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Abstract

We test 26 polygenic predictors using tens of thousands of genetic siblings from the
UK Biobank (UKB), for whom we have SNP genotypes, health status, and phenotype
information in late adulthood. Siblings have typically experienced similar environments
during childhood, and exhibit negligible population stratification relative to each other.
Therefore, the ability to predict differences in disease risk or complex trait values be-
tween siblings is a strong test of genomic prediction in humans. We compare validation
results obtained using non-sibling subjects to those obtained among siblings and find
that typically most of the predictive power persists in between-sibling designs. In the
case of disease risk we test the extent to which higher polygenic risk score (PRS) identi-
fies the affected sibling, and also compute Relative Risk Reduction as a function of risk
score threshold. For quantitative traits we examine between-sibling differences in trait
values as a function of predicted differences, and compare to performance in non-sibling
pairs. Example results: Given 1 sibling with normal-range PRS score (<84 percentile,
<+1 SD) and 1 sibling with high PRS score (top few percentiles, i.e. >+2 SD), the
predictors identify the affected sibling about 70-90% of the time across a variety of
disease conditions, including Breast Cancer, Heart Attack, Diabetes, etc. 55-65% of
the time the higher PRS sibling is the case. For quantitative traits such as height, the
predictor correctly identifies the taller sibling roughly 80 percent of the time when the
(male) height difference is 2 inches or more.
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Supplementary Information

A Genotype Quality Control

The main dataset used in this work is the 2018 release of the UK Biobank (the 2018 version
corrected some issues with imputation, included sex chromosomes, etc). In 2018, the UK
Biobank (UKB) re-released the dataset representing approximately 500,000 individuals geno-
typed on two Affymetrix platforms - approximately 50,000 samples on the UKB BiLEVE
Axiom array and the remainder on the UKB Biobank Axiom array. The genotype informa-
tion was collected for 488,377 individuals for 805,426 SNPs which were then subsequently
imputed to a much larger number of SNPs. In all predictor training, we restricted our anal-
ysis to self-report White individuals (as defined using self-reported ethnic background as
surveyed by UK Biobank) [1] - namely participants with the code 1, 1001, 1002 or 1003 in
the Ethnic Background field.

In our analyses, we do not use the imputed SNP set for training, but rather build all predic-
tors from the directly genotyped markers. Our previous work has indicated that polygenic
scores constructed from imputed data perform slightly less well. The imputed SNP set is
used only for testing predictors generated by other authors (Khera et al. [2]). Further, we
restrict our analysis to the autosomal chromosomes on every trait as we have found that
inclusion of the sex chromosomes does not provide a significant performance enhancement
for the traits studied here. From the called SNPs, further quality control was performed
using PLINK version 1.9 [3]. After combining individual chromosomes to a single BED file,
SNPs and samples which had missing call rates exceeding 3% were excluded and SNPs with
minor allele frequency below 0.1% were also removed so to avoid rare variants. This resulted
in 663,533 SNPs and 487,048 people - filtering this set by self-reported ancestry results in
459,063 remaining individuals.

B Predictors

B.1 UK Biobank Constructed Predictors

Here we report some of the performance characteristics and SNP content of the predic-
tors used in this work. The majority of the predictors were developed by the authors and
previously reported in [4–6]. Several predictors are included in this paper which have not
been published elsewhere but were developed in a completely analogous manner - specifically
body fat percentage, body mass index, fluid intelligence and platelet count. Two predictors
(Breast Cancer and Coronary Artery Disease) which are evaluated were developed and pub-
lished externally in [2]. In table S1 we show the trait type (binary or quantitative), the AUC
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or correlation coefficient in the testing set and the number of active SNPs in the predicture.
Quantities listed are the average over 5 predictors and the quantity in parenthesis is the
standard deviation.

Condition Trait Type AUCtest Active SNPs
Hypothyroidism Binary 0.709 (0.002) 5287.2 (1535.3)
Type 2 Diabetes Binary 0.617 (0.005) 1577.5 (1033.1)
Hypertension Binary 0.648 (0.001) 13345.8 (6626.1)

Asthma Binary 0.630 (0.002) 3758.5 (1731.97)
Type 1 Diabetes Binary 0.676 (0.003) 173.2 (151.7)
Breast Cancer Binary 0.585 (0.016) 1167.0 (1735.0)
Prostate Cancer Binary 0.647 (0.012) 369.4 (562.7)
Testicular Cancer Binary 0.630 (0.011) 59.4 (88.6)

Glaucoma Binary 0.592 (0.012) 755.2 (969.2)
Gout Binary 0.660 (0.004) 866.6 (696.2)

Atrial Fibrillation Binary 0.624 (0.004) 260.0 (326.1)
Gallstones Binary 0.638 (0.003) 111.6 (75.4)

Heart Attack Binary 0.602 (0.006) 2092.4 (1771.7)
High Cholesterol Binary 0.632 (0.002) 1812.6 (581.8)

Malignant Binary 0.585 0.007 17.0 (9.9)
Melanoma

Basal Cell Binary 0.626 (0.007) 133.6 (129.2)
Carcinoma
Phenotype Trait Type ρ(y, PGS)test Active SNPs

Body Mass Index Quantitative 0.342 (0.005) 23326.8 (4396.5)
Body Fat Percentage Quantitative 0.327 (0.001) 15565.4 (2811.9)
Bone Mineral Density Quantitative 0.427 (0.001) 14686.2 (3843.1)

Educational Attainment Quantitative 0.251 (0.002) 17439.2 (7101.3)
Fluid Intelligence Quantitative 0.259 (0.002) 15737.6 (4598.7)

Height Quantitative 0.621 (0.001) 21611.8 (2541.3)
Platelet Count Quantitative 0.487 (0.002) 15367.6 (2924.2)

Table S1: Table of number of final predictor performance metrics and nonzero SNP values.

B.2 External Predictors

We use Breast Cancer and Coronary Artery Disease predictors that were published in [2]. To
apply these predictors, we use the imputed genomes directly from the UK Biobank without
any additional QC. We again restrict to the self-report white sibling cohort for all testing. For
each individual, we scan through each chromosome and generate a score using the SNP weight
column from the predictor file for every SNP which is present in the imputed chromsome.
Each individual chromosome score is combined and then the final result is z-scored based
on the controls in the cohort (so that the score is centered near zero with unit variance).
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For Coronary Artery Disease, this set gave 40,108 individuals and for Breast Cancer, after
restricting to only females, gave 23,205 individuals.

C Sibling Identification, Training and Testing Sets

The UK Biobank performed an initial relatedness analysis on all participants, but familial
relationships among UK Biobank participants were not directly recorded. The analysis was
done by the UK Biobank, calculating kinship coefficients and IBS0 using the KING software
[1]; the details can be found in the original UK Biobank paper [1]. The UK Biobank provides
a total of 107,162 related pairs of individuals with kinship coefficients and IBS0.

To identify sibling pairs, we implement the same filters which the UK Biobank used: parent-
offspring and sibling relationships have an expected relatedness coefficient of 0.25 and parent-
offspring relationship are distinguished by those with IBS0 < 0.0012. We select all pairs with
IBS0 > 0.0012 and kinship coefficient > 0.176, yielding a set of 22,667 pairs of participants -
this agrees with table S3 of the UK Biobank quality control supplementary information [1].
An in-depth analysis of the relationships can be found in the UK Biobank supplementary
material. After restricting this group to individuals who survived the genotype quality
control and also self-reported white ancestry, 40,030 individuals remained in this set and
formed 21,671 pairs of siblings.

These sibling pairs are assumed to be first-degree siblings - each pair is assumed to have the
same mother and father. However, amongst this set there exist situations where a participant
is listed as sibling with two others, but the two are not listed as a sibling with each other.
For example, if 3 individuals are labeled A, B, C then the following situation exists: A/B
form a sibling pair, A/C form a sibling pair, but the pair B/C is not in the list of pairs. In
this example, we do NOT include the B/C pair in our calculations with sibling pairs - we
maintain the pairing which matches with the UK Biobank. However, when forming trios we
group A,B,C together as a trio.

Amongst the initial 22,667 sibling pairs, we find 1,051 trios, 66 quartets, and 11 quintets.
Due to the small number of groups larger than 3, we only use pairs and triplets in our
analysis. After excluding individuals who do not self-report as white or pass quality control,
982 trios remain. The set of 40,030 individuals who are present in sibling pairs are used as
a final testing set for all analyses and are excluded from the 459,063 genotyped individuals
in all training. This results in training sets consisting of 419,033 individuals - from this set,
smaller validation sets are chosen for model selection.
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D Principal Component and Age Dependence

We note that including age as a covariate may enahance predictive power, given that age is
the most important risk factor for many chronic diseases. Not accounting for age differences
would be expected to attenuate our findings. In reference [5], many of the phenotypes
studied here have been analyzed in models which utilize SNPs alone, sex/age alone and
SNPs/sex/age together. The purpose of this work is not to build the most accurate model
of risk which includes all major covariates. Rather, it is to show specifically that predictions
may be made by genotype alone and that the prediction power persists in siblings.

Similarly, including principal components as covariates could enhance the predictive capa-
bility. In reference [7], it was found that principal components in the white UKB population
explain a negligible component of variance for several complex traits. However, one could
hypothesize that prediction power is enhanced for non-sibling pairs due to residual stratifi-
cation. Similarly, one could hypothesize that a disparity in age gaps amongst siblings versus
in non-sibling pairs could affect prediction.

The principal component structure amongst the sibling set does not vary greatly. This is
illustrated in Figure S1. In the upper left panel, we show the values for the first two principal
components in the UK Biobank (the principal component values are computed by UKB and
the details can be found in reference [1]). We display the principal component structure for
1) the entire UK Biobank, 2) all self-reported Caucasian individuals and 3) the sibling set
we use as a final testing set. Note that the sibling set is fairly homogeneous in the first few
principal components.

Here we investigate the sensitivity of prediction to age and principal component value by
creating pairs of random non-sibs chosen to have principal component or age structure com-
parable to that of sibling pairs. The sibling pairs are first randomized so that the sibling
relationship is lost. We then keep each of the random pairs which have difference in the
first four principal components that are similar to the difference in the first four principal
components of the sibling pairs. The criterion for keeping the random pairs is that the new
pairings principal component differences must be 2 standard deviations from the mean prin-
cipal component difference of the sibling pairs. The leftover set of random pairs which does
satisfy this criterion is then randomized again and the selection process repeats for a total
of 10 times. A similar procedure is carried out for year of birth - we select random pairs
which have age differences that are within two standard deviations of the mean difference of
age differences amongst siblings. The principal component and year of birth differences for
the sibling pairs, random pairs and random pairs that are “sibling similar” are illustrated in
figures S1 S2.

After this set is identified, the fraction of time which the correct individual is chosen based
on PRS is calculated. This is done for case/control traits which have a fairly large number of
cases (more than 1000); specifically Hypothyroidism, High Cholesterol, Asthma, Hyperten-
sion and Type 2 Diabetes. These results are illustrated in table S2. It is clear that choosing
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Figure S1: Principal component structure in the UK Biobank is shown in the up-
per left. Principal component differences amongst the first 4 PC vectors is show for
siblings (upper right), random pairs (bottom left) and for random pairs similar to
sibling pairs (bottom right). This plot was made using pyplot v3.2.1 under license
https://matplotlib.org/3.2.1/users/license.html
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Figure S2: Age differences are shown for the sibling pairs and random pairs (left). Compare
to age differences for sibling pairs and random pairs similar to siblings (right). This plot was
made using pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html

randomly paired individuals who have similar principal component or age gap to sibling pairs
does not have a large affect on the selection power.

Trait Sibling Random Similar by PC Similar by Age
Pairing Pairing Pairing Pairing

Hypothyroidism 0.658 (0.003) 0.710 (0.003) 0.718 (0.005) 0.711 (0.003)
High Cholesterol 0.596 (0.005) 0.633 (0.003) 0.627 (0.002) 0.630 (0.002)

Asthma 0.618 (0.004) 0.631 (0.007) 0.642 (0.004) 0.626 (0.003)
Hypertension 0.627 (0.002) 0.650 (0.002) 0.651 (0.002) 0.649 (0.003)

Type 2 Diabetes 0.595 (0.005) 0.624 (0.011) 0.624 (0.006) 0.620 (0.005)

Table S2: Polygenic predictors tested on sibling pairs, random pairs and random pairs which are similar
by principal components or age. The columns are the probabilities (and standard deviation over 5 versions
of the predictors) that the higher PRS individuals are the cases for the particular pairing.

E Trio analysis

Case-control phenotypes

After inferring familial units, it was found that there are very few larger families in the
UK Biobank - only trios are present in large enough quantity to warrant investigation. We
performed risk-reduction analysis similar to that for the sibling pairs, in which we consider

7



only trios with one affected sibling and then compute the fraction of the time in which the
highest or lowest PGS sibling is a case. We note that the expected result under random
selection would be 1/3. In all cases, the highest (lowest) PGS sibling is more (less) likely
to be the affected sibling than random chance would produce. Table S3 summarizes these
results.

Condition N Trios High PGS Low PGS Random
(single case) Selection

Asthma 221 0.417 (0.011) 0.247 (0.010) 0.356 (0.043)
Atrial Fibrillation 18 0.344 (0.082) 0.211 (0.046) 0.289 (0.099)

Basal Cell Carcinoma 25 0.416 (0.046) 0.240 (0.0) 0.264 (0.061)
Breast Cancer 20 0.390 (0.147) 0.270 (0.084) 0.420 (0.084)

Coronary Artery Disease 62 0.326 (0.039) 0.277 (0.031) 0.316 (0.065)
Gallstones 45 0.409 (0.020) 0.276 (0.040) 0.396 (0.029)
Glaucoma 36 0.444 (0.052) 0.244 (0.066) 0.32 (0.050)

Gout 51 0.435 (0.049) 0.231 (0.038) 0.314 (0.069)
Heart Attack 59 0.434 (0.026) 0.207 (0.033) 0.305 (0.052)

High Cholesterol 224 0.458 (0.014) 0.246 (0.014) 0.354 (0.027)
Hypothyroidism 128 0.491 (0.017) 0.206 (0.010) 0.330 (0.035)
Hypertension 303 0.452 (0.010) 0.224 (0.008) 0.326 (0.024)

Malignant Melanoma 22 0.345 (0.041) 0.273 (0.045) 0.273 (0.045)
Prostate Cancer 2 – – –
Testicular Cancer 1 – – –
Type 1 Diabetes 21 0.419 (0.021) 0.210 (0.043) 0.390 (0.092)
Type 2 Diabetes 96 0.444 (0.035) 0.229 (0.016) 0.308 (0.047)

Table S3: Polygenic predictors tested on sibling trios. The first column is the number of
sibling trios with one affected and two unaffected siblings. The next three columns are the
probabilities (and standard deviation over 5 predictors) that the higher PRS / lowest PRS
/ randomly chosen sibling are the case.

Quantitative phenotypes

After identifying family structure in the UKB, we find that only trios are present in large
enough quantity to warrant discussion. We performed a similar analysis to that for the
sibling pairs, in which we consider all trios with measured phenotypes and then compute
the fraction of the time in which the highest or lowest PGS sibling has the highest / lowest
phenotype value. We note that the expected result under random selection would be 1/3.
We also compute the fraction of trios for which the correct order is assigned; the expected
result under random selection would be 1/6 for this question. In all cases, the highest
(lowest) PGS sibling is more likely to have the largest (smallest) phenotypic value. Also, the
ordering of siblings is more likely to be correct than random chance would produce. Table
S4 summarizes these results.
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Sibling Trios Fraction Fraction Fraction
Trait N trios High called Low Called Order Called

Body Mass Index 975 0.418 (0.004) 0.429 (0.004) 0.229 (0.002)
Educational Attainment 966 0.350 (0.009) 0.374 (0.006) 0.191 (0.007)
Body Fat Percentage 934 0.421 (0.005) 0.413 (0.006) 0.230 (0.009)
Fluid Intelligence 188 0.391 (0.008) 0.400 (0.015) 0.216 (0.010)
Heel Bone Density 440 0.495 (0.006) 0.464 (0.009) 0.248 (0.009)
Standing Height 971 0.556 (0.002) 0.538 (0.006) 0.345 (0.008)
Platelet Count 913 0.517 (0.006) 0.504 (0.005) 0.306 (0.004)
Random Trios Fraction Fraction Fraction

Trait N trios High called Low Called Order Called
Body Mass Index 975 0.454 (0.010) 0.478 (0.004) 0.267 (0.007)

Educational Attainment 966 0.425 (0.013) 0.432 (0.006) 0.233 (0.019)
Body Fat Percentage 934 0.459 (0.010) 0.445 (0.005) 0.257 (0.007)
Fluid Intelligence 188 0.462 (0.022) 0.415 (0.016) 0.268 (0.012)
Heel Bone Density 440 0.517 (0.005) 0.515 (0.007) 0.315 (0.007)
Standing Height 971 0.590 (0.003) 0.596 (0.003) 0.382 (0.001)
Platelet Count 913 0.569 (0.003) 0.554 (0.008) 0.350 (0.006)

Table S4: Polygenic predictors tested on sibling trios and random trios. The first column
gives the number of trios, columns 2-4 give the probabilities that the largest / smallest
phenotype value, and order, are correctly identified using PGS. Quantities in parenthesis are
standard deviations. Note that all quantities exceed the expected values of 1/3 (0.33) for
selection and 1/6 (0.167) for rank ordering.
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F Phenotype Quality Control

Case/Control Phenotypes

In this section, we describe how cases and controls are identified. We extract the follow-
ing conditions and use as a case/control phenotype: Atrial Fibrillation, Asthma, Basal Cell
Carcinoma, Breast Cancer, Coronary Artery Disease, Gallstones, Glaucoma, Gout, Heart
Attack, High Cholesterol, Hypothyroidism, Hypertension, Malignant Melanoma, Prostate
Cancer, Testicular Cancer, Type 1 Diabetes and Type 2 Diabetes. All conditions were iden-
tified using the fields "Non cancer illness code (self-reported)", "Cancer code (self-reported)"
and "Diagnoses primary ICD10" or "Diagnoses secondary ICD10". All individuals who are
not labelled as a case for a specific condition are then labelled as a control.

We used the field "Non-Cancer Illness Code (self-reported)" to identify cases and controls for
the following: Atrial Fibrillation, Asthma, Gallstones, Glaucoma, Gout, Heart Attack, High
Cholesterol, Hypothyroidism, Hypertension. Specifically, cases were identified by selecting
individuals with the codes in "Non cancer illness code (self-reported)": asthma:1111, atrial
fibrillation:1471, gallstones:1162, glaucoma:1277, gout:1466, heart attack:1075, high choles-
terol:1473, hypothyroidism/myxoedema:1226, hypertension:1065. We used codes in the the
field "Cancer code (self-reported)" to identify cases of the following: breast cancer:1002, basal
cell carcinoma:1061, malignant melanoma:1059, prostate cancer:1044, testicular cancer:1045.

To select Type 1 Diabetes cases, we identify individuals based on a doctor’s diagnosis using
the fields "Diagnoses primary ICD10" or "Diagnoses secondary ICD10". Specifically, any
individual with ICD10 code E10.0-E10.9 (Insulin-dependent diabetes mellitus) in the Main
Diagnosis or Secondary Diagnosis field is labelled as a case. To select Type 2 Diabetes cases
in UKB, we identify individuals based on a doctor’s diagnosis using the fields Diagnoses
primary ICD10 or Diagnoses secondary ICD10. Specifically, any individual with ICD10 code
E11.0-E11.9 (Non-insulin-dependent diabetes mellitus) in the Main Diagnosis or Secondary
Diagnosis field is labelled as a case. To select for Coronary Artery Disease, we select based
on ICD10 criterion identified in [2], specifically we select any individual with any of the
following ICD10 codes (corresponding to various diagnoses of angina, myocardial infarctions
or ischaemic heart disease): I20.0, I20.1, I20.8, I20.9, I21.0 - I21.4, I21.9, I21.X, I22.0, I22.1,
I22.8, I22.9, I23.5, I23.6, I23.8, I24.0, I25.0 - I25.6, I25.8, I25.9.

After identifying cases and controls in the whole UKB population, we restricted our training
set to self-reported white and our testing set to self-reported white but within a sibling
pair. For sex-specific traits (breast cancer / prostate cancer), we restricted our analysis to
individuals who are of the appropriate sex. From the training set, we then select a random
500 cases and 500 controls to use for validation and model selection - with the exception of
breast, prostate and testicular cancers where we choose 100/100 for validation due to the
smaller training set. The number of cases and controls identified in this manner for training
/ validation are listed in Table S5. The number of cases / controls for the final corresponding
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test sets are listed in the main body.

Condition Cases (train) Controls (train) Cases (val) Controls (val)
Asthma 48,875 369,158 500 500

Atrial Fibrillation 3,095 414,938 500 500
Basal Cell Carcinoma 3,795 414,238 500 500

Breast Cancer * 9,459 216,339 100 100
Coronary Artery Disease 11,264 406,769 500 500

Gallstones 6,769 411,264 500 500
Glaucoma 4,264 413,769 500 500

Gout 5,712 412,321 500 500
Heart Attack 9,455 408,578 500 500

High Cholesterol 53,603 364,430 500 500
Hypertension 110,893 307,140 500 500

Hypothyroidism 20,518 397,515 500 500
Malignant Melanoma 2,911 415,122 500 500
Prostate Cancer * 3,275 189,560 100 100
Testicular Cancer * 650 192,185 100 100
Type 1 Diabetes 2,345 415,688 500 500
Type 2 Diabetes 18,097 399,936 500 500

Table S5: Table of number of cases and controls in training and testing sets. Traits with (*) are trained
and tested only on a single sex.

Quantitative phenotypes

In this section, we describe how quantitative traits are standardized before training. We focus
on Standing Height, Body Mass Index, Body Fat percentage, Heel Bone Mineral Density,
Platelet Count, Educational Attainment and Fluid Intelligence score. For Heel Bone Mineral
Density, we used field 3148 (there are several other possible fields that could be combined
for this - i.e. 3148 / 4105 / 4124 / etc.).

For all traits, we calculate the mean and standard deviation for Genetically British males
/ females and then z-score the phenotypes appropriately. After z-scoring based on sex, we
fit a trendline to everyone born between 1938 and 1968, this is then subtracted from the
z-scored values. This is done to correct for any population level changes over time. Educa-
tional Attainment was converted into a quantitative trait using the ISCED scale, similar to
that used by the SSGAC collaboration [8]. Specifically, the codes in field "Qualifications"
were converted to to years of education via the following mapping: (1,2,3,4,5,6,-7,-3) ->
(20,13,10,10,19,15,7,NA). All other quantitative traits were read directly from their corre-
sponding fields without conversion. All quantitative phenotypes are adjusted in this manner
and we use this sex / age adjusted phenotype in all calculations. The number of samples in
training, validation and testing are listed in table S6.
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Trait Train Set Validation Set Testing Set ρ(y, PGS)test
Body Mass Index 416,630 1,000 39,927 0.342 (0.005)

Body Fat Percentage 410,413 1,000 39,395 0.327 (0.001)
Bone Mineral Density 238,703 1,000 23,980 0.427 (0.001)

Educational Attainment 414,241 1,000 39,735 0.251 (0.002)
Fluid Intelligence 156,351 1,000 14,189 0.259 (0.002)

Height 415,455 1,000 39,784 0.621 (0.001)
Platelet Count 406,451 1,000 38,951 0.487 (0.002)

Table S6: Table of number of samples used in training, validation and testing sets. Samples with missing
values are excluded. The average correlation between phenotypes and PGS for the testing set is given.

G Model Training Algorithm

In all calculations, we use the implementation of LASSO regression (Least Absolute Shrink-
age and Selection Operator) found in Scikit Learn for Python 3 [9]. Given the large datasets,
we use the lassopath algorithm which outputs the set of λ and ~β along the regularization
pathway so we can choose λ on our own validation sets. For completeness, we outline the
general optimization procedure executed to obtain the SNP weights.

First, we perform single marker regression using the PLINK software [3]. From this, the
top 50k SNPs by p-value are selected and this subset of SNPs is used in the LASSO run.
The BED matrix is loaded into memory using the Pandas-Plink package [10]. The data
is standardized and lassopath is run with nstep = 200 and eps = 0.04 (eps = 0.01 for
continuous traits).

Given a set of samples i = 1, 2, ..., n with a set of p SNPs, the phenotype yi and state of the
jth SNP, Xij, are observed. Xij is an n x p matrix which contains the number of copies of
the minor allele and any missing values are replaced with the SNP average. L1 penalized
regression, LASSO, seeks to minimize the objective function

Oλ(~β) =
1

2
||~y −X~β||2 + nλ||~β||1 (S1)

where |~v|1 =
∑n

i |vi| is the L1 norm, ||~v|| =
∑n

i v
2
i is the L2 norm and λ is a adjustable

hyperparameter. The solution is given in terms of the soft-thresholding function as

S(z, γ) = sgn(z)max(|z| − γ, 0)

β∗j =
1∑n

i=1X
2
ij

S

(
n∑
i=1

[
Xijyi −

∑
k 6=j

XijXikβk

]
, nλ

)
(S2)
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The penalty term affects which elements of ~β have non-zero entries. The value of λ is
first chosen to be the maximum value such that all βi are zero, and it is then decreased,
allowing more nonzero components in the predictor. For each value of λ, ~β∗(λn) is ob-
tained using the previous values of ~β∗(λn−1) (warm start) and coordinate descent. The
Donoho-Tanner phase transition [11] describes how much data is required to recover the true
nonzero components of the linear model and suggests, e.g., for SNP heritability h2 ∼ 0.5
that we expect to recover the true signal with s SNPs when the number of samples is
n ∼ 30s − 100s (see [12, 13]). For a more complete description of the algorithm, consult
the documentation available at https://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.lasso_path.html.

H High vs Normal risk call rates.

Here we focus pairs in which one member is a case and the other is a control. We further
restrict to the subset of pairs where one sib has a high PRS score and the other a PRS score
in the normal range (i.e., less than +1 SD above average). In other words, exactly one of the
pair is a high risk outlier, and we wish to know how often it is the outlier that is affected.

As we restrict to sibling pairs with a larger risk differential, the predictions for which sibling
is the case become more accurate (albeit noisy). In other words: given that one of two
siblings is affected, when one sibling is normal risk in PRS but the other sibling is in the top
few percentile of risk - the larger PRS sibling will be increasingly likely to be the affected
sibling as the difference in PRS becomes larger.

We repeat this calculation for non-related individuals. We generate random pairs of non-
sibling individuals with exactly one case per pair. Further, we consider the subset of pairs
in which one member of the pair is normal risk (PRS < +1 SD), while the other is high risk.
We then compute the probability that the high risk individual is the affected individual.
Results are given in table ?? and in Figures S3, S4, S5, S6, S7.

The error estimates in the figures are generated as follows. We display the larger of two
contributions to the uncertainty in determining the fraction called correctly (vertical axis):
one results from the SD among the 5 predictors we generate for each trait, the other results
from sampling error (i.e., having only a finite number of pairs in which to compute the
fraction called correctly). This is known as the Clopper–Pearson interval; in the case that
the probability p of calling the case correctly is not too close to 0 or 1, and N pairs used,
the one standard deviation sampling uncertainty is given by roughly

√
p(1− p)/N .
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Figure S3: Predictors tested on random (non-sibling) pairs and affected sibling pairs with a
single case. One individual is high risk (with z-score given on the horizontal axis) and the
other is normal risk (PRS < +1 SD). The error estimates are explained in the text. This plot
was made using pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S4: Predictors tested on random (non-sibling) pairs and affected sibling pairs with a
single case. One individual is high risk (with z-score given on the horizontal axis) and the
other is normal risk (PRS < +1 SD). The error estimates are explained in the text. (the
label “Khera” distinguishes the LASSO generated predictor vs that from ref [2].) This plot
was made using pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S5: Predictors tested on random (non-sibling) pairs and affected sibling pairs with a
single case. One individual is high risk (with z-score given on the horizontal axis) and the
other is normal risk (PRS < +1 SD). The error estimates are explained in the text. This plot
was made using pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S6: Predictors tested on random (non-sibling) pairs and affected sibling pairs with a
single case. One individual is high risk (with z-score given on the horizontal axis) and the
other is normal risk (PRS < +1 SD). The error estimates are explained in the text. This plot
was made using pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S7: Predictors tested on random (non-sibling) pairs and affected sibling pairs with a
single case. One individual is high risk (with z-score given on the horizontal axis) and the
other is normal risk (PRS < +1 SD). The error estimates are explained in the text. This plot
was made using pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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I Population prevalence changes

In this appendix, we present the results on how population prevalence varies as we exclude
high and low risk individuals from the group. The population prevalence can be interpreted
as the probability that a randomly selected individual will develop the condition, conditional
on either having 1. PRS below some upper limit (left panel in figures) or 2. PRS above some
lower limit (right panel in figures). These are shown in Figures S8, S9, S10, S11, S12, S13,
S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26.

We demonstrate the utility of PRS in the context of a known family history by repeating
this calculation on a restricted ASP testing set. We compute the same disease prevalence
but using only individuals with an affected sibling. In this test set, all cases and all controls
have an affected sibling (see earlier discussion). The values therefore reflect an overall higher
risk due to the family history of the individuals.

Here we illustrate for each disease studied, how the population prevalence changes by ex-
cluding individuals with PRS above / below a threshold given on the horizontal axis.
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Figure S8: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk enhance-
ment in a high PRS population. Top figures are results in the general population, bottom
figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with PRS among
individuals with an affected sib). Phenotype is Asthma. This plot was made using pyplot
v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S9: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk enhance-
ment in a high PRS population. Top figures are results in the general population, bottom
figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with PRS among
individuals with an affected sib). Phenotype is Atrial Fibrillation. This plot was made using
pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S10: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk enhance-
ment in a high PRS population. Top figures are results in the general population, bottom
figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with PRS among
individuals with an affected sib). Phenotype is Basal Cell Carcinoma. This plot was made
using pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html

22



Figure S11: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk enhance-
ment in a high PRS population. Top figures are results in the general population, bottom
figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with PRS among
individuals with an affected sib). Phenotype is Breast Cancer. This plot was made using
pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S12: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk en-
hancement in a high PRS population. Top figures are results in the general population,
bottom figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with
PRS among individuals with an affected sib). Phenotype is Breast Cancer with PRS gen-
erated by the predictor from [2]. This plot was made using pyplot v3.2.1 under license
https://matplotlib.org/3.2.1/users/license.html
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Figure S13: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk enhance-
ment in a high PRS population. Top figures are results in the general population, bottom
figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with PRS among
individuals with an affected sib). Phenotype is Coronary Artery Disease. This plot was made
using pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S14: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk en-
hancement in a high PRS population. Top figures are results in the general population,
bottom figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with
PRS among individuals with an affected sib). Phenotype is Coronary Artery Disease with
PRS generated from the predictor in [2]. This plot was made using pyplot v3.2.1 under
license https://matplotlib.org/3.2.1/users/license.html
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Figure S15: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk enhance-
ment in a high PRS population. Top figures are results in the general population, bottom
figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with PRS among
individuals with an affected sib). Phenotype is Type 1 Diabetes. This plot was made using
pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S16: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk enhance-
ment in a high PRS population. Top figures are results in the general population, bottom
figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with PRS among
individuals with an affected sib). Phenotype is Type 2 Diabetes. This plot was made using
pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html

28



Figure S17: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk enhance-
ment in a high PRS population. Top figures are results in the general population, bottom
figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with PRS among
individuals with an affected sib). Phenotype is Gallstones. This plot was made using pyplot
v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S18: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk enhance-
ment in a high PRS population. Top figures are results in the general population, bottom
figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with PRS among
individuals with an affected sib). Phenotype is Glaucoma. This plot was made using pyplot
v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S19: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk enhance-
ment in a high PRS population. Top figures are results in the general population, bottom
figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with PRS among
individuals with an affected sib). Phenotype is Gout. This plot was made using pyplot v3.2.1
under license https://matplotlib.org/3.2.1/users/license.html
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Figure S20: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk en-
hancement in a high PRS population. Top figures are results in the general population,
bottom figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with
PRS among individuals with an affected sib). Phenotype is Heart Attack. This plot was
made using pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S21: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk enhance-
ment in a high PRS population. Top figures are results in the general population, bottom
figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with PRS among
individuals with an affected sib). Phenotype is High Cholesterol. This plot was made using
pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S22: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk en-
hancement in a high PRS population. Top figures are results in the general population,
bottom figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with
PRS among individuals with an affected sib). Phenotype is Hypertension. This plot was
made using pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S23: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk enhance-
ment in a high PRS population. Top figures are results in the general population, bottom
figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with PRS among
individuals with an affected sib). Phenotype is Hypothyroidism. This plot was made using
pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S24: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk enhance-
ment in a high PRS population. Top figures are results in the general population, bottom
figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with PRS among
individuals with an affected sib). Phenotype is Malignant Melanoma. This plot was made
using pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S25: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk enhance-
ment in a high PRS population. Top figures are results in the general population, bottom
figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with PRS among
individuals with an affected sib). Phenotype is Prostate Cancer. This plot was made using
pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S26: Exclusion of individuals above (left panel) and below (right panel) a z-score
threshold (horizontal axis) with resulting group prevalence shown on the vertical axis. The
left panel shows risk reduction in a low PRS population, the right panel shows risk en-
hancement in a high PRS population. Top figures are results in the general population,
bottom figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with
PRS among individuals with an affected sib). Phenotype is Testicular Cancer – there was
not enough data for the lower panels. This plot was made using pyplot v3.2.1 under license
https://matplotlib.org/3.2.1/users/license.html
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J Sibling Pair vs Random Pair score-phenotype differ-
ence correlations

In this section we show the correlation between phenotype and score difference, ρ(∆PGS,∆y),
for pairs of siblings and for pairs of non-sibling individuals. These are shown in Figures S27,
S28.

Figure S27: Difference in phenotype (vertical axis) and difference in polygenic score
(horizontal axis) for pairs of individuals. Red dots are sibling pairs and blue dots
are random (non-sibling) pairs. This plot was made using pyplot v3.2.1 under license
https://matplotlib.org/3.2.1/users/license.html
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Figure S28: Difference in phenotype (vertical axis) and difference in polygenic score
(horizontal axis) for pairs of individuals. Red dots are sibling pairs and blue dots
are random (non-sibling) pairs. This plot was made using pyplot v3.2.1 under license
https://matplotlib.org/3.2.1/users/license.html
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K Large phenotypic difference call rates in siblings vs
non-sibling.

We consider accuracy of rank order prediction as a function of actual phenotype difference
in sets of pairs. The identification of pairs with phenotypic difference larger than x (value
shown on horizontal axis of figures) is based upon the average score value across the five
predictors. This selects the sub-cohort with large phenotypic difference. Then the fraction
called correct is done for each of the 5 polygenic scores. The quoted error is then computed
as the larger of the standard deviation resulting from the 5 different predictors, and the
statistical sampling error in estimating the probability p in a binomial distribution. This is
done for sibling pairs and randomly paired individuals. This is shown in Figures S29,S30.

Figure S29: Probability of PGS correctly identifying the individual with larger phenotype
value (vertical axis). Horizontal axis shows absolute difference in phenotypes. The blue line
is for sibling pairs, the orange line is for randomized (non-sibling) pairs. This plot was made
using pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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Figure S30: Probability of PGS correctly identifying the individual with larger phenotype
value (vertical axis). Horizontal axis shows absolute difference in phenotypes. The blue line
is for sibling pairs, the orange line is for randomized (non-sibling) pairs. This plot was made
using pyplot v3.2.1 under license https://matplotlib.org/3.2.1/users/license.html
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