each 

strand. The signal values for each bin were then averaged across all cCREs-PLS and cCREs-

dELS and plotted using spline interpolation (Supplementary Fig. 12a-d). 

  

To compare cell type-specific transcription profiles, we further divided the above cCREs-PLS and 

cCREs-dELS into three groups: those defined in GM12878 but not CD4+ T-cells (PLS n = 991; 

dELS n= 19,230), those defined in CD4+ T-cell but not GM12878 (PLS n=3,974, dELS n=16,867), 

and those defined in both GM12878 and CD4+ T-cell (PLS n=16,118, ELS n=9,319). We plotted 

the number of cCREs in each group that had >0 signal on both, only plus, only minus, or neither 

strand (Supplementary Fig. 12e-f). 
  

Gene expression 
For the cCRE-centric analysis (Supplementary Fig. 11e) we downloaded gene expression 

quantifications derived from RNA-seq data for cardiac muscle cells (ENCFF873UHA, 

ENCFF309DAN), hepatocytes (ENCFF072XSA, ENCFF491FPY), and neural progenitor cells 

(ENCFF663ARH, ENCFF672VVX). For each gene, we determined if at least one of its transcripts 

(GENCODE V24 annotations) overlapped a cell type-specific cCRE and, if so, which group. We 

then stratified gene expression (averaged between the two replicates, in transcripts per million, 

https://paperpile.com/c/u8V0MG/oT4PJ
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or TPM) by cCRE group: PLS, other high-DNase groups (pELS, dELS, CTCF-only, and DNase-

only), low-DNase cCRE, or no cCRE. We performed a Wilcoxon rank-sum test to determine 

statistical significance. 

  

For the gene-centric analysis (Supplementary Fig. 11f), we selected all genes with an average 

expression of TPM > 1 between the two replicates for the same cell types mentioned above. Of 

these genes, we calculated the percent of genes with at least one TSS that overlaps a cell type-

specific cCRE stratified by group classification. 

  

For the RAMPAGE analysis (Extended Data Fig. 3a), we calculated the percentage of cell type-

specific cCREs overlapping RAMPAGE peaks from the same cell type with >1 reads per million 

sequencing depth (RPM). We then calculated the median signal for the overlapping peaks and 

plotted it against the percent of cCREs overlapping. 

  

Enrichment of TSS-distal cCREs-ELS near tissue-specific genes 
Tissue specificity score118 of each gene was calculated across 66 mouse datasets, each 

corresponding to a particular tissue at a developmental time point. In each sample, tissue-specific 

and housekeeping genes were defined as the expressed genes (TPM ≥ 1) with top 1,000 and 

bottom 1,000 tissue specificity scores, respectively. For tissues with cCREs defined using DNase, 

H3K4me3, and H3K27ac data, we computed the percentage of tissue-specific genes or 

housekeeping genes that had active cCREs-ELS within 10 kb of their TSSs, with active cCREs-

pELS and cCREs-dELS defined for the corresponding sample (Supplementary Table 20). The 

p-values of enrichment or depletion were estimated by randomly selecting 1,000 expressed genes 

(TPM ≥ 1) in the corresponding sample 10,000 times. We plotted the percent of genes for each 

of the 23 biosamples with nearby cCREs-pELS and cCREs-dELS and performed a Wilcoxon 

signed-rank test to test for significance (Supplementary Fig. 11g). 

  

Clustering of biosamples by cCREs-dELS 
To compare the distal enhancer landscape between biosamples, we performed t-SNE clustering 

of human and mouse biosamples (Extended Data Fig. 4). We calculated the H3K27ac signal 

across all cCREs-dELS for human and mouse, respectively, using bigWigAverageOverBed. We 

then normalized these matrices by taking the log10 and using the standard scaling scikit learn 

package. We performed clustering analysis using the scikit learn t-SNE package with a perplexity 

https://paperpile.com/c/u8V0MG/vDVbZ
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of 10 for both human and mouse. We determined clusters using k-means clustering, selecting the 

optimal number of clusters through the elbow method (Supplementary Table 19). 

  

Differential gene expression analysis 
We downloaded gene expression quantification results from the ENCODE Portal 

(Supplementary Table 21). To compute differentially expressed genes between all possible pairs 

of tissues and time points (2,145 pairs in total for 66 RNA-seq samples), we ran DESeq2119 

(version 1.14.1 with an FDR cutoff < 0.01). 

  

Enrichment of GWAS variants in cCREs 
We curated GWAS from the NHGRI-EBI Catalogue as of January 1, 2019 (Supplementary Table 
23). We excluded studies performed on mixed populations and populations without LD information 

(N=29). Using the linkage disequilibrium (LD) values from HaploReg120, which were computed 

using data from the 1000 Genomes Project for the corresponding super population (African, Ad 

Mixed American, Asian, and European), we generated LD blocks containing all SNPs with r2 > 

0.7 and uploaded these SNPs to SCREEN for cCRE intersection. 

  

For studies with more than 25 lead SNPs, we performed biosample enrichment analysis. For each 

study, we generated a matching set of control SNPs as follows: for each SNP in the study (p-

value < 1.0E-6) we selected a SNP on Illumina and Affymetrix SNP chips that fell within the same 

population-specific minor allele frequency (MAF) quartile and the same distance to TSS quartile 

(9,553, 39,530, and 154,279 bp demarcate the first, second, and third quartile, respectively). We 

repeated this process 500 times, generating 500 random control SNPs for each GWAS SNP. 

Then, for both GWAS and control SNPs, we retrieved all SNPs in high linkage disequilibrium (LD 

r2 > 0.7), creating LD groups. 

  

To assess whether the cCREs in a biosample were enriched in the GWAS SNPs, we intersected 

GWAS and control LD groups with cCREs with an H3K27ac Z-score > 1.64 in the biosample. To 

avoid overcounting, we pruned the overlaps, counting each LD group once per biosample. We 

modified the Uncovering Enrichment through Simulation (UES) method121 by calculating p-values 

from Z-scores for performing statistical testing. We calculated enrichment for overlapping cCREs 

by comparing the GWAS LD groups with the 500 matched controls. Finally, we applied a FDR 

threshold of 5% to each study. 

https://paperpile.com/c/u8V0MG/EKKNX
https://paperpile.com/c/u8V0MG/yEYhD
https://paperpile.com/c/u8V0MG/obZ65
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Testing cCREs-dELS using transgenic mouse assays 
We used transgenic mouse assays to test a human genomic region that contains the cCRE 

EH38E2086160 that is in linkage disequilibrium with several SNPs associated with schizophrenia 

and other neural phenotypes (Supplementary Fig. 20a). The GRCh38 coordinates of the tested 

region are chr2:235,916,560-23,5918,287. The mouse transgenic assays are described in 

Methods. We obtained a positive result in brain tissues in ten out of ten e12.5 mouse embryos, 

three of which are shown in Supplementary Fig. 20g. 

 

Codebase at Github 
The scripts used to generate the Registry of cCREs and analyzing the cCREs are publicly 

available in the ENCODE Encyclopedia v4 GitHub repository at https://github.com/weng-

lab/ENCODE-cCREs/). The scripts for generating the cCREs themselves are found in the cCRE-

Pipeline directory; the cCRE-Analysis directory contains scripts for other analyses, e.g., peak 

intersection, ChromHMM overlap, cell type clustering, and saturation analysis. 

  

SCREEN 
In order to facilitate access to the Registry of cCREs, we have developed a web-based tool called 

SCREEN (Search Candidate Regulatory Elements by ENCODE), which allows users to search 

the ground level of the ENCODE Encyclopedia, the Registry of cCREs, and associated analyses 

such as GWAS enrichment. SCREEN also offers downloads of the complete human and mouse 

Registries of cCREs as well as downloads of subsets of cCREs active in cell types of interest. 

SCREEN is publicly available at http://screen.encodeproject.org and is compatible with all modern 

browsers and operating systems on both computers and mobile devices. 

  

SCREEN’s backend is implemented using a Postgres database, which allows for real-time 

searching of the hundreds of millions of annotations in the Encyclopedia by various criteria, 

including genomic coordinates and the IDs of associated annotations such as genes and SNPs. 

Users desiring programmatic access to the data may use SCREEN’s API, which uses the 

GraphQL framework; this allows advanced users to incorporate complex filtering logic into their 

queries. SCREEN’s user interface is implemented in JavaScript using the ReactJS framework, 

which has allowed us to implement interactive visualizations of a variety of data types contained 

within SCREEN, including snapshots of the signal profiles of regulatory elements, differential gene 

expression profiles across mouse developmental time points, and the genomic context of 

regulatory elements using a lightweight embedded genome browser. All these visualizations are 

https://github.com/weng-lab/ENCODE-cCREs/
https://github.com/weng-lab/ENCODE-cCREs/
https://github.com/weng-lab/ENCODE-cCREs/
http://screen.encodeproject.org/
http://screen.encodeproject.org/
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scalable vector graphics (SVG), which the user may download to share or use as figures. The 

downloaded plots may be imported into modern graphics programs, including Adobe Illustrator 

and Inkscape, for editing. 

  

The current version of cCREs for the human GRCh38 and mouse mm10 genome assemblies is 

v2.0, while v1.0 is also available for the hg19 assembly. As the cCRE Registry gets updated, all 

cCREs will link to previous versions of the Registry within SCREEN and at the ENCODE Portal. 

SCREEN also includes an automatically scheduled versioning script, which runs once per quarter 

and snapshots the data included in SCREEN’s ground level functionality at that moment. 

SCREEN’s main page offers a browseable view of past ground level versions, so a user publishing 

on ground level data may cite a permanent record of the input data used for analysis. 

  

Visualizing the ENCODE Encyclopedia via the UCSC genome browser 
We provide two ways for users to visualize the data contained in the ENCODE Encyclopedia 

using the UCSC Genome Browser. First, for viewing data related to a collection of cell types of 

interest, SCREEN provides UCSC buttons, which lead to a user-configured genome browser 

view. The user may select a subset of the cell types with at least one of the four core epigenomic 

data types, rearrange the cell type order as desired using the drag-drop feature, and then visualize 

the corresponding data in the selected order in the UCSC genome browser. Tracks selected this 

way contain signals of DNase-seq, H3K4me3 ChIP-seq, H3K27ac ChIP-seq, CTCF ChIP-seq 

signals, and RNA-seq signal, as well as cell type-specific classifications of cCREs. 

  

The cell-type-agnostic human and mouse cCREs are available as two default tracks at the UCSC 

genome browser. 

Human cCREs: http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38&g=encodeCcreCombined  

Mouse cCREs: http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=mm10&g=encodeCcreCombined  

 

For users wanting to visualize a larger set of the Encyclopedia’s data, we offer three UCSC 

trackhubs, available at https://screen.encodeproject.org/hubs/dna/hub.txt, 

https://screen.encodeproject.org/hubs/rna/hub.txt, and 

https://screen.encodeproject.org/hubs/integrative/hub.txt.  

 

The three hubs provide access to data from the Encyclopedia from DNA-based assays, RNA-

based assays, and data used to create and analyze the Registry of cCREs, respectively. Data 

http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38&g=encodeCcreCombined
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=mm10&g=encodeCcreCombined
http://encyclopedia.encodeproject.org/static/dnatrackhub/hub.txt
https://screen.encodeproject.org/hubs/dna/hub.txt
https://screen.encodeproject.org/hubs/rna/hub.txt
https://screen.encodeproject.org/hubs/rna/hub.txt
https://screen.encodeproject.org/hubs/rna/hub.txt
https://screen.encodeproject.org/hubs/integrative/hub.txt
https://screen.encodeproject.org/hubs/integrative/hub.txt
https://screen.encodeproject.org/hubs/integrative/hub.txt
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types available through the trackhubs include peaks and signals for ChIP-seq, DNase-seq, ATAC-

seq, and eCLIP; stranded signal, and transcription start site calls from RAMPAGE and CAGE; 

and stranded signal for RNA-seq. The cCRE hub provides cell type-agnostic and cell type-specific 

cCREs along with signal tracks for the core four marks, and RNA-seq and RAMPAGE where 

available. Both group and state classifications for cCREs are available. 

  

With several thousand experiments available to browse, we have configured several different 

groupings of experiment signal and peak files to ease users’ search for data of interest. Our 

primary grouping is by assay category (chromatin accessibility, histone modification, TF, etc.); 

these folders are then split by biosample types (tissue, cell lines, etc.) and tissue ontology to 

reduce the number of experiments on display. Each of these biosample type folders is then 

displayed in a 2D matrix, split on actual biosample. In addition, we also have files organized by 

biosample type first, then by actual biosample, and finally by assay. For assays such as ChIP-

seq and eCLIP where a particular protein is targeted by the assay, we also offer a scheme which 

groups experiments first by target, then by biosample. 

  

Companion website 
All figures, extended data figures, tables, extended data tables, and supplementary tables 

presented in this manuscript are available at the manuscript’s companion site, 

http://encyclopedia.encodeproject.org. Some figures and extended data figures are interactive on 

the companion site, providing links to examples of their reproduction on SCREEN and the UCSC 

Genome Browser. All tables on the companion site are sortable and searchable and may be 

downloaded in TSV format. The companion site also provides links to various resources related 

to SCREEN and the ENCODE portal, as well as other resources described in the paper. Please 

see the instructions on the companion site home page for more information. 
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Supplementary� Figure� 1� |� Testing�methods� for� predicting� VISTA� enhancers� and� gene� expression.� a, PR curves for predicting e11.5 midbrain, 
hindbrain, neural tube, and limb enhancers (1,994 regions evaluated in each plot). Colors indicate the epigenetic features whose peaks were used to 
anchor the enhancer predictions and whose signals were used to rank the predictions. b, Same as in a, except that all enhancer predictions were 
anchored on DHSs in the respective tissue. Predictions were still ranked by the signal levels of the respective epigenetic features indicated by colors as in 
a. Gray lines indicate the performance of the average rank of DNase and H3K27ac signals. c, Scatter plots depict correlation between predicted and
measured transcript expression (103,639 total transcripts) in e11.5 midbrain with the predictions being H3K4me3 peaks ranked by their H3K4me3 signals
(Pearson's correlation r = 0.59), H3K4me3 peaks ranked by their DNase signal (r = 0.19), DHSs ranked by their H3K4me3 signals (r = 0.76), and DHSs
ranked by their DNase signals (r = 0.45).
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Supplementary�Figure�2�|�Details�of�building�the�Registry�of�cCREs.�a,�Selection of human cCREs. We began by clustering DNase peaks that passed quality-control thresholds (false discovery rate < 0.1%, DNase signal > 
10th percentile) and selected a representative DHS (rDHS) for each cluster. We discarded the rDHSs that did not overlap consensus DHSs (see Supplementary Methods). Then, we selected rDHSs with high DNase max-Z 
scores and additionally high max-Z score for at least one other assay (H3K4me3, H3K27ac, or CTCF) and further filtered out those rDHSs for which high DNase and ChIP Z-scores were not from the same biosample with 
experimental data (see concordancy test in Supplementary Methods). In total, this resulted in 926,535 cCREs in human. b, Classification of cCREs into five cell type-agnostic groups (PLS, pELS, dELS, DNase-H3K4me3, or 
CTCF-only) based on their states of high or low H3K4me3, H3K27ac or CTCF max-Z scores and genomic context (TSS-overlapping, TSS-proximal, or TSS-distal). c, Percentages of the 3.2 billion mappable nucleotides of the 
GRCh38 genome occupied by the five groups of cCREs. d, Breakdown of cCREs by tiers (defined in Box 2 and Supplementary Methods). e, Breakdown of the five groups of cCREs by tiers. f-j, Selection and classification of 
mouse cCREs as for human in�a-e.
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Supplementary�Figure 3� |�Classification�of�cCREs� in�a�particular�biosample.�a, Classification of seven groups of cCREs (PLS, pELS, dELS, DNase-H3K4me3, CTCF-only, DNase-only, or Low DNase) in GM12878 by their states of high or low H3K4me3, 
H3K27ac, or CTCF Z-scores in GM12878. b, Number of each group of GM12878 cCREs. c, Full classification scheme for biosamples covered by all four core assays (H3K4me3, H3K27ac, CTCF, and DNase). d, Distribution of each group of cCREs across the 25 
human biosamples fully covered by the four assays. e, Partial classification scheme for biosamples with DNase data that lack one or more types of ChIP-seq data. f, In biosamples lacking DNase data, cCREs are not assigned to groups but rather classified as 
whether or not they have high ChIP-seq signals.
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Supplementary Figure�4�|�UCSC�Genome�Browser�views�of�cCREs�and�the�underlying�DNase�and�ChIP data. Three loci are shown—a,�SPI1�b,�NPAS4, and c,�HNF4A—which are active in B cells, bipolar spindle neurons, and hepatocytes, respectively, signified by a larger font for the corresponding biosample names. The cCREs classified in 
each biosample (PLS in red, pELS in orange, dELS in yellow, DNase-H3K4me3 in pink, CTCF-only in blue, DNase-only in green, and low DNase in gray) are shown above the signal profiles for the four core assays (DNase-seq in green, H3K4me3 ChIP-seq in red, H3K27ac ChIP-seq in yellow, and CTCF ChIP-seq in blue) in each of the three 
biosamples. In bipolar neurons, additional ChIP-seq data for NRSF are shown in GM12878 and HepG2 cells (black), suggesting NRSF binding at the DNase-only cCREs in B cells and hepatocytes.
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CTCF-only

Supplementary�Figure�5�|�Classification�of�cCREs�into�Tiers�based�on�biosample�support. Two large panels are shown, with the human left and mouse right. For each species, biosamples are classified based on whether they have data for the four core assays (colored squares indicate available data and white squares indicate missing data): all four assays (type A), DNase and one or two ChIP assays (type B), only ChIP data 
(type C) or only DNase data (type D). Numbers to the right of the four assay squares designate the number of biosamples with each combination of assay coverage by existing ENCODE and Roadmap data. All cCREs are classified into tiers with Tier 1a and 1b cCREs (defined using type A and B biosamples, respectively) supported by high DNase and high ChIP signals in the same biosample, while Tier 2 cCREs are supported by 
high signals in different biosamples as a result of incomplete assay coverage for type B, C, and D biosamples. A black dot in an assay square indicates a high signal for that assay and the lack of a black dot indicates a low signal. All possible combinations of assay coverage are shown, with those combinations not represented by current ENCODE data grayed out.
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Supplementary�Figure�6� |�Impact�of�ENCODE�Phase�III�data�on�the�Registry.�a, To estimate the coverage of the current Registry of 
human cCREs, we generated rDHSs by varying the number of biosamples, randomly selecting one hundred datasets each time. Violin 
plots represent all one hundred randomizations. The black dots indicate the number of rDHSs resulting from using only ENCODE phase II 
data, only Roadmap Epigenomics data, or only ENCODE phase II data and Roadmap Epigenomics data. Note that the Roadmap data 
point falls below the curve because the Roadmap Epigenomics project assayed tissues from multiple donors, resulting in a less diverse 
panel of biosamples than the ENCODE Project. b, Saturation curves for Tier 1 cCREs strati�ed by class. We randomly selected 
biosamples one hundred times and counted the number of unique cCREs. Because there are more biosamples with DNase and 
H3K4me3 data, the saturation curves continue farther along the x-axis for cCREs-PLS and DNase-H3K4me3 than cCREs-ELS or CTCF-
only. Violin plots represent all one hundred randomizations. c, Number of cCREs strati�ed by group that are identi�ed using only 
ENCODE Phase II data (light gray), using ENCODE Phase II and Roadmap data (dark gray), and using ENCODE Phase II, Roadmap, and 
ENCODE Phase III datasets (black). d, Number of cCREs in thousands identi�ed using only data from  primary cells (orange), tissues 
(red), or cell lines (dark blue) strati�ed by cCRE group. Percentage indicates the total number of cCREs of the group in the Venn diagram. 
The table indicates the number of experiments by assay for each biosample type.
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Supplementary�Figure�7�|�Coverage�of�the�current�Registry�of�cCREs.�a-c, Percentages of human H3K4me3 (N=218), H3K27ac (N=180) and CTCF (N=129) ChIP-seq peaks from biosamples without DNase data that are 
covered by human cCREs. d-f, Scatter plots of average -log(FDR) of peaks vs percent overlap for H3K4me3 (d), H3K27ac (e) and CTCF (f) ChIP-seq peaks. Cell types with peaks that had a lower average -log10(FDR) tended 
to have a lower percentage of peaks covered by cCREs. g-i, Percentages of mouse H3K4me3 (N=64), H3K27ac (N=55), and CTCF (N=18) ChIP-seq peaks from biosamples without DNase data that are covered by mouse 
cCREs. j-l, Scatter plots as described in (d-f) for mouse datasets.
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Supplementary�Figure�8�|�Overlap�of�cCREs�with�ChromHMM�states.�a, Percentages of various groups of GM12878 cCREs 

that overlap ChromHMM states. b, Percentage of GM12878 cCREs-pELS that overlap ChromHMM states ranked by distance 

from the nearest TSS. Due to ChromHMM's lower spatial resolution, cCREs-PLS that are closest to TSSs overlap promoter 

ChromHMM states while those farther away overlap enhancer states. c, Percentages of mouse cCREs that overlap ChromHMM 

states in the corresponding tissue. All combinations of tissues and timepoints with both DNase and histone modification data 

were included and the overlap was computed for data in the same tissue at the same time point.
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Supplementary� Figure� 9� |� Overlap� of� cCREs� with� FANTOM� enhancers� and� the� transcription� start� sites� of�
FANTOM� CAGE-associated� transcripts. Histograms of the Z-scores of cCREs intersecting FANTOM enhancers 
(colored) and not intersecting FANTOM enhancers (gray). Z-scores are plotted for a, DNase; b, H3K4me3; c, H3K27ac; 
d, H3K4me1; and e, Pol II. f, Percentages of the transcription start sites of FANTOM CAGE-associated transcripts in 
the eleven FANTOM-defined categories that overlap cCREs-PLS (red), cCREs-pELS (orange), or cCREs-dELS (yellow). 
The TSSs of the majority of coding-associated transcripts (protein coding mRNA and divergent lncRNAs) overlapped a 
cCRE-PLS, while the TSSs of the majority of eRNA-like non-coding RNAs (short ncRNAs, antisense lncRNAs, 
intergenic lncRNAs, sense intronic lncRNAs, and sense overlap RNAs) overlapped a cCRE-dELS.
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Supplementary�Figure�10�|�Conservation�of�human�cCREs.�a, The percentage of positions of PLS (red),  pELS (orange), dELS (yellow), DNase-
H3K4me3 (pink) and CTCF-only (blue) cCREs that overlap the GERP++ set of evolutionarily conserved regions binned by their DNase max-Z score. 
Bins with fewer than 20 cCREs are omitted. b, Average phyloP scores of human cCREs stratified by homology categories defined in Extended 
Data Fig. 2b. c, Average phyloP scores across human cCREs stratified by cCRE group and presence of a FANTOM CAGE peak. cCREs that 
overlap CAGE peaks are designated by black lines while cCREs that do not overlap CAGE peaks are designated by gray lines.
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Supplementary�Figure�11�|�Comparison�of�cCREs�with�the�ChIP-seq�peaks�of�chromatin-associated�proteins�and�RNA-seq�data. a, The vast majority of 

high-quality ChIP-seq peaks of chromatin-associated proteins overlap cell type-agnostic cCREs. The median overlap is 90% across all ChIP-seq experiments. 

b, The overlap remains high for ChIP-seq peaks with cCREs predicted to be active in the same cell type: median overlap is 78%, 84% and 74% in GM12878, 

HepG2, and K562 cells, respectively. c, Overlap of cell type-agnostic (�ll circles) and cell type-speci�c cCREs (open circles) with ChIP-seq peaks of chromatin-

associated proteins in GM12878 (green), HepG2 (red), and K562 (blue) strati�ed by the number of bound proteins per peak. d, Histograms depicting the 

number of ChIP-seq peak summits contained within each cCRE strati�ed by cCRE classi�cation in HepG2. e, Expression levels of four sets of genes classi�ed 

by whether their TSSs overlap a PLS (N=16,256, 15,767, and 16,491) other high-DNase cCRE (N=1,183, 2,003, and 938) low-DNase cCRE (N=10,280, 9,949, 

and 10,290) or no cCRE (N=32,835) in cardiac muscle cells, hepatocytes, and neural progenitors, respectively. Genes with TSSs that overlap cCREs-PLS are 

more highly expressed (pairwise two-sided Wilcoxon tests, p < 1E-20). Boxplots denote median and quartiles. f, Percent of expressed genes (TPM > 1) with 

TSSs that overlap each cCRE group in cardiac muscle cells, hepatocytes, and neural progenitor cells. g, Percent of the least tissue-speci�c (dark gray) and the 

most tissue-speci�c (light gray) genes with a nearby (within 10 kb) cCRE-pELS (orange) or cCRE-dELS (yellow) across 23 biosamples with matching data. The 

least tissue-speci�c genes are more likely to have a nearby pELS (paired two-sided Wilcoxon test, p�= 7.5E-9), while the most tissue-speci�c genes are more 

likely to have a nearby dELS (p�= 1.7E-7) de�ned in the same biosample. Violin plots represent entire distribution and boxplots denote median and quartiles. 

The ENCODE  Consortium et al., Supplementary Figure 11



a e

f

0

50

100

%
 o

fc
C

RE
s-

dE
LS

both str
ands

+ only
� only

neither st
rand

both str
ands

+ only
� only

neither st
rand

both str
ands

+ only
� only

neither st
rand

both str
ands

+ only
� only

neither st
rand

both str
ands

+ only
� only

neither st
rand

both str
ands

+ only
� only

neither st
rand

cCREs-dELS active in
GM12878 and CD4+ T cells

(N=9,319)

cCREs-dELS active in
CD4+ T cells

(N=16,867)

cCREs-dELS active in
GM12878
(N=19,230)

GM12878
GRO-seq

GM12878
GRO-seq

GM12878
GRO-seq

CD4+ T cell
PRO-seq

CD4+ T cell
PRO-seq

CD4+ T cell
PRO-seq

cCREs-PLS active in
GM12878 and CD4+ T cells

(N=16,118)

cCREs-PLS active in
CD4+ T cells

(N=3,974)

cCREs-PLS active in
GM12878

(N=991)

0

50

100

%
 o

f c
C

RE
s-

PL
S

both str
ands

+ only
� only

neither st
rand

both str
ands

+ only
� only

neither st
rand

both str
ands

+ only
� only

neither st
rand

both str
ands

+ only
� only

neither st
rand

both str
ands

+ only
� only

neither st
rand

both str
ands

+ only
� only

neither st
rand

GM12878
GRO-seq

GM12878
GRO-seq

GM12878
GRO-seq

CD4+ T cell
PRO-seq

CD4+ T cell
PRO-seq

CD4+ T cell
PRO-seq

0

0.3

0.6

-2k -1k 0 1k 2k

� strand, ELS
+ strand, ELS

CD4+ T cell PRO-seq: dELS
PR

O
-s

eq
 s

ig
na

l a
t d

EL
S

0

0.2

0.4

-2k -1k 0 1k 2k

� strand, ELS
+ strand, ELS

GM12878 GRO-seq: dELS

G
RO

-s
eq

 s
ig

na
l a

t d
EL

S

0

1.25

2.5

-2k -1k 0 1k 2k

non-coding strand, PLS
coding strand, PLS

GM12878 GRO-seq: PLS

G
RO

-s
eq

 s
ig

na
l a

t P
LS

0

3

6

-2k -1k 0 1k 2k

non-coding strand, PLS
coding strand, PLS

CD4+ T cell PRO-seq: PLS

PR
O

-s
eq

 s
ig

na
l a

t P
LS

b

c d

The ENCODE  Consortium et al., Supplementary Figure 12

Supplementary�Figure�12�|�Transcription�patterns�at�cCREs.�a-d, GRO-seq signal in GM12878 (a,�c) and PRO-seq signal in CD4+ T cells (b,�d) averaged over all cCREs-PLS (a-b, in red) and cCREs-dELS (c-d, in yellow) in a ± 2 kb window 
centred on cCRE centers. The GRO-seq and PRO-seq signals around cCREs-PLS were grouped by the orientation of their associated genes. The GRO-seq and PRO-seq signals around cCREs-dELS were grouped by genomic strands. 
Genomic background signal, computed as described in Supplemental Methods, is shown by the grey dashed line and was approximately 0.02 for both strands in GM12878 and 0.03 for both strands in CD4+ T-cell. e-f, The percentage of 
cCREs-PLS (e) and cCREs-dELS (f) with GRO-seq or PRO-seq signal > 0 on both strands (solid bars), the plus strand only or the minus strand only (light-color bars), or neither strand (open bars) in both GM12878 and CD4+ T cells (left set of 
bars in each plot), CD4+ T cells only (the middle set of bars in each plot), and in GM12878 cells only (the right set of bars in each plot).
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chr7:

Supplementary�Figure�13�|�Analyzing�differential�gene�expression�and�differential�cCRE�activity�across�mouse�developmental�timepoints. a, Comparison between liver e11.5 and P0 gene expression and cCRE activity at the Apoe locus. Green bars 
indicate differentially expressed genes, and red and yellow dots indicate cCREs-PLS and cCREs-ELS. The widths of the green bars represent gene lengths. The lines beneath the green bars and above the gene names indicate the positions and orientations 
of the genes—red for plus genomic strand and blue for minus strand. The heights of bars or dots indicate changes—log2(fold change) or difference in Z-score—between the two timepoints. The cCRE-dELS EM10E0842983 that overlaps a hepatic control 
region (HCR) is outlined in black. b, A genome browser view of the Apoe locus with H3K27ac, DNase, and RNA-seq signals in the liver across all surveyed timepoints. c,�Apoe gene expression and EM10E0842983 H3K27ac level increase coordinately during 
development (Pearson’s correlation across seven timpoints: r = 0.94).  d, H3K27ac and DNase Z-scores in mouse biosamples at EM10E0842983. e, H3K27ac activity in human biosamples for EH38E1957033 (HCR.1), EH38E1957037 (HCR.2) and 
EH38E1957038 (HCR.2). Biosamples are grouped by tissue ontology. f, A genome browser view of HCR.1 and HCR.2 in human, their overlapping cCREs, and epigenomic signals in HepG2 cells.
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Supplementary� Figure� 14� |�Results� of� testing� cCREs-ELS� using� the� in� vivo� transgenic�mouse� assays. Shown are representative staining 
images of e11.5 transgenic mouse embryos (with darker staining indicating higher enhancer activity) for the predicted enhancers that displayed 
reproducible activity (positive in at least three embryos) in the expected tissue (midbrain, hindbrain, or limb). Enhancer predictions were performed 
using the average rank of H3K27ac and DNase signals in the respective e11.5 tissue, and three tranches of predictions were chosen for testing: Top 
ranking, Middle ranking (~1,500) and Bottom ranking  (~3,000). The unique identi�er below each embryo (mm number) corresponds to the accession 
of the enhancer in the VISTA enhancer browser (https://enhancer.lbl.gov/).



�
��

��

�
��
�

�

��
�
����

�

��
�
���

�

���
���
�
�

�

�

�

�

�

����
����

�

�

���

��

�

���

�
�
�

�

�
�

�

�

20 30 20 31 20 29 20 27 20 24 20 28N= 6 32 14 6 29 5

The ENCODE  Consortium et al., Supplementary Figure 15
Pr

ec
isi

on

0.50
Recall

midbrain AUPR = 0.67
hindbrain AUPR = 0.56

limb AUPR = 0.59

0

0.5

1
a

0

50

100

%
 a

ct
ive

limbmidbrain hindbrain

Prediction rank: 
average rank of DNase and H3K27ac

<1k
1k

-7k <1k
1k

-12
k

<1k
1k

-23
k

limbforebrain heart

<1k
1k

-7k <1k
1k

-12
k

<1k
1k

-15
k

p�= 0.14 p = 7.8E-4 p�= 6.1E-3 p�= 0.02 p = 0.08 p�= 0.01

e11.5 e12.5

Prediction rank: 
H3K27ac

 

h

%
 b

p 
ov

er
la

p 
w

ith
Su

RE
 p

ea
ks

K562
myeloid
other

0

25

75

High DNase 
cCREs

PLS pELS dELS

50

cCRE groups

*

***

***

***

***

***

0

25

75

High DNase 
cCREs

PLS pELS dELS

50

cCRE groups

***
***

****

f

%
 M

PR
A+

 

***

b c

# 
of

 c
CR

E-
PL

S 
ov

er
la

pp
in

g
M

PR
A 

te
st

ed
 re

gi
on

s

300

425

550

60 65 70
% MPRA+

 

g
r�= -0.91
LCLs

lymphoid
other

*

Active in 
other tissue

Active in 
predicted tissue

forebrain heart

1-3
k

3k
-15

k <1k
1k

-15
k

e11.5d

Prediction rank: 
average rank of DNase and H3K27ac

15
k-6

7k

1k
-79

k

1

e

0

20

40

# 
te

st
ed

 re
gi

on
s

10 2
Average phyloP score

Active
Inactive

p�= 0.03
Highly conserved

Supplementary�Figure�15�|�Additional�analysis�of�cCREs�tested�by�transgenic�mouse�assays�and�cCREs�overlapping�regions�tested�by�functional�assays�MPRA�and�SuRE.�a, PR curves 
for the 151 cCRE-anchored regions predicted to function as enhancers in e11.5 midbrain, hindbrain, or limb, respectively. b-d, Bar plots of the overlap of regions tested by transgenic enhancer 
assays in this paper (b), Gorkin et�al. (c), and Sethi et�al. (d). Bars are separated into groups by the ranks of the overlapping cCREs. The best cCRE rank for the tested e11.5 forebrain regions was 
1,259; hence, the regions were divided using cCRE rank 3,000. Dark colors indicate activity in the predicted tissue, while light colors indicate activity in non-predicted tissues. Two-sided Fisher’s 
exact test p-values are shown for comparing activity in the predicted tissue. Due to the small number of regions in the Sethi set (d), the comparisons between the groups are not statistically 
signi�cant (p > 0.05). e, Stacked histogram displaying the average phyloP score across the 151 tested regions colored dark gray if active or white if inactive. If we only select highly conserved 
regions (average phyloP > 1), we observe signi�cant enrichment for positive regions (p = 0.03, Fisher's exact test). f, Overlap of cCREs with MPRA+ regions tested in GM12878 cells (N=3,103) 
strati�ed by cCRE group and biosample origin: LCLs (black, N=4), lymphoid lineage (gray, N=17), other (white, N=496). Violin plots display entire distribution with boxplots denoting median and 
quartiles. P-values are shown for two-sided Wilcoxon tests with * indicating p < 0.05 and *** indicating p < 0.001. g, Scatterplot of the percent of MPRA+ regions compared to the total number of 
overlapping MPRA tested regions (N=25,295). Each point is a biosample (N=517) colored by whether it is an LCL (red), from the lymphoid lineage (purple), or other (gray). LCLs and lymphoid 
samples have a lower percentage of MPRA+ regions because they overlap more tested regions due to ascertainment bias (Pearson correlation coe�cient). h, Overlap of cCREs with SuRE peaks 
(N=55,454) from K562 cells strati�ed by cCRE group and biosample origin: K562 (black, N=1), myeloid lineage (gray, N=16), other (white, N=500). Violin plots display entire distribution with 
boxplots denoting median and quartiles. P-values are shown for two-sided Wilcoxon tests with * indicating p < 0.05 and *** indicating p < 0.001.
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82% 74% 77% 78%

Supplementary�Figure�16�|�Annotating�GWAS�variants�using�cCREs.�a, Users can select a GWAS from a preloaded list of GWAS in SCREEN. For each study, we included all tag SNPs reported in the study 
and all SNPs in LD with the tag SNPs (r2 > 0.7). b, SCREEN reports the percentage of LD blocks of a GWAS with at least one SNP overlapping a cCRE. c, Biosamples are ranked by enrichment of SNP-
overlapping cCREs with high H3K27ac signals compared to 500 controls. Top cell and tissue types are displayed here for each study. P-values were calculated from Z-scores (two-sided) and we calculated an 
FDR to correct for multiple testing. For a GWAS (e.g., multiple sclerosis), the user can narrow the search by selecting a biosample (e.g., GM12878 with a 1.88 fold enrichment) and analyze the overlapping 
cCREs. d, Three multiple sclerosis SNPs overlap GM12878 cCREs proximal to a ZMIZ1 TSS, with rs1250567 overlapping a pELS (EH38E1482636) and rs1250568 and rs1250569 overlapping a PLS 
(EH38E1482633). e, The two cCREs in d (in asterisks) have high DNase, H3K4me3, and H3K27ac signals in GM12878 and overlap the ChIP-seq peaks of the transcription factor ELF1. In particular, rs1250568 
overlaps a high-scoring position of the ELF1 motif (in the box), with the reference allele disrupting the motif. f, ChIA-PET data link EH38E1482633 and EH38E1482636 to ZMIZ1 and PPIF in GM12878.
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Supplementary�Figure�17� |�Using�cCREs� to�annotate� functional�SNPs�related� to�red�blood�cell� traits.�a, Overlap of cCREs with 

MPRA functional variants (MFV+, N=32) and non-functional variants (MFV�, N=2,724) associated with red blood cell traits. MFV+ 

regions overlap cCREs (N=926,535) more frequently than MFV- regions (3.1 fold enrichment, two-sided Fisher's exact test, p = 2.4 x 10
�5), especially K562 cCREs (N=96,385, 5.0 fold enrichment, p = 4.3 x 10�4). b, Genome browser view of RBC SNP rs737092, which is 

downstream of the RBM38 gene. This variant overlaps a human cCRE-ELS (EH38E2124446), which has a high DNase signal (green) and 

a high H3K27ac signal (yellow) in K562. rs737092 also overlaps a homologous mouse cCRE (EM10E0721638, black). c, Top ten cell and 

tissue types ranked by Z-score for DNase (left) and H3K27ac (right) at EH38E2124446. Multiplicative indices indicate multiple 

biosamples. d, Top ten mouse biosamples ranked by Z-score for DNase (left) and H3K27ac (right) at EM10E0721638.
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cCREs

cCREs

Supplementary�Figure�18� |�Using�cCREs�to�annotate�functional�SNPs�related�to�prostate�cancer.�a,�Genome browser view of rs2742624, which was previously 
shown to affect the expression of UPK3A, with epigenomic signals of the overlapping cCRE EH38E2169396 in LNCaP and PC-3 (prostate cancer cell lines). b-c, Top 
ten biosamples ranked by Z-score for (b) DNase and (c) H3K27ac at EH38E2169396. d, Genes linked to EH38E2169396 by eQTLs and Hi-C interactions.
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Supplementary�Figure�19�|�Using�cCREs�to�annotate�functional�SNPs�related�to�liver�traits.�a, Genome browser view of rs12740374 with epigenomic signals from 

three biosamples demonstrating the ubiquitous activity of EH38E1374646. b-c, Top ten biosamples ranked by Z-score for (b) DNase and (c) H3K27ac at 

EH38E1374646. d, Genes linked to EH38E1374646 by eQTLs, Hi-C, and ChIA-PET interactions.
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Supplementary�Figure�20�|�Interpreting�GWAS�variants�associated�with�neuropsychiatric�disorders�using�cCREs.�a, An intron of the AGAP1 gene contains several SNPs associated with neuropsychiatric phenotypes. 
This region has high linkage disequilibrium and contains many cCREs with high DNase signals in the fetal brain. One region of particular interest also has high H3K4me3 and H3K27ac signals in neural cells, suggesting that it 
is an enhancer in neural cells. We further analyzed a segment of this region that contains cCRE EH38E2086160 (dashed line with an asterisk). b, Expression of AGAP1 in human biosamples. AGAP1 is primarily expressed in 
the adult brain. Expression values were calculated from whole-cell poly-A RNA-seq experiments and are displayed in transcripts per million (TPM). c, The mouse region in the Agap1 locus that is homologous to the 
EH38E2086160-containing human region, also indicated by a dashed line, contains three cCREs with high H3K27ac and DNase signals in the fetal mouse forebrain but not the limb. The mouse cCRE EM10E0042440 is 
homologous to the human cCRE EH38E2086160. d, EM10E0042440’s H3K27ac signals measured as fold change between ChIP and input are displayed across 12 mouse fetal tissues at 8 developmental timepoints. Tissues 
without H3K27ac ChIP-seq data are in gray. The maximal height of the signals is 10. e, Expression of Agap1 in mouse. Agap1 is primarily expressed in fetal brain tissues. Expression values were calculated from whole-cell 
poly-A RNA-seq experiments and are displayed in TPM. f, EM10E0042440’s H3K27ac signal in the forebrain (pink), midbrain (blue), and hindbrain (green) across mouse fetal development. g, Results from transgenic mouse 
assays testing the human region indicated with a dashed line in a, which is homologous to the region also indicated with a dashed line in c.� Images indicate that this region is active in mouse e12.5 brain tissues, with three 
stained mouse embryos shown. Of the ten tested embryos, all ten tested positive for enhancer activity.
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Supplementary�Figure�21� |�Method�for�normalizing�epigenomics�signals.�a, Distribution of the H3K27ac signals of the rDHSs on chromosome 1 in �ve biosamples (B cell, colon, 
GM12878, K562, and liver; shown in di�erent colors). rDHSs with H3K27ac signals higher than 5 (average of 9.3k rDHSs per biosample) are omitted from this histogram. b, Distributions 
of the log10 of the H3K27ac signals in a. The log10(signal) values of the rDHSs in each biosample roughly follow a normal distribution. c, Distribution of the Z-scores corresponding to the 
log10(signal) values in b, with a Z-score of �10 assigned to zero signal values.
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