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Supplementary Notes 

Supplementary Note 1 - mCG landscape remodeling in fetal liver 
Distinct from the hypermethylated genome of all other tissues, the liver genome 

underwent drastic global demethylation from E11.5 to E14.5, and remained hypomethylated until 

E16.5, after which it returned to a hypermethylated state at P0 (Fig. 1b). The hypomethylated 

liver genome, present during E12.5 to E16.5, displayed a partially methylated domains (PMDs) 

signature, a methylation feature previously observed in human cultured cell lines7,79, pancreas8, 

placenta80 and cancer samples81,82. A recent study83 also reported hypomethylation in E18.5 

mouse liver. PMDs are large genomic regions (typically greater than 100kb) that are lowly CG 

methylated (Extended Data Fig. 1a). PMDs displayed stronger hypomethylation than flanking 

regions (Extended Data Fig. 1b). We systematically identified PMDs in liver samples from all 

stages (Methods). Strikingly, from E14.5 to E16.5, PMDs covered more than half of the genome 

and the coverage shrunk dramatically afterwards (Extended Data Fig. 1b). We found that PMDs 

identified in E15.5 displayed hypomethylation in all liver samples and covered almost all PMDs 

from other stages (Extended Data Fig. 1c-d). These results indicate that the PMDs identified at 

different fetal stages are essentially identical and the different PMDs calls were due to various 

signal-to-noise ratios. Therefore, we defined the PMDs identified in E15.5 liver as liver PMDs (n 

= 4,578; average size = 338kb). 

Mouse liver PMDs share all molecular signatures of the PMDs identified in human 

fibroblast cell lines, normal and cancer tissues7,8,81,82: First, mouse PMDs are enriched for 

H3K9me3 and H3K27me3 and are depleted of H3K27ac (Extended Data Fig. 1e). Second, 

mouse PMDs tend to be replicated during the later stages of the cell cycle and strongly overlap 

with lamina-associated domains (Extended Data Fig. 1f; p-value < 0.001; Monte Carlo testing; 

Methods). Furthermore, we found that genes overlapping with mouse PMDs tend to have lower 
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expression compared to genes outside PMDs, which was also reported by Schultz et al. for 

human pancreas8. These shared properties indicate that human and mouse PMDs are likely 

identical genome feature and their presence may be due to similar mechanism, likely the failure 

of mCG maintenance in rapidly dividing cells81.  

The presence of PMDs in fetal liver coincides with hematopoiesis84,85. Hematopoiesis 

initiates at E11.5, while the liver genome remains hypermethylated (Fig. 1b). Then, 

hematopoietic expansion occurs between E12.5 and E14.5, during which the liver genome 

underwent demethylation and PMDs became evident (Fig. 1b; Extended Data Fig. 1b,d). The 

increasing number of rapidly dividing cells during this expansion period may explain the 

formation of PMDs. After E15.5, hematopoiesis declines although the “liver tissue” genome is 

not fully remethylated until P0 (Extended Data Fig. 1b).  

 

Supplementary Note 2 - Annotating methylation variable regions 
We categorized, in total, 1,808,810 fetal CG-DMRs based on their chromatin states, 

mCG effect size and their relationship with other genomic features. We found that 8.5% (n = 

153,019 of CG-DMRs overlapped with known promoters, CpG islands (CGIs) or CGI shores. 

We termed these CG-DMRs as proximal CG-DMRs (Fig. 1d; Extended Data Fig. 2c-f). The 

remaining vast majority of CG-DMRs (~91.5% or 1,655,791) were distally located and showed a 

high degree of evolutionary conservation, suggesting that they are functional (Fig. 1d; Extended 

Data Fig. 2e-g). We used the REPTILE40 method to predict fetal enhancer-linked CG-DMRs 

(feDMRs), which are CG-DMRs that showed enhancer-like chromatin signatures (Fig. 4a). 85% 

(397,320) of them are distal to known promoters and we referred them as distal feDMRs (Fig. 

1d).  

In addition to distal feDMRs, we also identified 212,620 CG-DMRs that flank (within 

1kb) distal feDMRs but which are not themselves predicted as enhancers (Fig. 1d). These 

flanking distal feDMRs (fd-feDMRs) are much less conserved than feDMRs although their mCG 

level is moderately correlated with nearby feDMRs (median Pearson correlation coefficient = 

0.46, n = 212,620; Extended Data Fig. 2e-g; see Methods), suggesting that a fraction of fd-

feDMRs may be the by-product of demethylation of the adjacent feDMRs. Alternatively, fd-

feDMRs may be bound by pioneer TF(s) which allow opening of chromatin of adjacent 
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feDMRs86,87 . This notion is supported by the enrichment of binding motifs for several known 

pioneer TFs86 such as FOXA2 and GATA3 at fd-DMRs (Supplementary Table 11). Interestingly, 

binding motifs of the insulator protein CTCF and several transcriptional repressors (e.g. CUX188) 

are also enriched at fd-feDMRs, indicating a third possibility that fd-feDMRs correspond to 

insulator and silencer elements (Supplementary Table 11).  

Besides the above CG-DMR classes, another type of distal CG-DMR (n = 159,347) are 

the primed distal feDMRs (pd-feDMRs); these display strong CG hypomethylation in at least 

one tissue sample and are linked to primed fetal enhancers68 (mCG difference ≥ 0.3; Fig. 1d; 

Extended Data Fig. 3a; Methods). In the tissues where they are hypomethylated, pd-feDMRs 

showed chromatin signatures resembling primed enhancers68 which are enriched for H3K4me1 

while lacking H3K27ac and H3K27me3 (Extended Data Fig. 3b). Like feDMRs, pd-feDMRs are 

also evolutionary conserved (Extended Data Fig. 2e-g). Consistent with their putative role as 

enhancers, and similar to feDMRs, they share significant TF-binding motif signature enrichment 

in 9 out of the 12 tissue types (Extended Data Fig. 3c; Supplementary Table 12). 

The remaining unclassified distal CG-DMRs (886,504) show more subtle CG 

hypomethylation patterns, suggesting that they likely derive from a small fraction of cells within 

these complex tissues/organs (Extended Data Fig. 3d-e; Methods). Since a functional role cannot 

yet be assigned, we named this group “unexplained CG-DMRs” (unxDMR). The genomic 

locations of unxDMRs significantly overlapped with transposons (50.7%, fold-enrichment = 

1.46, p-value < 0.001, Monte Carlo testing; Methods). Inspired by this observation, we divided 

unxDMRs into two subgroups: unxDMRs that overlapped with TE (te-unxDMRs) and ones not 

overlapping (nte-unxDMRs) (Extended Data Fig. 3d-e). te-unxDMRs were less evolutionarily 

conserved compared to flanking regions but transposons may be a source of novel regulatory 

elements89. Different from te-unxDMRs, genomic sequences underling nte-unxDMRs are as 

conserved as feDMRs, implying that they may be functional. Indeed, 10% and 45% of the nte-

unxDMRs showed open chromatin in purified neurons30 and a variety of mouse cell lines and 

tissues90, respectively (fold-enrichment = 1.10 and 1.16, p-value < 0.001, Monte Carlo testing; 

Methods). Therefore, nte-unxDMRs are likely regulatory elements active only in rare cell types 

and their weak hypomethylation profiles are due to the tissue heterogeneity, which are supported 

by previous studies of cell-specific30 and single-cell methylomes17. It is also possible that mCG 

in nte-unxDMRs underwent dynamic regulation in a large portion of cells and only the average 
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effect is measured. Nonetheless, single-cell level profiling will be essential for uncovering the 

source of these enrichments.  

 

Supplementary Note 3 - CG-DMR effect size 
Although all CG-DMRs displayed statistically significant mCG variation, the degree of 

mCG difference (effect size) varies. Considering mCG is pervasive in mammalian genome and 

CG hypomethylation is indicative of regulatory activity, we defined the effect size of a CG-DMR 

as the absolute difference between the lowest mCG level and the average mCG level of “bulk 

samples” (selected half of the samples with smallest mCG level range; See Methods for details). 

71% of the CG-DMRs have effect size greater than 0.2 (Extended Data Fig. 4a), indicating that 

at least 20% of cells from the most hypomethylated tissue sample contain unmethylated allele. 

The mean effect size of CG-DMRs is 0.284, and 37% of the CG-DMRs passed the widely used 

0.3 effect size cutoff10 (Extended Data Fig. 4a).  

The effect size distribution varies in CG-DMRs from different categories. Primed distal 

feDMRs showed generally larger effect size as they were selected for strong tissue-specific CG 

hypomethylation (Extended Data Fig. 4b). The unexplained CG-DMRs were selected in the 

opposite way and displayed smaller effect size.  

 Each CG-DMR contains multiple CG sites, and we found most of them show differential 

methylation. On average, there are 9 differentially methylated sites (DMSs) in one CG-DMRs 

(Extended Data Fig. 4c). In 62% of CG-DMRs, more than 80% of CG sites are differentially 

methylated (Extended Data Fig. 4d). Furthermore, in 57% of CG-DMRs, DMSs occupy at least 

80% of CG sites even if we require the effect size to be greater than or equal to 0.2 (Extended 

Data Fig. 4d). The CG-DMRs with more DMSs likely show stronger regulatory activity 

(stronger enrichment of H3K4me1 and H3K27ac, higher enhancer score, and higher transcript 

abundance of nearest gene) (Extended Data Fig. 4e).  

CG-DMRs with larger effect size are present in more cells in the heterogeneous tissue 

samples, and are less likely a result of noise. Therefore, as expected, CG-DMRs that show larger 

effect size and contain more DMSs tend to display stronger anti-correlation with active 

chromatin marks, enhancer score and the transcription of nearby genes (Extended Data Fig. 4f; 

Methods).  
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Supplementary Note 4 - Evaluation of fetal enhancer-like DMRs 
To validate fetal enhancer-like DMRs (feDMRs), we overlapped feDMRs with 

experimentally validated DNA elements from VISTA enhancer browser25 (VISTA elements). 

However, the VISTA elements were biasedly selected. Compared to randomly selected 

sequences, they are more enriched for enhancers, which will lead to an overestimation of the true 

positive rate. The true positive rate for a given set of enhancer predictions is defined as the 

fraction of the VISTA elements that are experimentally validated enhancers (positives) among all 

VISTA elements that overlap with any enhancer prediction. For example, if 60% of VISTA 

elements are enhancers and we randomly select a subset of them, 60% of the selected elements 

are expected to be true positives. Therefore, the true positive rate of a set of enhancer predictions 

is inflated if we validate the enhancer predictions using a dataset with an inflated fraction of 

elements being positives. 

To reduce the impact of selection bias, we need to first estimate the fraction of VISTA 

elements that are positives (positive rate) in a given tissue if there is minimal selection bias. We 

termed this fraction as genuine positive rate. Then, we can sample the current VISTA dataset to 

construct datasets with positive rate matching the genuine positive rate. Since the positive rate is 

not inflated in the constructed datasets, it will allow a fair evaluation of our enhancer prediction 

approach. 

There are two sources of selection bias: 1) VISTA elements are selected to be enhancers 

of a given tissue or 2) to be enhancers of biologically related tissue(s). The second source 

increased the positive rate of the given tissue because enhancers of similar tissues are often 

shared. For example, selected forebrain enhancers will likely be also active in midbrain. Both 

sources will inflate the positive rate of the given tissue to be higher than if VISTA elements are 

randomly selected. 

To begin with, we sought to identify a tissue, in which the enhancer activity of VISTA 

elements is conditionally independent of their enhancer activity in other tissues. Specifically, let 

N be the total number of VISTA elements and ai,t be the enhancer activity of element i in E11.5 

tissue t. ai,t=0 means element i is inactive in tissue t, whereas ai,t=1 indicates element I is active 

and is able to drive reporter gene expression in tissue t. Therefore, the positive rate of tissue t is 
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𝑎!,!!
!!! . We tried to identify a tissue t where 𝑎!,�!∈!!  is relatively constant, where d is a tissue 

different from t and 𝐶! = 𝑗|𝑎!,! = 1 . Such conditional independence ensures that selecting 

enhancers for other tissues has little impact of the positive rate of this tissue, i.e. the tissue is 

resistant to the second source of selection bias. Given that the first source of selection still exists, 

the positive rate of that tissue is expected to be higher than the genuine positive rate and is the 

upper bound of the genuine positive rate. To interrogate the conditional independence of positive 

rate in two different tissues, we calculated the positive rates in one tissue for the VISTA 

elements that are active (or inactive) in the other tissue (Extended Data Fig. 9b). As expected, the 

positive rate of VISTA elements in a given tissue is dependent on their enhancer activity in a 

biologically related tissue. For example, a higher fraction of VISTA elements are forebrain 

enhancers if they are active in midbrain compared to if they are inactive in midbrain. In contrast, 

VISTA elements active in heart are less likely to be active in brain tissues. Interestingly, we 

found that the positive rate of VISTA elements in limb have little dependency on their enhancer 

activity in other tissues. The positive rate in limb is 10% and we used this number as the upper 

bound of the genuine positive rate (Extended Data Fig. 9b-c).  

Next, we sought to determine the lower bound of the genuine positive rate. The idea is 

that the genuine positive rate is equal to or higher than the positive rate of genomic regions that 

show little evidence of enhancers, which we termed “random positive rate”. To estimate random 

positive rate, we started with all VISTA elements and removed the ones showing enhancer-like 

chromatin state and/or high degree of evolutionary conservation. Specifically, we first filtered 

out the VISTA elements that overlap with any feDMRs or any H3K27ac peaks. Then, from the 

remaining VISTA elements, we removed the ones that are among top 10% VISTA elements  

ranked in descending order by their PhyloP score, a type of evolutionary conservation score69. 

Lastly, we calculated the positive rate of the filtered set of VISTA elements, which is the random 

positive rate. We found that the random positive rate was less than or equal to 6% for any given 

E11.5 tissue (Extended Data Fig. 9c).  

Given the 6% lower bound (random positive rate) and the 10% upper bound (the positive 

rate in E11.5 limb), we conservatively estimated the genuine positive rate to be 8%. Next, for 

each E11.5 tissue, we sampled VISTA elements such that the positive rate of the selected VISTA 

elements in that E11.5 tissue matches the genuine positive rate. Since the positive rate of all 

VISTA elements in any E11.5 tissue is higher than the estimated genuine positive rate, for a 
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given E11.5 tissue, we constructed a dataset by randomly selected a subset of positives and all 

negatives (VISTA elements that are inactive in that tissue) such that its positive rate is equal to 

8%, the genuine positive rate. In this way, we are able to get the largest set of VISTA elements 

while still having positive rate matching genuine positive rate to control for selection bias. To 

take into account variation introduced by random sampling, we repeated this procedure 100 

times for each E11.5 tissue. As a result, for each E11.5 tissue, we generated 100 down-sampled 

datasets. Using this collection of datasets, we calculated the true positive rate for the top 2500 

and top 2501-5000 most confident feDMRs separately (Fig. 4c). Even in these datasets where 

only 8% of elements are experimentally validated enhancers, the true positive rate of feDMRs 

remained reasonable: 37%-55% of the VISTA elements that overlapped with top 2500 (3%-7%) 

most confident feDMRs are experimentally validated enhancers in the matched tissue (Fig. 4c).  

To better interpret these results, we included two baseline enhancer prediction method. 

First, for each tissue, we randomly selected 5,000 genomic bins with matched GC content 

(sequence content) and PhyloP score (evolution conservation) to the top 5,000 most confident 

feDMRs. We then calculated the positive rate of the VISTA elements that overlapped with any 

of these selected regions. We repeated this process 10 times for each E11.5 tissue. The median 

true positive rate of this baseline method was about 10% (Fig. 4c). We also included a second 

baseline method. We calculated the positive rate of VISTA elements that did not overlap with 

any feDMRs or H3K27ac peaks. The positive rate of these VISTA elements was 4-11% 

depending on tissue examined. The true positive rate of both baseline methods is worse than that 

of feDMRs. 

In summary, we demonstrate that the potential selection bias in the VISTA dataset can be 

computationally reduced. After controlling for such bias, the feDMRs still achieved a reasonable 

true positive rate of 37%-55%, more than 5 fold higher than the random positive rate. Therefore, 

our feDMR annotation should provide a useful resource for future studies of transcriptional 

regulation in embryonic mouse tissues. 
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