

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Temporal trends and geographical disparities in comprehensive stroke center capabilities in Japan from 2010 to 2018

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-033055
Article Type:	Research
Date Submitted by the Author:	22-Jul-2019
Complete List of Authors:	KUROGI, AI; Graduate School of Medical Sciences, Kyushu University, neurosurgery Nishimura, Ataru ; Graduate School of Medical Sciences, Kyushu University, neurosurgery Nishimura, Kunihiro; National Cerebral and Cardiovascular Center, Cerebrovascular Medicine Kada, Akiko ; National Hospital Organization Nagoya Medical Center, Department of Clinical Trials and Research Onozuka, Daisuke ; Kyushu University, Hagihara, Akihito; Kyusyu University Graduate School of Medicine, Department of Health Services Management and Policy Ogasawara, Kuniaki; Iwate Medical University School of Medicine, Department of Neurosurgery Shiokawa, Yoshiaki ; Kyorin University Hospital, Department of Neurosurgery Kitazono, Takanari; Kyushu University, Neurosurgery Iihara, Koji ; Graduate School of Medical Sciences, Kyushu University, neurosurgery
Keywords:	Stroke < NEUROLOGY, comprehensive stroke center, trends

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

Temporal trends and geographical disparities in comprehensive stroke center capabilities in Japan from 2010 to 2018

Ai Kurogi¹, Ataru Nishimura¹, Kunihiro Nishimura², Akiko Kada³, Daisuke Onozuka², Akihito Hagihara², Kuniaki Ogasawara⁴, Yoshiaki Shiokawa⁵, Takanari Kitazono², Koichi Arimura¹, and Koji Iihara¹, on behalf of the J-ASPECT Study Collaborators

¹Department of Neurosurgery, and ⁶Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan ²Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Suita, Japan

³Department of Clinical Research Management, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan ⁴Department of Neurosurgery, Iwate Medical University, Morioka, Japan ⁵Department of Neurosurgery, Kyorin University, Mitaka, Japan

Correspondence to: Koji Iihara; kiihara@ns.med.kyushu-u.go.jp Keywords: stroke, comprehensive stroke center, care quality Word count: 1764

ABSTRACT

Objectives: Comprehensive stroke center (CSC) capabilities are associated with reduced in-hospital mortality due to acute stroke. However, it remains unclear whether there are improving trends in the CSC capabilities, or how hospital-related factors determine quality improvement. This study examined whether CSC capabilities changed in Japan between 2010 and 2018, and whether any changes were influenced by hospital characteristics.

Design: A hospital-based cross-sectional study.

Setting: We sent out questionnaires to the training institutions of the Japan Neurosurgical Society and Japan Stroke Society in 2010, 2014 and 2018.

Participants: 749 in 2010, 532 in 2014 and 786 in 2018 hospitals that participate in the J-ASPECT Study.

Main outcome measures: CSC capabilities were assessed using the validated scoring system (CSC score:1-25 points) in 2010, 2014, and 2018 survey. The effect of hospital characteristics was examined using multiple logistic regression analysis.

Results: Among the 323 hospitals that responded to all surveys, the implementation of

14 recommended items increased. The CSC score (median, interquartile range) was 16

(13-19), 18 (14-20), 19 (15-21), for 2010, 2014, and 2018, respectively (p for trend<

0.001). There was a \geq 20% increase in six items (e.g. endovascular physicians, stroke

unit, and interventional coverage 24/7), and a $\leq 20\%$ decrease in community education.

A lower baseline CSC score (odds ratio 0.82, [95% confidence interval] 0.75-0.9), the

number of beds \geq 500 (3.9 [1.2–13.0]), and the number of stroke physicians (7-9) (2.6

[1.1-6.3]) was associated with improved CSC capabilities, independent of geographical location.

Conclusions: There was a significant improvement in CSC capabilities between 2010 and 2018, which was mainly related to the availability of endovascular treatment and multidisciplinary care. Hospital characteristics may be considered to further improve systems of stroke care in light of a limited medical resources in a defined area.

Strengths and limitations of this study:

• A large-scale, representative hospitals of Japan provided data on temporal trends in the CSC capabilities for this cross-sectional study.

• Hospitals actively working to improve stroke care are more likely to respond to the questionnaire, which may lead to information bias.

• The CSC score was a significant composite measure to influence in-hospital mortality of acute stroke, but little information was established on the influence of specific items.

INTRODUCTION

Stroke is the third leading cause of death and a leading cause of long-term disability in Japan. Primary and comprehensive stroke centers (CSCs) were developed to provide optimal implementation of intravenous recombinant tissue plasminogen activator (rt-PA) infusion and more intensive stroke care that includes endovascular and neurosurgical treatment. ^{1, 2} Organized care in a stroke unit is associated with better quality of care, and reduced death and dependency. ^{3, 4} Previous studies showed that patient outcomes associated with stroke and cardiovascular diseases are influenced by the hospital case volume, ^{5, 6} number of physicians, and geographical locations of the facility ⁷. Progressive rural-urban disparities in acute stroke care has been reported in the United States, ⁸ but it is not known whether such disparity exists in other countries.

In 2010, we launched the J-ASPECT Study, a nationwide survey of acute stroke care capacity for proper designation of a comprehensive stroke center in Japan. ⁹ ¹⁰ The J-ASPECT stroke database is a hospital-based, Japan-wide stroke registry. We demonstrated significant geographical differences in CSC capabilities in 2010,⁹ and that CSC capabilities of a facility are associated with reduced in-hospital mortality from acute stroke.¹⁰ Thus continuous monitoring of the CSC capabilities may be clinically meaningful to improve stroke outcomes. ^{10, 11} Since 2010, we have conducted nationwide benchmark analyses to allow participating hospitals to facilitate improvement of stroke care. However, it remains unclear whether there are improving trends in the CSC capabilities, or how hospital-related factors determine quality improvement.

AIMS

We aimed to examine whether CSC capabilities in Japan changed from 2010 to 2018 and whether any recorded changes were influenced by hospital characteristics.

METHODS

Institutional survey of CSC capabilities

The J-ASPECT Study was launched in collaboration with the Japan Neurosurgical Society and Japan Stroke Society, and participation was voluntary. In this study, we sent out questionnaires to the training institutions of both Societies in 2010, 2014 and 2018 to assess CSC capabilities. The CSC capabilities of each facility were assessed with a validated scoring system (CSC score), using 25 items recommended by the Brain Attack Coalition. (2, 5-7)

All items were classified into five categories: personnel, diagnostic, specific expertise, infrastructure, and education. A score of 1 was assigned for meeting each item, yielding a total CSC score of up to 25. Content, constructs, and predictive validity of this scoring system have been reported.^{10, 11}

Other hospital characteristics

Hospital characteristics including number of beds, annual stroke hospitalizations, stroke physicians, academic status, adoption of the Diagnosis Procedure Combination (DPC)-based payment system ⁹, and geographic location were obtained from the 2010 survey. The geographic location was classified according to urban employment areas (UEAs) divided into Metropolitan Employment Areas (MEAs) and Micropolitan

BMJ Open

Statistical analysis

To explore trends in CSC capabilities, we examined implementation of the 25 items and the CSC score in the 323 consecutively participating hospitals that responded to all surveys. To examine the influence of hospital-related factors on the change in CSC capabilities, we divided the hospitals into those with or without a temporal improvement of CSC score (≥1point increase between 2010 and 2018). Hospital characteristics were compared between the two groups with means or medians for continuous variables and proportions for categorical variables, using Chi-square tests

for categorical variables and a Student's t-test for continuous variables.

To explore the influence of hospital-related factors on temporal improvement of CSC capabilities, multiple logistic regression models were used. To assess selection bias, we compared hospital characteristics between consecutively participating hospitals with the others. All analyses were performed using the JMP Statistical Version 12 Software (SAS Institute Inc., Cary, NC, USA). P values of <0.05 were considered statistically significant.

Ethics approval

The study was approved by the Kyushu University Institutional Review Board, which waived the requirement for individual informed consent.

RESULTS

Trends in the CSC capabilities from 2010 to 2018

A total of 749, 532 and 786 hospitals responded to the survey in 2010, 2014, and 2018, respectively. The implementation rates of each item are shown in Table 1a. The median (interquartile range) of the CSC scores was 14 (11-18), 17 (13-19), and 17 (12-20.3), for each year, respectively (Table 1a).

Among consecutively participating hospitals, there was an increase in implementation rates of the 14 items, and the CSC scores were (median, interquartile range): 16 (13-19), 18 (14-20), 19 (15-21), for 2010, 2014, and 2018, respectively (p for trend<0.001) (Table 1b). A marked increase (\geq 20%) was noted in six items related to endovascular treatment (endovascular physicians and interventional coverage 24/7) and multidisciplinary care (stroke unit, specialists of emergency medicine and physical medicine/rehabilitation, and stroke rehabilitation nurses).

In addition, a moderate increase ($\leq 20\%$) was noted in eight items: 24/7 availability of diffusion-weighted magnetic resonance imaging, digital and CT angiography, carotid

BMJ Open

ultrasound, coiling of an intracranial aneurysm, and implementation of stroke registry. In contrast, there was a marked decrease ($\leq 20\%$) in community education.

Geographical differences in CSC capabilities between 2010 and 2018

Among the seven items with significant geographical differences in 2010, all items in the personal component still showed a gap, despite overall improvement at all locations in 2018 (Table 2). In contrast, geographical differences in all infrastructure items diminished with overall improvement and a marked improvement in the McEA in 2018.

Over the study period, geographical differences emerged in intra-arterial reperfusion therapy and the number of specialists in physical medicine/rehabilitation. The remaining item, coiling of intracranial aneurysms, showed no changes.

Influence of hospital characteristics on change in CSC capabilities

Among consecutively participating hospitals, 23 were excluded due to missing data. Temporal improvement of CSC capabilities between 2010 and 2018 was noted in 198 hospitals (66.0%). As for hospital characteristics, there were significant differences in bed number (p=0.016) and CSC score in 2010 (p=0.032) between the two groups on univariable analysis (Table 3).

In the logistic regression analyses, the following variables had an association with temporal improvement of CSC capabilities (Table 4): a lower baseline CSC score (odds ratio 0.82 [95% Confidence Interval 0.75-0.9]), bed volume \geq 500 (3.90, [1.17–13.0]),

and moderate (7-9) number of stroke physicians (2.63, [1.10-6.27]). In contrast, geographical location, academic status, DPC-based payment system, and case volume of stroke did not show a significant association.

Selection bias

The response rates in 2010, 2014, and 2018 surveys were 55.0%, 39.7%, and 49.9%, respectively. There were significant differences in the hospital characteristics between hospitals that consecutively participated in all three surveys and the others (supplementary table 1). Consecutively participating hospitals were more likely to be MEA-central, academic, have a larger number of hospital beds, higher annual stroke admission rate, and more stroke physicians.

DISCUSSION

We found an overall improvement in CSC capabilities between 2010 and 2018, and different trends in geographical disparities based on the component of items. Hospitals with a higher number of hospital beds, intermediate number of stroke physicians, and a lower baseline CSC score had a higher likelihood of improving their CSC capabilities.

Temporal Changes to CSC capabilities

In addition to a significant increase in CSC capabilities, there was a marked increase in implementation of the items, mainly related to endovascular treatment and multidisciplinary care. Of note, we previously showed that interventional 24/7 coverage

BMJ Open

and the presence of physical medicine/rehabilitation specialists were associated with reduced in-hospital mortality for those with subarachnoid hemorrhage, whereas availability of neurologists and stroke units were associated with reduced in-hospital mortality and better functional outcomes, respectively, for those with ischemic stroke.¹¹

These findings are consistent with prior studies, which showed admission to a stroke unit with organized stroke care is associated with better quality of care and outcomes in those who experience an acute stroke. ¹² ³ The use of mechanical thrombectomy for large vessel acute ischemic stroke (AIS) has been rapidly increasing, but only 3.3% out of 15.1% potentially eligible AIS patients received it in 2016. ¹³ Improvement of CSC capabilities, especially related to endovascular treatment and multidisciplinary care should contribute to improved quality of care and outcomes in patients with acute stroke.

Decreased implementation of community education may be explained by limited availability of stroke physicians for this purpose due to increased burden of stroke care (e.g. emergent endovascular call). ¹⁴ Stroke educational campaigns have the potential to improve knowledge and awareness, but public campaigns are usually expensive and short-lived and may not achieve any significant improvement. ¹⁵

Diminished and emerging geographical disparity

Determining rural/urban differences in CSC capabilities may help in the development of targeted interventions to improve stroke care and outcomes in rural areas. We found different trends in implementation of the items between personnel and infrastructure components. Rural areas are associated with reduced access to optimal stroke care and a lower use of acute stroke intervention.¹⁶ Diminished disparities of implementation of

BMJ Open

stroke units in this study might result in a higher use of rt-PA infusion in rural areas.¹⁷

Emerging disparities in implementation of intraarterial reperfusion therapy deserves some attention. Since the evidence regarding acute endovascular reperfusion therapy efficacy was established in 2015, ¹⁸ relocation of relevant specialists might have occurred from rural to urban areas to meet urgent needs for more widespread use. In addition, a high prevalence of neurointerventional physician burnout may require centralization of acute endovascular reperfusion treatment. ¹⁹

Influence of hospital-related factors on improvement of CSC capabilities

Our study showed the impact of specific hospital-related factors on improvement of CSC capabilities, which may be useful to determine which hospitals to target to improve CSC capabilities in what regions. In rural areas, where medical resources are limited, centralization of acute stroke care in large hospitals may be needed. It is unclear why the highest quartile of physician volumes was not a significant factor for improvement of CSC capabilities; however, the answer may lie in the presence of a ceiling effect for further improvement.

Limitations

There are several limitations to this study. First, this study may have included biased information. Hospitals actively working to improve stroke care are more likely to respond to the questionnaire. Second, the CSC score was a significant composite measure to influence in-hospital mortality of acute stroke, but little information was established on the influence of specific items. Third, we did not determine the influence of unmeasured confounders. Further research is required to examine the influence of

 CSC capability improvement on outcomes of patients who experience ischemic and hemorrhagic stroke.

Conclusions

The CSC capabilities in Japan improved between 2010 and 2018, especially related to endovascular treatment and multidisciplinary care. Hospital characteristics may be considered to further improve systems of stroke care in light of limited medical resources in a defined area.

Patient consent for publication

Data availability statement

We have documented the data, methods, and materials used to conduct the research in this report. The individual patient data are not publicly available because of the memorandum signed by the director of the participating hospitals and the principal investigator of the J-ASPECT Study group.

Authors and contributors

A Kurogi and KI drafted the manuscript. AN, KN, A Kada, DO, AH and KI were involved in study concept, design and obtaining funding. A Kada, DO, AH, KO, YS, TK, KA and KI were involved in analysis and of data. KO, YS, TK and KI were involved in acquisition of data. All authors reviewed the study report, made comments or suggestions on the manuscript drafts, and approved the final version.

Acknowledgments

We thank the Japan Neurosurgical Society and the Japan Stroke Society for their Collaboration.

Declaration of Conflicting Interests

The Authors declare that there is no conflict of interest related to the submitted work.

Funding

The Grants-in-Aid from the Japanese Ministry of Health, Labour and Welfare and a KAKENHI grant (18H02914) from the Japan Society for the Promotion of Science.

P. C.

References

1. Alberts MJ, Hademenos G, Latchaw RE, et al. Recommendations for the establishment of primary stroke centers. Brain Attack Coalition. *JAMA* 2000;283:3102-9.

2. Alberts MJ, Latchaw RE, Selman WR, et al. Recommendations for Comprehensive Stroke Centers: A Consensus Statement From the Brain Attack Coalition. *Stroke* 2005;36:1597-616.

3. Collaboration SUT. Organised inpatient (stroke unit) care for stroke. Cochrane Database of Systematic Reviews 2013;Sep 11;(9):CD000197.

4. Bray BD, Ayis S, Campbell J, et al. Associations between the organisation of

BMJ Open

stroke services, process of care, and mortality in England: prospective cohort study. *BMJ* 2013;346:f2827.

5. Hall RE, Fang J, Hodwitz K, Saposnik G, Bayley MT. Does the Volume of Ischemic Stroke Admissions Relate to Clinical Outcomes in the Ontario Stroke System? *Circ Cardiovasc Qual Outcomes* 2015;8(6 Suppl 3):S141-7.

6. Ross JS, Normand SL, Wang Y, et al. Hospital volume and 30-day mortality for three common medical conditions. *N Engl J Med* 2010;362:1110-8.

7. Howard G, Kleindorfer DO, Cushman M, et al. Contributors to the Excess Stroke Mortality in Rural Areas in the United States. *Stroke* 2017;48:1773-8.

8. Gonzales S, Mullen MT, Skolarus L, Thibault DP, Udoeyo U, Willis AW. Progressive rural-urban disparity in acute stroke care. *Neurology* 2017;88:441-8.

9. Iihara K, Nishimura K, Kada A, et al. The impact of comprehensive stroke care capacity on the hospital volume of stroke interventions: a nationwide study in Japan: J-ASPECT study. *J Stroke Cerebrovasc Dis* 2014;23:1001-18.

Iihara K, Nishimura K, Kada A, et al. Effects of comprehensive stroke care capabilities on in-hospital mortality of patients with ischemic and hemorrhagic stroke:
 J-ASPECT study. *PLoS One* 2014;9:e96819.

11. Kada A, Nishimura K, Nakagawara J, et al. Development and validation of a score for evaluating comprehensive stroke care capabilities: J-ASPECT Study. *BMC Neurol* 2017;17:46.

12. Svendsen ML, Ehlers LH, Ingeman A, Johnsen SP. Higher stroke unit volume associated with improved quality of early stroke care and reduced length of stay. *Stroke* 2012;43:3041-5.

13. Smith EE, Saver JL, Cox M, et al. Increase in Endovascular Therapy in Get

With The Guidelines-Stroke After the Publication of Pivotal Trials. *Circulation* 2017;136:2303-10.

14. Williams MM, Wilson TA, Leslie-Mazwi T, et al. The burden of neurothrombectomy call: a multicenter prospective study. *J Neurointerv Surg* 2018.

15. Rasura M, Baldereschi M, Di Carlo A, et al. Effectiveness of public stroke educational interventions: a review. *Eur J Neurol* 2014;21:11-20.

16. Kapral MK, Austin PC, Jeyakumar G, et al. Rural-Urban Differences in Stroke Risk Factors, Incidence, and Mortality in People With and Without Prior Stroke. *Circ Cardiovasc Qual Outcomes* 2019;12:e004973.

17. Domino JS, Baek J, Meurer WJ, et al. Emerging temporal trends in tissue plasminogen activator use: Results from the BASIC project. *Neurology* 2016;87:2184-91.

18. Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. *The Lancet* 2016;387:1723-31.

19. Fargen KM, Arthur AS, Leslie-Mazwi T, et al. A survey of burnout and professional satisfaction among United States neurointerventionalists. *J Neurointerv* Surg 2019.

 BMJ Open

Table 1.

(a)

(b)

Components	Items	All participating he	ospitals		Consecutively par	ticipating hospitals		
		2010 (n=749)	2014 (n=532)	2018 (n=786)	2010 (n=323)	2014 (n=323)	2018 (n=323)	P value
Personnel	Neurologists	358 (47.8)	283 (53.2)	452 (57.5)	176 (54.5)	177 (54.8)	210 (65.0)	0.009
	Neurosurgeons	694 (92.7)	515 (96.8)	754 (95.9)	314 (97.2)	317 (98.1)	317 (98.1)	0.645
	Endovascular physicians	272 (36.3)	280 (52.6)	428 (54.4)	146 (45.2)	196 (60.7)	211 (65.3)	<0.001
	Emergency medicine	162 (21.6)	207 (38.9)	427 (54.3)	96 (29.7)	146 (45.2)	205 (63.5)	<0.001
	Physical medicine and rehabilitation	113 (15.1)	143 (26.9)	313 (39.8)	61 (18.9)	95 (29.4)	137 (42.4)	<0.001
	Rehabilitation therapy	742 (99.1)	529 (99.4)	779 (99.1)	321 (99.4)	321 (99.4)	321 (99.4)	1
	Stroke rehabilitation nurses	102 (13.6)	157 (29.5)	285 (36.2)	48 (14.9)	116 (35.9)	146 (45.2)	<0.001

BMJ Open

Diagnostic	СТ	742 (99.1)	527 (99.1)	763 (97.1)	322 (99.7)	322 (99.7)	322 (99.7)	1
	MRI with diffusion	647 (86.4)	504 (94.7)	732 (93.1)	291 (90.1)	311 (96.3)	314 (97.2)	< 0.001
	Digital cerebral angiography	602 (80.3)	476 (89.4)	638 (81.2)	288 (89.2)	305 (94.4)	299 (92.6)	0.043
	CT angiography	627 (83.7)	492 (92.5)	701 (89.2)	289 (89.5)	305 (94.4)	309 (95.7)	0.004
	Carotid duplex ultrasound	257 (34.3)	219 (41.2)	343 (43.6)	126 (39.0)	153 (47.4)	169 (52.3)	0.003
	Transcranial Doppler ultrasound	121 (16.2)	123 (23.1)	162 (20.6)	70 (21.7)	87 (26.9)	95 (29.4)	0.073
Specific Expertise	Carotid endarterectomy	603 (80.5)	458 (86.1)	613 (78.0)	292 (90.4)	288 (89.2)	284 (87.9)	0.599
	Clipping of intracranial aneurysm	685 (91.5)	504 (94.7)	706 (89.8)	314 (97.2)	315 (97.5)	314 (97.2)	0.961
	Hematoma removal/draining	689 (92.0)	505 (95.0)	718 (91.3)	315 (97.5)	315 (97.5)	314 (97.2)	0.96
	Coiling of	3360 (48.1)	332 (62.4)	448 (57.0)	192 (59.4)	223 (69.0)	223 (69.0)	0.001

 BMJ Open

	intracranial							
	aneurysm							
	Intra-arterial	498 (66.5)	398 (74.8)	510 (64.9)	245 (75.9)	261 (80.8)	247 (76.5)	
	reperfusion therapy	498 (00.5)	556 (74.8)	510 (04.5)	2+3 (13.3)	201 (00.0)	247 (10.3)	
Infrastructure	Stroke unit	132 (17.6)	202 (38.0)	342 (43.5)	74 (22.9)	136 (42.1)	171 (52.9)	
	Intensive care unit	445 (59.4)	362 (68.0)	467 (59.4)	214 (66.3)	224 (69.4)	220 (68.1)	
	Operating room	451 (60.2)	339 (63.7)	487 (62.0)	230 (71.2)	239 (74.0)	243 (75.2)	
	staffed 24/7)		, (02.0)		(/)		
	Interventional							
	services coverage	279 (37.3)	317 (59.6)	452 (57.5)	147 (45.5)	218 (67.5)	219 (67.8)	
	24/7							
	Stroke registry	235 (31.4)	260 (48.9)	349 (44.4)	133 (41.2)	172 (53.3)	164 (50.8)	
Education	Community	2(0(40,2))	144 (27.1)	204 (2(0)	199 (59 2)	01 (28 2)	08(20,2)	
Education	education	369 (49.3)	144 (27.1)	204 (26.0)	188 (58.2)	91 (28.2)	98 (30.3)	
	Professional	126 (59 2)	226 (61.2)	420 (54 6)	207 (64 1)	208 (64 4)	184 (57.0)	
	education	436 (58.2)	326 (61.3)	429 (54.6)	207 (64.1)	208 (64.4)	184 (57.0)	

Total CSC score

	BMJ Open						
median, (IQR)	14 (11, 18)	17 (13, 19)	17 (12, 20.3)	16 (13, 19)	18 (14, 20)	19 (15, 21)	
	14 (11, 18)						
			19				
	For peer review o	only - http://bmjopen	.bmj.com/site/about/gui	delines.xhtml			

 Table 2.

		a) 2010				b) 2018		
		MEA central (n=186)	MEA outlying (n=79)	McEA (n=35)	P value	MEA central (n=186)	MEA outlying (n=79)	McEA (n=35)
	Neurologists	115 (61.8)	44 (55.7)	10 (28.6)	0.001	133(71.5)	55(69.6)	14 (40.0)
	Neurosurgeons	181 (97.3)	77 (97.5)	34 (97.1)	0.995	183 (98.4)	78 (98.7)	34 (97.1)
	Endovascular physicians	101 (54.3)	31 (39.2)	8 (22.9)	<0.001	136 (73.1)	49 (62.0)	14 (40.0)
	Emergency medicine	57 (30.7)	25 (31.7)	7 (20.0)	0.406	122 (65.6)	54 (68.4)	16 (45.7)
Personnel	Physical medicine and rehabilitation	36 (19.4)	16 (20.3)	5 (14.3)	0.740	83 (44.6)	42 (53.2)	3 (8.6)
	Rehabilitation therapy	185 (99.5)	78 (98.7)	35 (100)	0.701	185 (99.5)	78 (98.7)	35 (100)
	Stroke	33 (17.8)	9 (11.4)	1 (2.9)	0.049	90 (48.4)	41 (51.9)	9 (25.7)

ľ	rehabilitation							
	nurses							
	СТ	185 (99.5)	79 (100.0)	35 (100.0)	0.735	185 (100)	79 (100)	35 (100)
	MRI with diffusion	167 (89.8)	69 (87.3)	33 (94.3)	0.530	179 (96.2)	78 (98.7)	35 (100)
Diagnostic	Digital cerebral angiography	165 (88.7)	70 (88.6)	34 (97.1)	0.303	168 (90.3)	76 (96.2)	33 (94.3)
	CT angiography	163 (87.6)	72 (91.1)	32 (91.4)	0.627	176 (94.6)	77 (97.5)	34 (97.1
	Carotid duplex ultrasound	71 (38.1)	30 (38.0)	14 (40.0)	0.977	95 (51.1)	48 (60.8)	15 (42.9
	TCD	43 (23.1)	18 (22.8)	3 (8.6)	0.146	54 (29.0)	29 (36.7)	5 (14.3)
	Carotid endarterectomy	173 (93.0)	68 (86.1)	32 (91.4)	0.196	166 (89.3)	71 (89.9)	28 (80)
Specific Expertise	Clipping of intracranial	183 (98.4)	75 (94.9)	34 (97.1)	0.280	181 (97.3)	77 (97.5)	34 (97.1
	aneurysm							
	Hematoma	183 (98.4)	76 (96.2)	34 (97.1)	0.546	182 (97,9)	77 (97.5)	35 (94.3

Page 23 of 31

 BMJ Open

	Coiling of							
	intracranial	119 (64.0)	46 (58.2)	13 (37.1)	0.012	143 (76.9)	49 (62.0)	
	aneurysm							
	Intra-arterial							
	reperfusion	142 (76.3)	58 (73.4)	27 (77.1)	0.859	153 (82.3)	57 (72.2)	
	therapy							
	Stroke unit	50 (26.9)	17 (21.5)	2 (5.7)	0.023	106 (57.0)	44 (55.7)	
	Intensive care	123 (66.1)	54 (68.4)	21 (60.0)	0.685	134 (72.0)	54 (68.4)	
	unit	125 (00.1)	54 (00.4)	21 (00.0)	0.005	134 (72.0)	JT (00.7)	
	Operating room	143 (76.9)	59 (74.7)	15 (42.9)	<0.001	148 (79.6)	56 (70.9)	
Infrastructure	staffed 24/7	145 (70.5)	57 (17.1)	15 (12.7)	-0.001		56 (70.5)	
	Interventional							
	services	103 (55.4)	30 (38.0)	6 (17.1)	<0.001	133 (71.5)	54 (68.4)	
	coverage 24/7							
	Stroke registry	81 (43.6)	31 (29.1)	15 (42.9)	0.808	93 (50.0)	47 (59.5)	
Education	Community	110 (59.1)	53 (67.1)	17 (48.6)	0.164	55 (29.6)	28 (35.4)	
	education	110 (37.1)	55 (07.1)	17 (40.0)	0.104	55 (27.0)	20 (33.7)	

BMJ Open

	Professional education	125 (67.2)	53 (67.1)	17 (48.6)	0.095	105 (56.5)	47 (59.5)	17 (48.6)
*MEA metropolitan, McEA microplitan								
	For peer review	only - http://bmjo	23 pen.bmj.com/site/a	bout/guidelines.xl	html			

 BMJ Open

Table 3.

		Improvement	No improvemer	nt
Hospital-related factors 2010	-	Hsps.	Hsps.	p value [#]
2010	(n=300)	(n=198)	(n=102)	
Hospital locations	Or .			0.478
MEA central	186 (62.0)	121 (61.1)	65 (63.7)	
MEA outlying	79 (26.3)	56 (28.3)	23 (22.6)	
McEA	35 (11.7)	21 (10.6)	14 (13.7)	
CSC score in 2010				
median (IQR)	16 (13, 19)	16 (13, 18)	17 (13, 20)	0.032
Academic hospital	58 (19.3)	42 (21.2)	16 (15.7)	0.251
DPC* hospital	225 (75.0)	145 (73.2)	80 (78.4)	0.325
Number of hospital beds				0.016
		24		
	E	http://bmianan.hmi.com	- /-:+- /- + /i- - :	la tora l

BMJ Open

1-99	17 (5.7)	9 (4.6)	8 (7.8)	
100-299	68 (22.7)	37 (18.7)	31 (30.4)	
300-499	96 (32.0)	62 (31.1)	34 (33.3)	
≧500	119 (39.7)	90 (45.5)	29 (28.4)	
Annual stroke case vo	olume			0.915
0-99	34 (11.3)	21 (10.6)	13 (12.8)	
100-199	73 (24.3)	47 (23.7)	26 (25.5)	
200-299	67 (22.3)	45 (22.7)	22 (21.6)	
≧300	126 (42.0)	85 (42.9)	41 (40.2)	
Number of stroke phy	sicians			0.139
median (IQR)	6 (3, 9)	6 (3.8, 9)	5 (3, 9.3)	
0-3	82 (27.3)	49 (24.8)	33 (32.4)	
4-6	68 (22.7)	43 (21.7)	25 (24.5)	
7-9	80 (26.7)	61 (30.8)	19 (18.6)	

 BMJ Open

*DPC: Diagnostic Procedure Combination, Hsp: hospital, # p value: Improvement vs. No improvement hospitals, MEA: metropolitan,

McEA: micropolitan

For peer review only

Table 4.

Hospital-related factors in 2010	Odds	95%CI	P value
Hospital locations			
MEA central	1.00		
MEA outlying	1.42	0.76-2.65	0.269
McEA	0.82	0.36-1.86	0.632
CSC score in 2010	0.82	0.75-0.90	< 0.001
Academic hospital	1.37	0.54-3.48	0.506
DPC hospital	0.77	0.41-1.42	0.397
Number of beds			
1-99	1.00		
100-299	1.16	0.37-3.66	0.794
	1.68	0.56-5.10	0.358

BMJ Open

1-99	1.00		
100-199	1.62	0.64-4.07	0.305
200-299	2.41	0.89-6.49	0.083
\geq 300	2.74	0.99-7.54	0.051
Number of stroke physicians			
0-3	1.00		
4-6	1.77	0.81-3.88	0.153
7-9	2.63	1.10-6.27	0.030
≥10	1.58	0.57-4.38	0.380

Supplemental material

eTable 1. Univariable analysis of association between consecutively participating hospitals in all three surveies and the others

.etween consecutively participating .

Page 31 of 31

 BMJ Open

eTable 1

	All Hsps. in 2010 (n=749)	Consecutively participating Hsps. (n=323)	Other Hsps. (n=426)	p value
Hospital location				<0.001
MEA central	381 (50.9)	193 (59.8)	188 (44.1)	
MEA outlying	239 (31.9)	83 (25.7)	156(36.6)	
McEA	102 (13.6)	38 (11.8)	64 (15.0)	
Unclassified	27 (3.6)	9 (2.8)	18 (4.2)	
CSC score at 2010				
median (IQR)	14 (11, 18)	16 (13, 19)	13 (10, 17)	<0.001
Academic hospital	90 (12.1)	61 (18.9)	29 (6.8)	<0.001
DPC hospital	553 (73.8)	237 (73.4)	316 (74.2)	0.804
Number of beds				<0.001
-99	50 (6.7)	19 (5.9)	31 (7.3)	
100-299	232 (31.0)	75 (23.2)	157 (36.9)	
300-499	260 (34.7)	105 (32.5)	155 (36.4)	
≥500	207 (27.6)	124 (38.4)	83 (19.5)	
Annual stroke volume				<0.001
-99	129 (17.2)	36 (11.2)	93 (21.8)	

100 100	100 (25 5)	76 (22.5)	122 (22.0)	
100-199	199 (26.5)	76 (23.5)	123 (28.9)	
200-299	155 (20.7)	70 (21.7)	85 (20.0)	
≥300	228 (30.4)	127 (39.3)	101 (23.7)	
N/A	38 (5.1)	14 (4.3)	24 (5.6)	
Stroke physician				<0.001
median (IQR)	4 (3, 7)	5 (3, 9)	4 (2, 6)	

BMJ Open

BMJ Open

Temporal trends and geographical disparities in comprehensive stroke centre capabilities in Japan from 2010 to 2018

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-033055.R1
Article Type:	Original research
Date Submitted by the Author:	21-Jan-2020
Complete List of Authors:	KUROGI, AI; Graduate School of Medical Sciences, Kyushu University, neurosurgery Nishimura, Ataru ; Graduate School of Medical Sciences, Kyushu University, neurosurgery Nishimura, Kunihiro; National Cerebral and Cardiovascular Center, Cerebrovascular Medicine Kada, Akiko ; National Hospital Organization Nagoya Medical Center, Department of Clinical Trials and Research Onozuka, Daisuke; Kyushu University, Hagihara, Akihito; Kyusyu University Graduate School of Medicine, Department of Health Services Management and Policy Ogasawara, Kuniaki; Iwate Medical University School of Medicine, Department of Neurosurgery Shiokawa, Yoshiaki ; Kyorin University Hospital, Department of Neurosurgery Kitazono, Takanari; Kyushu University, Neurosurgery Iihara, Koji ; Graduate School of Medical Sciences, Kyushu University, neurosurgery
Primary Subject Heading :	Neurology
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Stroke < NEUROLOGY, comprehensive stroke center, trends, Stroke medicine < INTERNAL MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

Temporal trends and geographical disparities in comprehensive stroke centre capabilities in Japan from 2010 to 2018

Ai Kurogi¹, Ataru Nishimura¹, Kunihiro Nishimura³, Akiko Kada⁴, Daisuke Onozuka³, Akihito Hagihara³, Kuniaki Ogasawara⁵, Yoshiaki Shiokawa⁶, Takanari Kitazono², Koichi Arimura¹, and Koji Iihara¹, on behalf of the J-ASPECT Study Collaborators

¹Department of Neurosurgery, and ²Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan ²Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Suita, Japan

³Department of Clinical Research Management, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan ⁴ Department of Clinical Research Management, Clinical Research Center, National Hospital Organization Nagoya Medical Centre, Nagoya, Japan ⁵Department of Neurosurgery, Iwate Medical University, Morioka, Japan ⁶Department of Neurosurgery, Kyorin University, Mitaka, Japan

Corresponding author: Koji Iihara, Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Higashi-ku, Maidashi,

BMJ Open

1	
2	
3	
4	
5	
6	Fukuoka, 812-8582, Japan. Email: kiihara@ns.med.kyushu-u.ac.jp
7	
8	
9	
10	
11	Keywords: stroke, comprehensive stroke centre, care quality
12	
13	
14	Word count: 2,191
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
	2

ABSTRACT

Objectives: Comprehensive stroke centre (CSC) capabilities are associated with reduced in-hospital mortality due to acute stroke. However, it remains unclear whether there are improving trends in the CSC capabilities, or how hospital-related factors determine quality improvement. This study examined whether CSC capabilities changed in Japan between 2010 and 2018, and whether any changes were influenced by hospital characteristics.

Design: A hospital-based cross-sectional study.

Setting: We sent out questionnaires to the training institutions of the Japan Neurosurgical Society and Japan Stroke Society in 2010, 2014 and 2018.

Participants: 749 in 2010, 532 in 2014 and 786 in 2018 hospitals that participate in the J-ASPECT study.

Main outcome measures: CSC capabilities were assessed using the validated scoring system (CSC score:1-25 points) in 2010, 2014, and 2018 survey. The effect of hospital characteristics was examined using multiple logistic regression analysis.

BMJ Open

Results: Among the 323 hospitals that responded to all surveys, the implementation of 14 recommended items increased. The CSC score (median, interquartile range) was 16 (13-19), 18 (14-20), 19 (15-21), for 2010, 2014, and 2018, respectively (p< 0.001). There was a $\geq 20\%$ increase in six items (e.g. endovascular physicians, stroke unit, and interventional coverage 24/7), and a \leq 20% decrease in community education. A lower baseline CSC score (odds ratio 0.82, [95% confidence interval] 0.75-0.9), the number of beds \geq 500 (3.9 [1.2– 13.0]), and the number of stroke physicians (7-9) (2.6 [1.1-6.3]) was associated with improved CSC capabilities, independent of geographical location. Conclusions: There was a significant improvement in CSC capabilities between 2010 and 2018, which was mainly related to the availability of endovascular treatment and multidisciplinary care. Our findings may be useful to determine which hospitals should be targeted to improve CSC capabilities in a defined area.

Strengths and limitations of this study:

• A large-scale, representative hospitals of Japan provided data on temporal trends in the CSC capabilities for this cross-sectional study.

• Hospitals actively working to improve stroke care are more likely to respond to the questionnaire, which may lead to information bias.

 The CSC score was a significant composite measure to influence in-hospital mortality of acute stroke, but little information was established on the influence of specific items.

to occure with a set of the set o

Stroke is the third leading cause of death and a leading cause of long-term disability in Japan. Primary and comprehensive stroke centres (CSCs) were developed to provide optimal implementation of intravenous recombinant tissue plasminogen activator (rt-PA) infusion and more intensive stroke care that includes endovascular and neurosurgical treatment. ^{1, 2} Organised care in a stroke unit is associated with better quality of care and reduced death and dependency. ^{3, 4} In addition to the influence of this process, previous studies have shown that patient outcomes associated with stroke and cardiovascular diseases are influenced by the hospital case volume, ^{5, 6} number of physicians, and geographical locations of the facility ⁷. Progressive rural-urban disparities in acute stroke care have been reported in the United States, ⁸ but it is not known whether such disparity exists in other countries.

In 2010, we launched the J-ASPECT study, a nationwide survey of acute stroke care capacity for proper designation of a comprehensive stroke centre in Japan. ⁹ ¹⁰ The J-ASPECT stroke database is a hospital-based, Japan-wide stroke

registry. We demonstrated significant geographical differences in CSC capabilities in 2010,⁹ and that CSC capabilities of a facility are associated with reduced in-hospital mortality from acute stroke.¹⁰ Thus continuous monitoring of the CSC capabilities may be clinically meaningful to improve stroke outcomes. ^{10, 11} Since 2010, we have conducted nationwide benchmark analyses to allow participating hospitals to facilitate improvement of stroke care. However, it remains unclear whether there are improving trends in the CSC capabilities, or how hospital-related factors determine quality improvement.

AIMS

We aimed to examine whether CSC capabilities in Japan changed from 2010 to 2018 and whether any recorded changes were influenced by hospital characteristics.

4.64

METHODS

Institutional survey of CSC capabilities

BMJ Open

This cross-sectional survey used the DPC discharge database from participating institutions in the J-ASPECT study. Participation in the J-ASPECT study was voluntary. Of the 1369 training institutions certified by the Japan Neurosurgical Society, the Japanese Society of Neurology, and the Japan Stroke Society, 621 agreed to participate in this study. The J-ASPECT study group analysed the Diagnosis Procedure Combination (DPC) database to gain new clinical insights on ischaemic and haemorrhagic stroke, an approach we applied again for this cross-sectional survey. In this study, we sent out questionnaires to the training institutions of all three societies in 2010, 2014, and 2018 to assess CSC capabilities. The CSC capabilities of each facility were assessed with a validated scoring system (CSC score), using 25 items recommended by the Brain Attack Coalition ^{2, 5-7}.

All items were classified into five categories: personnel, diagnostic, specific expertise, infrastructure, and education. A score of 1 was assigned for meeting each item, yielding a total CSC score of up to 25. Content, constructs, and predictive validity of this scoring system have been previously reported.^{12, 13}

Other hospital characteristics

Hospital characteristics including number of beds, annual stroke hospitalisations, stroke physicians, academic status, adoption of the Diagnosis Procedure Combination (DPC)-based payment system ⁹, and geographic location were obtained from the 2010 survey. The geographic location was classified according to urban employment areas (UEAs) divided into Metropolitan Employment Areas (MEAs) and Micropolitan Employment Areas (McEAs).⁹ The MEAs were further classified into central and outlying areas based on the commuting pattern of their inhabitants. Details of UEAs, such as total population or total land area, have been previously described.¹⁰

Statistical analysis

To explore trends in CSC capabilities, we examined implementation of the 25 items and the CSC score in the 323 consecutively participating hospitals that responded to all surveys. To examine the influence of hospital-related factors

BMJ Open

on the change in CSC capabilities, we divided the hospitals into those with or without a temporal improvement of CSC score (≥1-point increase between 2010 and 2018). The increase of "One point" was set based on our previous report on the CSC score.¹¹ In that study, we showed that even a small preceding improvement of the CSC score was associated with reduced in-hospital mortality, reduced poor outcomes, and higher use of acute reperfusion therapy in AIS patients; our findings also suggested the difficulty in improving the CSC score in a relatively short time period. We used a chi-squared test to detect differences between consecutively participating hospitals and other hospitals in the number of each hospital item. We did not perform multiple tests. Wilcoxon rank sum test was used to compare total CSC scores between consecutively participating hospitals and other hospitals. To explore the influence of hospital-related factors on temporal improvement of

CSC capabilities, multiple logistic regression models were used. To assess selection bias, we compared hospital characteristics between consecutively participating hospitals with the others. We also examined the relationship between "number of physicians" and "hospital size" and the relationship between "number of physicians" and "CSC score" using chi-squared tests. All analyses were performed using the JMP Statistical Version 12 Software (SAS Institute Inc., Cary, NC, USA). P values of <0.05 were considered statistically significant.

Patient and public involvement

Data for this study are based on information collected by the J-ASPECT study. Patients and the public were not involved in the development of this study.

Lieh

RESULTS

Trends in the CSC capabilities from 2010 to 2018

A total of 749, 532, and 786 hospitals responded to the survey in 2010, 2014, and 2018, respectively. The implementation rates of each item are shown in Table 1. The median (interquartile range) of the CSC scores was 14 (11-18), 17 (13-19), and 17 (12-20.3), for each year, respectively (Table 1).

Among consecutively participating hospitals, there was an increase in

BMJ Open

implementation rates of the 14 items, and the CSC scores were (median, interquartile range): 16 (13-19), 18 (14-20), 19 (15-21), for 2010, 2014, and 2018, respectively (p <0.001) (Table 1). A marked increase ($\geq 20\%$) was noted in six items related to endovascular treatment (endovascular physicians and interventional coverage 24/7) and multidisciplinary care (stroke unit, specialists of emergency medicine and physical medicine/rehabilitation, and stroke rehabilitation nurses).

In addition, a moderate increase ($\leq 20\%$) was noted in eight items: 24/7 availability of diffusion-weighted magnetic resonance imaging, digital and CT angiography, carotid ultrasound, coiling of an intracranial aneurysm, and implementation of stroke registry. In contrast, there was a marked decrease ($\leq 20\%$) in community education.

Geographical differences in CSC capabilities between 2010 and 2018

Among the seven items with significant geographical differences in 2010, all items in the personal component still showed a gap, despite overall improvement at all locations in 2018 (Table 2). In contrast, geographical differences in all infrastructure items diminished with overall improvement and a marked improvement in the McEA in 2018.

Over the study period, geographical differences emerged in intra-arterial reperfusion therapy and the number of specialists in physical medicine/rehabilitation. The remaining item, coiling of intracranial aneurysms, showed no changes.

Influence of hospital characteristics on change in CSC capabilities

Among consecutively participating hospitals, 23 were excluded due to missing data. Temporal improvement of CSC capabilities between 2010 and 2018 was noted in 198 hospitals (66.0%). As for hospital characteristics, there were weakly significant differences in bed number (p=0.016) and CSC score in 2010 (p=0.032) between the two groups on univariable analysis (Table 3).

In the logistic regression analyses, the following variables had an association with temporal improvement of CSC capabilities (Table 4): a lower baseline CSC

BMJ Open

score (odds ratio 0.82 [95% confidence interval 0.75-0.9]), bed volume \geq 500 (3.90, [1.17–13.0]), and moderate (7-9) number of stroke physicians (2.63, [1.10-6.27]). In contrast, geographical location, academic status, DPC-based payment system, and case volume of stroke did not show a significant association. We also performed the logistic regression analysis adjusting tertile, instead of quartile, of stroke physician volume in addition to the other adjusting factors. Except for Q3 of stroke physician volume, we found very similar results (Supplementary Table 1). Additionally, there was a significant relationship between hospital size and number of physicians (P<0.001), and between CSC score and number of

physicians (P<0.001).

Selection bias

The response rates of the 2010, 2014, and 2018 surveys were 55.0%, 39.7%, and 49.9%, respectively. We found that a selection bias did exist; in fact, the total CSC scores and most of the implementation rates of each item were significantly higher for the consecutively participating hospitals than for the

others in all three surveys (Table 1). Consecutively participating hospitals were more likely to be MEA-central, academic, have a larger number of hospital beds, higher annual stroke admission rate, and more stroke physicians (Supplementary Table 2).

DISCUSSION

We found an overall improvement in CSC capabilities between 2010 and 2018, and different trends in geographical disparities for different items. Hospitals with a higher number of hospital beds, intermediate number of stroke physicians, and a lower baseline CSC score had a higher likelihood of improving their CSC capabilities.

Temporal Changes to CSC capabilities

In addition to a significant increase in CSC capabilities, there was a marked increase in implementation of the items, mainly related to endovascular

BMJ Open

treatment and multidisciplinary care. Of note, we previously showed that interventional 24/7 coverage and the presence of physical medicine/rehabilitation specialists were associated with reduced in-hospital mortality for patients with subarachnoid haemorrhage, whereas availability of neurologists and stroke units were associated with reduced in-hospital mortality and better functional outcomes, respectively, for those with ischaemic stroke.¹³

These findings are consistent with those of prior studies, which have shown that admission to a stroke unit with organised stroke care is associated with better quality of care and outcomes in those who experience an acute stroke. ^{14 3} Although the use of mechanical thrombectomy for large vessel acute ischaemic stroke (AIS) has been rapidly increasing, only 3.3% of 15.1% potentially eligible AIS patients received it in 2016. ¹⁵ Improvement of CSC capabilities, especially related to endovascular treatment and multidisciplinary care, should contribute to improved quality of care and outcomes in patients with acute stroke.

The decreased implementation of community education observed in this study

may be explained by the limited number of stroke physicians available for this
purpose due to an increased burden of stroke care (e.g. emergent endovascular
calls). ¹⁶ Stroke educational campaigns have the potential to improve
knowledge and awareness, but public campaigns are usually expensive and
short-lived and may not achieve any significant improvement. ¹⁷

Diminished and emerging geographical disparities

Determining rural/urban differences in CSC capabilities may support the development of targeted interventions to improve stroke care and outcomes in rural areas. We found differing trends in implementation of the items according to personnel and infrastructure components. Rural areas are associated with reduced access to optimal stroke care and a lower use of acute stroke intervention.¹⁸ The diminished disparities in implementation of stroke units in this study might result in a higher use of rt-PA infusion in rural areas.¹⁹

The emerging disparities in implementation of intraarterial reperfusion therapy deserve some attention. Since the evidence regarding the efficacy of

acute endovascular reperfusion therapy was established in 2015,²⁰ relocation of relevant specialists might have occurred from rural to urban areas to meet the urgent need created by more widespread use. In addition, a high prevalence of neurointerventional physician burnout may require centralisation of acute endovascular reperfusion treatment.²¹

Influence of hospital-related factors on improvement of CSC capabilities

Our study showed the impact of specific hospital-related factors on improvement of CSC capabilities, which may be useful to determine which hospitals should be targeted to improve CSC capabilities, and in what regions. In rural areas, where medical resources are limited, centralisation of acute stroke care in large hospitals may be needed. We also found a significant relationship between CSC score and number of physicians. This means that, in 2010, institutions with more physicians tended to have higher baseline CSC scores. The reason that a physician volume of more than 10 did not affect the improvement of the CSC score may be explained by the ceiling effect of a high baseline CSC score in 2010.

Limitations

There are several limitations of this study. First, this findings may have included biased information. Hospitals actively working to improve stroke care would be more likely to respond to the questionnaire. Second, the CSC score was a significant composite measure to influence in-hospital mortality of acute stroke, but little information was established on the influence of specific items. Third, we did not determine the influence of unmeasured confounders. Fourth, the CSC score is a self-reported questionnaire rather than the result of any formal certification process. In Japan, the official certification process for PSCs (primary stroke centres) just began in 2019. The criteria for CSC certification is now under discussion by the Japan Stroke Society. The results of this study could have a significant impact on the recommended items and criteria for the designation of official CSCs in Japan. After the official certification process for CSCs is implemented, we plan to reassess the effect of CSC capabilities on AIS patients. Finally, the 2014 data did not factor into this analysis because of the small number of participants in that year. Further research is

BMJ Open

required to examine the effect of 2014 data on the analysis.

Conclusions

The CSC capabilities in Japan improved between 2010 and 2018, especially related to endovascular treatment and multidisciplinary care. Our findings may be useful to determine which hospitals should be targeted to improve CSC capabilities

oeer revie

in a defined area.

Funding

The J-ASPECT study is supported by the Practical Research Project for lifestyle-related diseases, including cardiovascular diseases and diabetes mellitus, managed by the Japan Agency for Medical Research and Development [JP19ek0210088 and JP19ek0210129]; Grants-in-Aid from the Japanese Ministry of Health, Labour, and Welfare; and KAKENHI grants [19AC0101] from the Japan Society for the Promotion of Science.

Competing interests statement

None declared.

Ethics approval

The study was approved by the Kyushu University Institutional Review Board,

which waived the requirement for individual informed consent (No. 28-335)

Data availability statement

We have documented the data, methods, and materials used to conduct the research in this report. The individual patient data are not publicly available because of the memorandum signed by the director of the participating hospitals and the principal investigator of the J-ASPECT Study group.

Authors and contributors

A Kurogi and KI drafted the manuscript. AN, KN, A Kada, DO, AH and KI were involved in study concept, design and obtaining funding. A Kada , DO,

 AH, KO, YS, TK, KA and KI were involved in analysis and of data. KO, YS, TK and KI were involved in acquisition of data. All authors reviewed the study report, made comments or suggestions on the manuscript drafts, and approved the final version.

Acknowledgements

We thank the Japan Neurosurgical Society and the Japan Stroke Society for their collaboration. We also thank all participating hospitals in the J-ASPECT study for contributing to this project. The institutions and names of the J-ASPECT Study Collaborators are listed in Supplemental Appendix 1.

Patient consent for publication

Not required.

References

1. Alberts MJ, Hademenos G, Latchaw RE, et al. Recommendations for

the establishment of primary stroke centers. Brain Attack Coalition. *JAMA* 2000;283:3102-9.

2. Alberts MJ, Latchaw RE, Selman WR, et al. Recommendations for Comprehensive Stroke Centers: A Consensus Statement From the Brain Attack Coalition. *Stroke* 2005;36:1597-616.

Collaboration SUT. Organised inpatient (stroke unit) care for stroke.
 Cochrane Database of Systematic Reviews 2013;Sep 11;(9):CD000197.

4. Bray BD, Ayis S, Campbell J, et al. Associations between the organisation of stroke services, process of care, and mortality in England: prospective cohort study. *BMJ* 2013;346:f2827.

5. Hall RE, Fang J, Hodwitz K, Saposnik G, Bayley MT. Does the Volume of Ischemic Stroke Admissions Relate to Clinical Outcomes in the Ontario Stroke System? *Circ Cardiovasc Qual Outcomes* 2015;8(6 Suppl 3):S141-7.

6. Ross JS, Normand SL, Wang Y, et al. Hospital volume and 30-day mortality for three common medical conditions. *N Engl J Med* 2010;362:1110-8.

7. Howard G, Kleindorfer DO, Cushman M, et al. Contributors to the Excess Stroke Mortality in Rural Areas in the United States. *Stroke* 2017;48:1773-8.

Gonzales S, Mullen MT, Skolarus L, Thibault DP, Udoeyo U, Willis
 AW. Progressive rural-urban disparity in acute stroke care. *Neurology*

2017;88:441-8.

9. Iihara K, Nishimura K, Kada A, et al. The impact of comprehensive stroke care capacity on the hospital volume of stroke interventions: a nationwide study in Japan: J-ASPECT study. *J Stroke Cerebrovasc Dis* 2014;23:1001-18.

10.UEAUrbanEmploymentArea.Available:http://www.csis.u-tokyo.ac.jp/UEA/uea_data_e.htm [Accessed 13 Jan. 2020].

 Kada A, Ogasawara, K, Kitazono, T, et al. National trends in outcomes of ischemic stroke and prognostic influence of stroke center capability in Japan, 2010-2016. *Int J Stroke*. 2019.

12. Iihara K, Nishimura K, Kada A, et al. Effects of comprehensive stroke care capabilities on in-hospital mortality of patients with ischemic and hemorrhagic stroke: J-ASPECT study. *PLoS One* 2014;9:e96819.

13. Kada A, Nishimura K, Nakagawara J, et al. Development and validation of a score for evaluating comprehensive stroke care capabilities:
J-ASPECT Study. *BMC Neurol* 2017;17:46.

14. Svendsen ML, Ehlers LH, Ingeman A, Johnsen SP. Higher stroke unit volume associated with improved quality of early stroke care and reduced length of stay. *Stroke* 2012;43:3041-5.

15. Smith EE, Saver JL, Cox M, et al. Increase in Endovascular Therapy in Get With The Guidelines-Stroke After the Publication of Pivotal Trials. *Circulation* 2017;136:2303-10.

BMJ Open

16. Williams MM, Wilson TA, Leslie-Mazwi T, et al. The burden of neurothrombectomy call: a multicenter prospective study. *J Neurointerv Surg* 2018.

17. Rasura M, Baldereschi M, Di Carlo A, et al. Effectiveness of public stroke educational interventions: a review. *Eur J Neurol* 2014;21:11-20.

 Kapral MK, Austin PC, Jeyakumar G, et al. Rural-Urban Differences in Stroke Risk Factors, Incidence, and Mortality in People With and Without Prior Stroke. *Circ Cardiovasc Qual Outcomes* 2019;12:e004973.

19. Domino JS, Baek J, Meurer WJ, et al. Emerging temporal trends in tissue plasminogen activator use: Results from the BASIC project. *Neurology* 2016;87:2184-91.

20. Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. *The Lancet* 2016;387:1723-31.

21. Fargen KM, Arthur AS, Leslie-Mazwi T, et al. A survey of burnout and professional satisfaction among United States neurointerventionalists. *J Neurointerv* Surg 2019.

BMJ Open

1	
2	
3	
3 4 5	
5	
6 7	
/	
8	
9	
10	
11	
12	
13	
14 15	
15 16	
16 17	
17 19	
18 10	
19 20	
20	
21	
22	
23	
20 21 22 23 24 25 26 27 28 29 30 31	
25	
20	
27	
20	
30	
31	
32	
33	
34	
35	
35 36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

Table 1. Number (percentage) of the responding hospitals fulfilling the recommended items of comprehensive stroke care capabilities

			2010				2014	
			Consecutively				Consecutively	
Components	Items	All participating	participating	Other Hsps.		All participating	participating	C
Components		Hsps.	participating	Outer Hops.	p value	Hsps.		U
			Hsps.	(n=426)	-	_	Hsps.	
		(n=749)				(n=532)		
			(n=323)				(n=323)	
Personnel	Neurologists	358 (47.8)	176 (54.5)	182 (42.7)	0.001	283 (53.2)	177 (54.8)	10
	Neurosurgeons	694 (92.7)	314 (97.2)	380 (89.2)	<0.001	515 (96.8)	317 (98.1)	19
	Endovascular physicians	272 (36.3)	146 (45.2)	126 (29.6)	<0.001	280 (52.6)	196 (60.7)	84
	Emergency medicine	162 (21.6)	96 (29.7)	66 (15.5)	<0.001	207 (38.9)	146 (45.2)	61

	Physical medicine and rehabilitation	113 (15.1)	61 (18.9)	52 (12.2)	0.011	143 (26.9)	95 (29.4)	48
	Rehabilitation therapy	742 (99.1)	321 (99.4)	421 (98.8)	0.435	529 (99.4)	321 (99.4)	20
	Stroke rehabilitation nurses	102 (13.6)	48 (14.9)	54 (12.7)	0.388	157 (29.5)	116 (35.9)	41
Diagnostic	СТ	742 (99.1)	322 (99.7)	420 (98.6)	0.122	527 (99.1)	322 (99.7)	20
	MRI with diffusion	647 (86.4)	291 (90.1)	356 (83.6)	0.01	504 (94.7)	311 (96.3)	19
	Digital cerebral	602 (80.3)	288 (89.2)	314 (73.7)	<0.001	476 (89.4)	305 (94.4)	17
	angiography	(00.2)	200 (0).2)					1,
	CT angiography	627 (83.7)	289 (89.5)	338 (79.3)	< 0.001	492 (92.5)	305 (94.4)	18
	Carotid duplex ultrasound	257 (34.3)	126 (39.0)	131 (30.8)	0.018	219 (41.2)	153 (47.4)	66

 BMJ Open

TCD	121 (16.2)	70 (21.7)	51 (12.0)	<0.001	123 (23.1)	87 (26.9)	36
Carotid endarterectomy	603 (80.5)	292 (90.4)	311 (73.0)	<0.001	458 (86.1)	288 (89.2)	17
Clipping of intracranial aneurysm	685 (91.5)	314 (97.2)	371 (87.1)	<0.001	504 (94.7)	315 (97.5)	18
Hematoma removal/draining	689 (92.0)	315 (97.5)	374 (87.8)	<0.001	505 (95.0)	315 (97.5)	19
Coiling of intracranial aneurysm	360 (48.1)	192 (59.4)	168 (39.4)	<0.001	332 (62.4)	223 (69.0)	10
Intra-arterial reperfusion	498 (66.5)	245 (75.9)	253 (59.4)	<0.001	398 (74.8)	261 (80.8)	13
	Carotid endarterectomy Clipping of intracranial aneurysm Hematoma removal/draining Coiling of intracranial aneurysm	Carotid endarterectomy 603 (80.5) Clipping of intracranial aneurysm Hematoma removal/draining Coiling of intracranial aneurysm Aneurysm	Carotid endarterectomy 603 (80.5) 292 (90.4) Clipping of intracranial 685 (91.5) 314 (97.2) aneurysm Hematoma 689 (92.0) 315 (97.5) removal/draining Coiling of intracranial 360 (48.1) 192 (59.4)	Carotid endarterectomy 603 (80.5) 292 (90.4) 311 (73.0) Clipping of intracranial aneurysm 685 (91.5) 314 (97.2) 371 (87.1) Hematoma 689 (92.0) 315 (97.5) 374 (87.8) Coiling of intracranial aneurysm 360 (48.1) 192 (59.4) 168 (39.4)	Carotid endarterectomy 603 (80.5) 292 (90.4) 311 (73.0) <0.001	Carotid endarterectomy 603 (80.5) 292 (90.4) 311 (73.0) <0.001	Carotid endarterectomy 603 (80.5) 292 (90.4) 311 (73.0) <0.001 458 (86.1) 288 (89.2) Clipping of intracranial ancurysm 685 (91.5) 314 (97.2) 371 (87.1) <0.001

	therapy							
Infrastructure	Stroke unit	132 (17.6)	74 (22.9)	58 (13.6)	< 0.001	202 (38.0)	136 (42.1)	6
	Intensive care unit	445 (59.4)	214 (66.3)	231 (54.2)	< 0.001	362 (68.0)	224 (69.4)	13
	Operating room staffed 24/7	451 (60.2)	230 (71.2)	221 (51.9)	< 0.001	339 (63.7)	239 (74.0)	10
	Interventional services			122 (21.0)	-0.001	217 (52 ()	210 (67 5)	0.0
	coverage 24/7	279 (37.3)	147 (45.5)	132 (31.0)	<0.001	317 (59.6)	218 (67.5)	99
	Stroke registry	235 (31.4)	133 (41.2)	102 (23.9)	< 0.001	260 (48.9)	172 (53.3)	88
Education	Community education	369 (49.3)	188 (58.2)	181 (42.5)	<0.001	144 (27.1)	91 (28.2)	53
	Professional education	436 (58.2)	207 (64.1)	229 (53.8)	0.005	326 (61.3)	208 (64.4)	11
Total CSC scor	re							

median,						
(IQR)	14 (11, 18)	16 (13, 19)	13 (10, 17)	< 0.001	17 (13, 19)	18 (14
(IQR) ————————————————————————————————————	ted tomography; MRI, magnetic	resonance imagi	ng; TCD, transc	ranial Dopp	pler.	
		30				

BMJ Open

Table 2. Characteristics of comprehensive stroke care capabilities according to the geographical differences

	~	a) 2010				b) 2018		
			MEA				MEA	
		MEA central		McEA		MEA central		McEA
	6		outlying		P value		outlying	
		(n=186)	, 0	(n=35)		(n=186)	5 0	(n=35)
		COL	(n=79)				(n=79)	、 <i>,</i>
	Neurologists	115 (61.8)	44 (55.7)	10 (28.6)	0.001	133(71.5)	55(69.6)	14 (40.0)
	realoiogists	110 (01.0)	11(00.7)	10 (20.0)	0.001	100(71.0)	00(0).0)	11 (10.0)
	Neurosurgeons	181 (97.3)	77 (97.5)	34 (97.1)	0.995	183 (98.4)	78 (98.7)	34 (97.1)
	Endovascular physicians	101 (54.3)	31 (39.2)	8 (22.9)	<0.001	136 (73.1)	49 (62.0)	14 (40.0)
Personnel	Emergency medicine	57 (30.7)	25 (31.7)	7 (20.0)	0.406	122 (65.6)	54 (68.4)	16 (45.7)
	Physical medicine and							
		36 (19.4)	16 (20.3)	5 (14.3)	0.740	83 (44.6)	42 (53.2)	3 (8.6)
	rehabilitation							
	Rehabilitation therapy	185 (99.5)	78 (98.7)	35 (100)	0.701	185 (99.5)	78 (98.7)	35 (100)
		、 <i>、</i>						``'

 BMJ Open

	Stroke rehabilitation nurses	33 (17.8)	9 (11.4)	1 (2.9)	0.049	90 (48.4)	41 (51.9)	9 (25.7)
	СТ	185 (99.5)	79 (100.0)	35 (100.0)	0.735	185 (100)	79 (100)	35 (100
	MRI with diffusion	167 (89.8)	69 (87.3)	33 (94.3)	0.530	179 (96.2)	78 (98.7)	35 (100
Diagnostic	Digital cerebral angiography	165 (88.7)	70 (88.6)	34 (97.1)	0.303	168 (90.3)	76 (96.2)	33 (94.
Diagnostic	CT angiography	163 (87.6)	72 (91.1)	32 (91.4)	0.627	176 (94.6)	77 (97.5)	34 (97
	Carotid duplex ultrasound	71 (38.1)	30 (38.0)	14 (40.0)	0.977	95 (51.1)	48 (60.8)	15 (42
	TCD	43 (23.1)	18 (22.8)	3 (8.6)	0.146	54 (29.0)	29 (36.7)	5 (14.3
	Carotid endarterectomy	173 (93.0)	68 (86.1)	32 (91.4)	0.196	166 (89.3)	71 (89.9)	28 (80
Specific	Clipping of intracranial aneurysm	183 (98.4)	75 (94.9)	34 (97.1)	0.280	181 (97.3)	77 (97.5)	34 (97
Expertise	Hematoma removal/draining	183 (98.4)	76 (96.2)	34 (97.1)	0.546	182 (97,9)	77 (97.5)	35 (94
	Coiling of intracranial aneurysm	119 (64.0)	46 (58.2)	13 (37.1)	0.012	143 (76.9)	49 (62.0)	17 (4

	Intra-arterial reperfusion							
	therapy	142 (76.3)	58 (73.4)	27 (77.1)	0.859	153 (82.3)	57 (72.2)	22 (62.9
	Stroke unit	50 (26.9)	17 (21.5)	2 (5.7)	0.023	106 (57.0)	44 (55.7)	13 (37.1)
	Intensive care unit	123 (66.1)	54 (68.4)	21 (60.0)	0.685	134 (72.0)	54 (68.4)	18 (51.4)
Infrastructure	Operating room staffed 24/7	143 (76.9)	59 (74.7)	15 (42.9)	<0.001	148 (79.6)	56 (70.9)	22 (62.9)
minastructure	Interventional services coverage 24/7	103 (55.4)	30 (38.0)	6 (17.1)	<0.001	133 (71.5)	54 (68.4)	18 (51.4)
	Stroke registry	81 (43.6)	31 (29.1)	15 (42.9)	0.808	93 (50.0)	47 (59.5)	15 (42.9)
F1	Community education	110 (59.1)	53 (67.1)	17 (48.6)	0.164	55 (29.6)	28 (35.4)	8 (22.9)
Education	Professional education	125 (67.2)	53 (67.1)	17 (48.6)	0.095	105 (56.5)	47 (59.5)	17 (48.6)
*MEA		·		\sim	L			
metropolitan,								
McEA								

*MEA

 microplitan

 BMJ Open

For Deer review only

BMJ Open

	all Consecutively	Improvement	No improvement	
Hospital-related factors in 2010	participating Hsps.	-	Hsps.	p value [#]
	(n=300)	(n=198)	(n=102)	p value
Hospital locations			· · · ·	0.478
MEA central	186 (62.0)	121 (61.1)	65 (63.7)	
MEA outlying	79 (26.3)	56 (28.3)	23 (22.6)	
McEA	35 (11.7)	21 (10.6)	14 (13.7)	
CSC score in 2010	0			
median (IQR)	16 (13, 19)	16 (13, 18)	17 (13, 20)	0.032
Academic hospital	58 (19.3)	42 (21.2)	16 (15.7)	0.251
DPC* hospital	225 (75.0)	145 (73.2)	80 (78.4)	0.325
Number of hospital beds				0.016
1-99	17 (5.7)	9 (4.6)	8 (7.8)	
100-299	68 (22.7)	37 (18.7)	31 (30.4)	
300-499	96 (32.0)	62 (31.1)	34 (33.3)	

Table 3. Hospital characteristics those with/without temporal improvement of the CSC capabilities

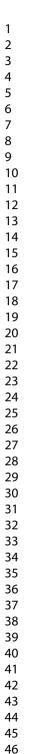
 BMJ Open

≥500	119 (39.7)	90 (45.5)	29 (28.4)	
Annual stroke case volume				0.915
0-99	34 (11.3)	21 (10.6)	13 (12.8)	
100-199	73 (24.3)	47 (23.7)	26 (25.5)	
200-299	67 (22.3)	45 (22.7)	22 (21.6)	
≥300	126 (42.0)	85 (42.9)	41 (40.2)	
Number of stroke physician volumedian (IQR)	me 6 (3, 9)	6 (3.8, 9)	5 (3, 9.3)	0.139
Number of stroke physicians, qua	ırtile			
Q1 (0-3)	82 (27.3)	49 (24.8)	33 (32.4)	
Q2 (4-6)	68 (22.7)	43 (21.7)	25 (24.5)	
Q3 (7-9)	80 (26.7)	61 (30.8)	19 (18.6)	
Q4 (≥10)	70 (23.3)	45 (22.7)	25 (24.5)	
Number of stroke physicians, tert	ile			
T1 (0-4)	114 (38.0)	72 (36.4)	42 (41.2)	
T2 (4-8)	96 (32.0)	63 (31.8)	33 (32.4)	
T3 (≥9)	90 (30.0)	63 (31.8)	27 (26.5)	

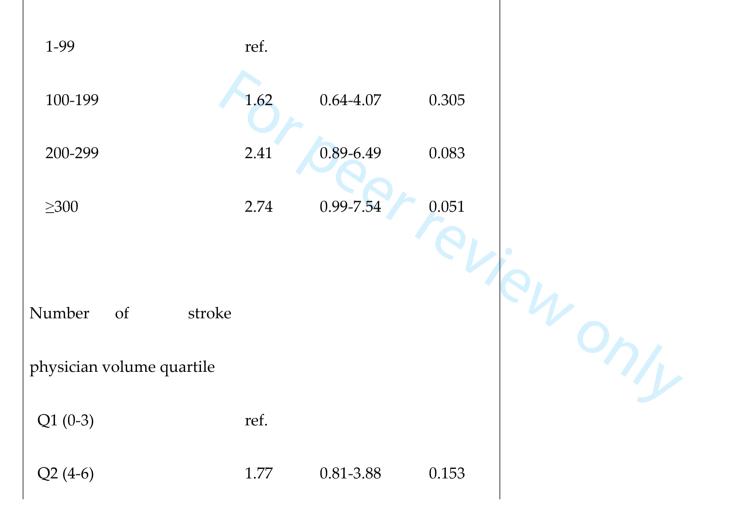
*DPC: Diagnostic Procedure Combination, Hsp: hospital, # p value: Improvement vs. No improvement hospitals, MEA:


metropolitan, McEA: micropolitan

For peer review only


Page 39 of 71

 BMJ Open


Table 4. Multivariable analysis of the impact of hospital characteristics on one-point increases of the CSC score

Academic hospital	1.37	0.54-3.48	0.506	
DPC hospital	0.77	0.41-1.42	0.397	
Number of beds				
1-99	ref.			
100-299	1.16	0.37-3.66	0.794	W.
300-499	1.68	0.56-5.10	0.358	- <u>_</u>
≥500	3.9	1.17-13.00	0.027	
			20	

Annual stroke case volume

40

Q3 (7-9) 2.63 1.10-6.27 0.030 1.58 0.57-4.38 0.380 Q4 (≥10)

*DPC: Diagnostic Procedure Combination, Hsp: hospital, # p value: Improvement vs. No improvement hospitals, MEA:

metropolitan, McEA: micropolitan

 BMJ Open

Supplemental material

eTable 1. Multivariable analysis of the impact of the hospital characteristics on one-point increase of the CSC score

eTable 2. Univariable analysis of association between consecutively participating hospitals in all three surveies and the others Supplemental Appendix 1. List of the J-ASPECT Study Collaborators.

, act of the hospital characteristics . sociation between consecutively participa. . a the J-ASPECT Study Collaborators.

eTable 1 Multivariable analysis of the impact of the hospital characteristics on one-point increase of the CSC score

Hospital-related factors in 2010	Odds	95%CI	P value
Hospital locations			
MEA central	ref.		
MEA outlying	1.35	0.36-2.48	0.339
McEA	0.78	0.35-1.75	0.549
CSC score in 2010	0.83	0.76-0.91	<0.001
Academic hospital	1.29	0.52-3.24	0.582
DPC hospital	0.72	0.39-1.34	0.302
Number of beds			
1-99	ref.		
100-299	1.1	0.36-3.41	0.868
300-499	1.82	0.60-5.48	0.285
≥500	3.81	1.16-12.54	0.028
Annual stroke case volume			

1				
1-99	ref.			
100-199	1.68	0.67-4.18	0.267	
200-299	2.47	0.92-6.61	0.072	
≥300	3.17	1.16-8.66	0.024	
Number of stroke ph	ysicians, tertile			
T1 (0-4)	ref.			
T2 (4-8)	1.12	0.58-2.16	0.745	
T3 (≥9)	1.35	0.57-3.21	0.492	

Other Hsps.

(n=426)

188 (44.1)

156(36.6)

64 (15.0)

18 (4.2)

13 (10, 17)

29 (6.8)

316 (74.2)

31 (7.3)

157 (36.9)

155 (36.4)

83 (19.5)

93 (21.8)

p value

< 0.001

< 0.001

< 0.001

0.804 <0.001

< 0.001

3		
4 5	eTable 2 Univariable	analysis of associ
6		
7		
8 9		All Hsps. in 2010
10		-
11		(n=749)
12		
13	Hospital location	
14 15	MEA central	381 (50.9)
16 17	MEA outlying	239 (31.9)
18	McEA	102 (13.6)
19 20	Unclassified	27 (3.6)
21 22	CSC score at 2010	
23	median (IQR)	14 (11, 18)
24 25	Academic hospital	90 (12.1)
26 27	DPC hospital	553 (73.8)
28	Number of beds	
29 30	-99	50 (6.7)
31 32	100-299	232 (31.0)
33	300-499	260 (34.7)
34 35	≥500	207 (27.6)
36 37	Annual stroke volume	
38	-99	129 (17.2)
39 40		
41		
42		
43		Fo

1 2

44 45 46 eTable 2 Univariable analysis of association between consecutively participating hospitals in all three surveies and the others

Consecutively

participating Hsps.

(n=323)

193 (59.8)

83 (25.7)

38 (11.8)

9 (2.8)

16 (13, 19)

61 (18.9)

237 (73.4)

19 (5.9)

75 (23.2)

105 (32.5)

124 (38.4)

36 (11.2)

 BMJ Open

(IQR)				
physicians, median	4 (3, 7)	5 (3, 9)	4 (2, 6)	< 0.00
Number of stroke				
N/A	38 (5.1)	14 (4.3)	24 (5.6)	
≥300	228 (30.4)	127 (39.3)	101 (23.7)	
200-299	155 (20.7)	70 (21.7)	85 (20.0)	
100-199	199 (26.5)	76 (23.5)	123 (28.9)	

*DPC: Diagnostic Procedure Combination, Hsp: hospital, MEA: metropolitan, McEA: micropolitan

Supplemental Appendix 1. List of the J-ASPECT Study Collaborators.

All Contributors were involved in collection of data.

Hospitals	Responsible persons
Ainomiyako Neurosurgery Hospital	Isao Sasaki
Aizawa Hospital	Takao Hasimoto
Akita University Hospital	Hiroaki Shimizu
Akocity Hospital	Minoru Asahi
Almeida Memorial Hospital	Makoto Goda
Aomori City Hospital	Atsuhito Takemura
Aomori Prefectural Central Hospital	Tatsuya Sasaki
Asahi General Hospital	Saburo Watanabe
Ashiya Municipal Hospital	Seiko Kataoka
Atsuchi Neurosurgical Hospital	Kouji Takasaki
Ayabe City Hospital	Kouji Shiga
Baba Memorial Hospital	Kouji Shiga Hidehuku Gi Ryunosuke Uranishi
Bellland General Hospital	Ryunosuke Uranishi
Beppu Medical Center	Yasuyuki Nagai
Chiba Cancer Center	Toshihiko Iuchi
Chiba Cerebral and Cardiovascular Center	Toshio Machida, Junichiro Shimada
Chiba Neurosurgical Clinic	Kenji Wakui
Chiba Rosai Hospital	Takashi Saegusa

 BMJ Open

Chiba Tokushukai Hospital	Isao Kitahara
Chidoribashi Hospital	Yasushi Ejima
Chigasaki Municipal Hospital	Takaakira Yokoyama
Chikamori Hospital (Chikamori Health Care Group)	Satoru Hayashi
Chutoen General Medical Center	Toshikazu Ichihashi
Corporate Medical Association Shoikai Kasai Shoikai Hospital	Junichi Harashina
Daiichitowakaihospital	Tsugumichi Ichioka
Daiyukai General Hospital	Takayuki Kato, Shinichi Shirakami
Date Red Cross Hospital	Takeshi Matsuoka
Department of Neurosurgery Shiroyama Hospital	Kenichi Murao
Dokkyo Medical University Koshigaya Hospital	Akio Hyodo, Tomoyuki Miyamoto
Doutounoushinnkeigekabyouinn	Teruo Kimura
Ebina General Hospital	Tomonori Kobayashi
Ehime Prefectural Central Hospital	Shinji Iwata Tatsuya Abe Hideo Takeshima
Faculty of Medicine, Saga University	Tatsuya Abe
Faculty of Medicine, University of Miyazaki	Hideo Takeshima
Fuchu Hospital	Kazunori Yamanaka
Fuji City General Hospital	Satoru Morooka
Fujii Neurosurgical Hospital	Hideo Kunimine
Fujita General Hospital	Satoshi Taira
Fujita Health University Hospital	Ichiro Nakahara, Yuichi Hirose

> 45 46

1

Fujiyoshida Municipal Hospital Fukaya Red Cross Hospital Fukuchiyama City Hospital Fukui Katsuyama General Hospital Fukuoka Seisyukai Hospital Fukuoka Tokushukai Medical Center Fukuoka University Chikushi Hospital Fukuoka University Hospital Fukuoka Wajiro Hospital Fukuokashinmizumaki Hospiral Fukushima Medical University Hospital Fukushima Red Cross Hospital Gifu Municipal Hospital Gifu Prefectural Tajimi Hospital Gifu University Hospital Hachisuga Hospital Hakodate Central General Hospital Hakodate Municipal Hospital Hakodate Neurosurgical Hospital Hakujyuji Hospital Hamamatsu Medical Center

Syougo Imae Hirochiyo Wada Mamoru Murakami Masanori Kabuto Masaharu Tani, Isao Inoue Hidenori Yoshida Kiyoshi Kazekawa Tooru Inoue Kouzou Fukuyama Shigenari Kin Taku Sato Yoichi Watanabe Tetsuya Tanigawara Junki Ito Toru Iwama Yoshihisa Maeda Makoto Takeda Jun Niwa Mikio Nishiya Shuji Hayasi Teiji Nakayama

 BMJ Open

Hamanomachi Hospital
Harasanshin Hospital
Hata Kenmin Hospital
Higashiosaka City Medical Center
Higashitotsuka Memorial Hospital
Higashiyamato Hospital
Higashitotsuka Memorial Hospital Higashiyamato Hospital Hirosaki Stroke and Rehabilitation Center Hirosaki University Hospital Hiroshima City Hiroshima Citizens Hospital
Hirosaki University Hospital
Hiroshima City Hiroshima Citizens Hospital
Hiroshima Prefectural Hospital
Hiroshima Red Cross Hospital & Atomic Bomb Survivors Hospital
Hiroshima University Hospital
Hito Medical Center
Hokkaido Medical Center
Hokkaido University Dept. Neurosurgery
Hokushikai Megumino Hospital
Hokuto Hospital
Hospital
Hospital Nanbu Tokushukai
Hukuoka City Hospital
Hyogo College of Medicine

Koichirou Matsukado Tadahisa Shono Hiroyuki Nishimura Takatoshi Fujimoto, Ryo Tamaki Satoshi Utsuki Ikuo Kobayashi, Hirotoshi Ohtaka Takamitsu Uchizawa Hiroki Ohkuma Shigeki Nishino Atsushi Tominaga Masayuki Sumida Takahito Okazaki, Shirou Aoki Naoki Shinohara Satoshi Ushikoshi Syunsuke Terasaka, Kiyohiro Houkin Mitsunobu Kaijima Kimito Kondo, Kazumi Nitta Toshiki Ikeda, Hidetoshi Ooigawa Tutomu Kadekaru Katsuyuki Hirakawa Shinichi Yoshimura

Hyogo Prefectural Awaji Medical Center Hyogo Prefectural Kakogawa Medical Center Hyogokenritu Nishinomiya Hospital Ibaraki Prefectural Central Hospital Ibaraki Seinan Medical Center Hospital Iida Municipal Hospital Imari Arita Kyoritsu Hospital Ina Central Hospital Inagi Municipal Hospital Institute of Brain and Blood Vessels Mihara Memorial Hospital Irixyouhoujin Okinawatokushuukai Uwajimatokushukai Hospital Iryohojin Seiwakai Wada Hospital Iryouhoujinsyadanjinmeikai Akiyamanousinnkeigeka Iryouhouzinsyadan Meihoukai Yokohamashintoshinoushinkeigekabyouin Isahaya General Hospital Ise Red Cross Hospital Ishikawa Prefectural Central Hospital Ishinomaki Red Cross Hospital Itabashi Chuo Medical Center Itami Kousei Neurosurgical Hospital

> 5 6

7

8 9

10 11

12

13 14

15 16

17

18 19

20 21

22

23 24

25 26

27

28 29

30 31

32

33 34

35 36

37

44 45 46 Yoshio Sakagami Hideo Aihara Takayuki Sakaki Hiroko Oyama, Yuuji Kujiraoka Keishi Fujita Sumio Kobayashi Nobuaki Momozaki Atsushi Sato Hideki Murakami, Tatsuo Iwasita Akazi Kazunori, Takao Kanzawa Hiromichi Sadashima Shiro Miyata Takekazu Akiyama Akihiro Nemoto, Masafumi Morimoto Yoshihiro Nishiura Fumitaka Miya, Masunari Sibata Yutaka Hayashi Syuichi Ishikawa Miura Naohisa Shinya Noda

46

Iwaki Kyoritsu General Hospital Iwata Municipal General Hospital Iwate Medical University Iwate Prefectural Central Hospital Iwate Prefectural Iwai Hospital Iwate Prefectural Kuji Hospital Iwate Prefectural Ninohe Hospital Izumi Hospital Izumino Hospital Japan Community Health Care Organization Chukyo Hospital Japan Community Health Care Organization Kyushu Hospital Japan Community Health Care Organization Tokyo Takanawa Hospital Japan Organization of Occupational Health and Safety Kumamoto Rousai Hospital Japanese Red Cross Akita Hospital Japanese Red Cross Asahikawa Hospital Japanese Red Cross Fukuoka Hospital Japanese Red Cross Kitami Hospital Japanese Red Cross Kumamoto Hospital Japanese Red Cross Maebashi Hospital

Yasuhiro Suzuki Shinji Amano Kuniaki Ogasawara Takayuki Sugawara Keiichi Saitou Kazuyuki Miura Akinori Yabuta Makoto Hasebe Masato Seike Akira Ikeda Satoshi Inoha Hirofumi Hiyama Hiromasa Tsuiki, Shigeo Yamashiro Keiichi Nishimaki Katsumi Takizawa, Kenichi Makino Hitoshi Tsugu, Jiro Kitayama Nozomi Suzuki Shu Hasegawa, Tadashi Terasaki Ken Asakura

Japanese Red Cross Medical Center Japanese Red Cross Society Hachinohe Hospital Japanese Red Cross Takayama Hospital Japanese Redcross Fukui Hospital Jcho Hitoyoshi Medical Center Jcho Kobe Central Hospital Jcho Kumamoto General Hospital Jcho Nankai Medical Center Juntendo Universty Hospital Kaetsu Hospital Kaga Medical Center Kagawa Rosai Hospital Kagawa University Hospital Kagoshima City Hospital Kagoshima Prefectural Kanoya Medical Center Kagoshima Tokushukai Hospital Kagoshima University Hospital Kan-Etsu Hospital Kanazawa Medical Univercity Kanazawa Neurosurgical Hospital Kanazawa University Hospital

5 6

7 8

9

10 11

12

13 14

15 16

17

18 19

20 21

22

23 24

25 26

27

28 29

30 31

32

33 34

35 36

37

38

44 45 46 Ichiro Suzuki Hiromu Konno Katsunobu Takenaka Hiroki Toda, Taketo Hatano Keizou Yamamoto Keigo Matsumoto Kazunari Koga Takamitu Hikawa Hajime Arai Kazuaki Awamori Naoki Shirasaki Kimihiro Yoshino Takashi Tamiya Kazuho Hirahara Shunichi Tanaka Teruaki Kawano Sei Sugata, Kazunori Arita Masahiko Tanaka Shunsuke Shiraga Syuji Sato Mitsutoshi Nakada

 BMJ Open

Kaneda Hospital	K
Kanmon Medical Center	K
Kano Hospital	N
Kansai Electric Power Hospital	Y
Kansai Medical University Hospital	K
Kanto Rosai Hospital	Т
Kasaoka Daiichi Hospital	A
Kashiwaba Nourosagical Hospital	Т
Kasugai Municipal Hospital	N
Kansai Medical University Hospital Kanto Rosai Hospital Kasaoka Daiichi Hospital Kashiwaba Nourosagical Hospital Kasugai Municipal Hospital Kawasaki Medical School Hospital	N
Kazuno Kosei Hospital	N
Keiju Medical Center	S
Keishunkai Medical Corporation Kobari General Hospital	N
Kenwakai Hospital	N
Kenwakai Otemati Hospital	H
Kieikai Hospital	S
Kindai University Hospital	Т
Kindai University Sakai Hospital	Y
Kiryu Kosei General Hospital	S
Kishiwada City Hospital	K
Kishiwada Tokushukai Hospital	H

Kimihisa Kinoshita Katsuhiro Yamashita Nakazawa Kazutomo Yasuhiro Fujimoto Kunikazu Yoshimura Takayuki Tachizawa Akira Watanabe Tetsuyuki Yoshimoto Naoto Kuwayama Masaaki Uno Masayuki Sasou Sotaro Higashi Naoaki Sato Masakazu Kitahara Hiroshi Yoneda Satoshi Suzuki Toshiho Ohtsuki, Amami Kato Yusaku Nakamura Satoshi Magarisawa Kenji Hashimoto Hiroyuki Matsumoto

Kita-Harima Medical Center Kitakami Saiseikai Hospital Kitakyusyu General Hospital Kitakyusyu Municipal Medical Center Kitamurayama Hospital Kitasato University School of Medicine Kobe City Medical Center General Hospital Kobe Ekisaikai Hospital Kobe Red Cross Hospital Kobe University Hospital Kochi Health Sciences Center Kochi Medical School Hospital Kohka Public Hospital Kohnan Hospital Kohsei General Hospital Kokura Memorial Hospital Komaki City Hospital Komatsu Municipal Hospital Komoro Kosei General Hospital Koshigaya Municipal Hospital Koto Memorial Hospital

5 6

7 8

9

10 11

12

13 14

15 16

17

18 19

20 21

22

23 24

25 26

27

28 29

30 31

32

33 34

35 36

37

38

44 45 46 Hirotoshi Hamaguchi, Shigeru Miyake Tomohiko Satou Masaru Idei Masahiro Mizoguchi Eiichiro Kamatsuka Toshihiro Kumabe Nobuyuki Sakai Takashi Tominaga Haruo Yamashita Eiji Kohmura, Tatsushi Toda Tsuyoshi Oota, Masanori Morimoto Tetsuya Ueba Kazuyoshi Watanabe Hidenori Endo Kenjirou Hujiwara, Minoru Nakagawa Taketo Hatano, Akira Ishii Toshinori Hasegawa Hisashi Nitta Takayuki Kuroyanagi Akira Tunoda Hisao Hirai

46

Koyama Memorial Hospital Kugayama Hospital Kumamoto City Hospital Kurashiki Central Hospital Kurashiki Heisei Hospital Kurosawa Hospital Kurosishi General Hospital Kurosu Hospital Kurume University Hospital Kyorin University Hospital Kyoritsu Hospital Kyoto Okamoto Memorial Hospital Kyoto Second Red Cross Hospital Kyoto Universiity Hospital Kyoto Yamashiro General Medical Center Kyotokatsura Hospital Kyotomin-Iren Chuohospital Kyushu Central Hospital of The Mutual Aid Association of Public School Teachers Kyushu Rosai Hospital

Takuya Kawai Mitsuyuki Fujitsuka Akira Takada, Seiji Tajiri Masaki Chin Hidemiti Sasayama Sigehiro Ohmori Seiko Hasegawa Kazuhiro Kikuchi, Mikio Teduka Motohiro Morioka Yoshiko Unno, Hiroki Yoshida, Teruyuki Hirano Masayuki Yokota Minoru Kidooka Hiroshi Tenjin Susumu Miyamoto Yoshihiro Iwamoto Yasumasa Yamamoto Yuko Shikata Hitonori Takaba Sei Haga

Kyushu University Hospital	Koji Iihara
Local Incorporated Administrative Agency Tokushima Prefecture	
Naruto Hospital	Masahito Agawa
Makita General Hospital	Yoshinori Arai
Maruko Central Hospital	Toshiyuki Tsukada
Matsushita Memorial Hospital	Nozomu Murai
Matsuyama Shimin Hospital	Masakazu Suga
Mazda Hospital	Kawamoto Yukihiko
Medical Corporation Ijinkai Nakamura Memorial Hospital	Kenji Kamiyama
Medical Corporation Meiseikai Abashiri Neurosurgicalrehabilitation	
Hospital	Naoto Izumi
Meitetsu Hospital	Youtarou Takeuchi
Midorigaoka Hospital	Motohiro Arai
Mie University Hospital	Hidenori Suzuki Shinji Okumura Makoto Yoshikawa
Mimihara General Hospital	Shinji Okumura
Minamata City General Hospital and Medical Center	Makoto Yoshikawa
Minami Wakayama Medical Center	Yoshinari Nakamura
Minato Medical Coop-Kyoritsu General Hospital	Hisashi Tanaka
Mito Kyodo General Hospital	Yasusi Sibata
Mitoyogeneralhospital	Tetsuya Masaoka
Mitsugi General Hospital	Takashi Matsuoka

 BMJ Open

Miyakonojo Medical Association Hospital
Miyoshi Central Hospital
Moriguchi-Ikuno Memorial Hospital
Morioka Red Cross Hospital
Munakata Suikokai General Hospital
Muroran City General Hospital
Nagahama City Hospital
Nagano Municipal Hospital
Nagaoka Chuo General Hospital
Nagasaki Kawatana Medical Center
Nagasaki University Hospital
Nagasakiken Shimabara Hospital
Nagoya City University
Nagoya Daini Red Cross Hospital
Nagoya University Hospital
Naha City Hospital
Nakamura Memorial South Hospital
Nakatsu Municipal Hospital
Nara Medical University
Narita Red Cross Hospital
National Cerebral and Cardiovascular Center

Hajime Ohta Osamu Hamasaki Misao Nishikawa Naohiko Kubo Yosimasa Kinosita Hiroshi Ooyama Taro Komuro Yoshikazu Kusano Shigekazu Takeuchi Ei-Ichirou Urasaki Takayuki Matsuo Yoshiharu Tokunaga Mitsuhito Mase Yukio Seki, Keizo Yasui Yoshio Araki Naoki Tomiyama Taiichiro Watanabe, Koji Oka Hiromichi Koga Hiroyuki Nakase Michio Nakamura Jun Takahashi

45 46 National Hospital Organization Chiba Medical Center National Hospital Organization Hamada Medical Center National Hospital Organization Himeji Medical Center National Hospital Organization Kyushu Medical Center National Hospital Organization Nagoya Medical Center National Hospital Organization Okayama Medical Center National Hospital Organization Osakaminami Medidcal Center National Hospital Organization Tochigi Medical Center National Hospital Organization Toyohashi Medical Center National Hospital Organization Ureshino Medical Center National Hospital Organization, Iwakuni Clinical Center Nayoro City Hospital Nho Sendai Medical Center Nho Shinshu Ueda Medical Center Nihon University Itabashi Hospital Niigata City General Hospital Niigata Prefectural Central Hospital Niigata Tokamachi Hospital Niigata University Medical and Dental Hospital Niigatanougekabyouin Nishikobe Medical Center

Hirokazu Tanno Takato Kagawa Osamu Narumi Akira Nakamizo, Shinji Nagata Noriyuki Suzaki Yoichiro Namba Tomonori Yamada Masayuki Ishihara Hideki Sakai Masayuki Miyazono Kotaro Ogihara Naoki Tokumitsu Masayuki Ezura o Saito Keiichi Sakai Atsuo Yoshino Kenichi Morita, Akihiko Saito Igarashi Michitoku Mitsuo Kouno Yukihiko Fujii, Osamu Onodera Kiyoshi Onda Naoya Takeda

 BMJ Open

Nishinomiya Kyoritsu Neurosurgical Hospital	Hiroji Miyake
Nishio Municipal Hospital	Toshio Yokoe
Nishitokyo Central General Hospital	Tatsuya Nakamura
Nissan Tamagawa Hospital	Takayuki Kubodera
Nitobe Memorial Nakano General Hospital	Mitsuhiko Hokari
Noshiro Kosei Medical Center	Yasunari Otawara
Noto General Hospital Nozaki Tokushukai Hospital	Cheho Park
Nozaki Tokushukai Hospital	Hidemitu Nakagawa
Obara Hospital	Souichi Obara
Obase Hospital	Haruki Takahashi
Obihiro Kosei General Hospital	Masafumi Ohtaki
Odate Municipal General Hospital	Atsuya Okubo
Ogaki Tokushukai Hospital	Katsuhiko Hayashi
Ohnishi Neurological Center	Hideyuki Ohnishi, Yoshihiro Kuga
Ohta Nishinouchi Hospital	Masahisa Kawakami
Oita Prefectural Hospital	Yu Takeda
Oitaken Koseiren Tsurumi Hospital	Akihiko Kaga
Okaya City Hospital	Ryoichi Hayashi
Okayama City Hospital	Koji Tokunaga
Okayama Kyokuto Hospital	Hiroyuki Nakashima
Okayama University Hospital	Isao Date

Okinawa Kyodo Hospital	Koji Idomari, Nobuyuki Kaneko
Okinawa Prefectural Nanbu Medical Center and Children's Medical	
Center	Tomoaki Naganine
Okitama Public General Hospital	Toshihiko Kinjo
Ome Municipal General Hospital	Yoshiaki Takada, Osamu Tao
Omihachiman Community Medical Center	Masayuki Nakajima
Omori Red Cross Hospital	Akira Isoshima
Omuta City Hospital	Terukazu Kuramoto
Onomichi Municipal Hospital	Shigeru Daido
Osaka Medical College	Toshihiko Kuroiwa
Osaka National Hospital	Kazuo Hashikawa
Osaka Neurological Institute	Akatsuki Wakayama
Osaka Neurosurgical Hospital	Naoki Hayashi
Osaka University Hospital	Kouich Iwatsuki, Toshiki Yoshimine
Osaki Citizen Hospital	Masahiro Yoshida
Otaru General Hospital	Yoshimasa Niiya
Otsu City Hospital	Motohiro Takayama
Otsu Red Cross Hospital	Masaaki Saiki
Rakuwakaiotowa Hospital	Kazuo Yamamoto
Research Institute For Brain and Blood Vessels-Akita	Junta Moroi, Taizen Nakase, Tatsuya Ishikawa
Saga-Ken Medical Centre Koseikan	Shuji Sakata, Hiroshi Sugimori

BMJ Open

46

Saiseikai Futsukaichi Hospital Saiseikai Imabari Hospital Saiseikai Kumamoto Hospital Saiseikai Kurihashi Hospital Saiseikai Kyouto Hospital Saiseikai Matsusaka General Hospital Saiseikai Nagasaki Hospital Saiseikai Toyama Hospital Saiseikai Yahata General Hospital Saiseikai Yokohamashi Tobu Hospital Saiseikaiustunomiya Hospital Saitama City Hospital Saitama Medical Center Saitama Red Cross Hosoital Sakai City Medical Center Saku Central Hospital Advanced Care Center Sanyudohospital Sapporo Azabu Neurosurgical Hospital Sapporo Medical University Hospital Sapporo Shiroishi Memorial Hospital Sapporoteishinkaihospital

Naoko Fujimura Osamu Nishizaki Toru Nishi Hiroshi Wanihuti Nobukuni Murakami Hiroto Murata Wataru Haraguchi Yukio Horie Yuji Okamoto Makoto Inaba Masashi Nakatsukasa Atsuhiro Kojima Kyoichi Nomura Toshie, Yamamoto Kenji Takahashi Shi Yoshikazu Nakajima Takaaki Yoshida Yohei Kudoh Toshitaka Nakamura Nobuhiro Mikuni Akira Takahashi Rokuya Tanikawa

Sasebo Chuo Hospital Secomedic Hospital Seikeikai Hospital Seirei Memorial Hospital Seirei Mikatahara General Hospital Sendai City Hospital Shakaiiryouhoujinzaidanshinwakaiyachiyobyouin Shikoku Medical Center For Children and Adults Shimane Prefectural Central Hospital Shimizu Hospital Shimonoseki City Hospital Shin Koga Hospital Shin-Oyama City Hospital Shingu Municipal Medical Center Shinonoi General Hosapital Shinsapporo Neurosurgical Hospital Shinshu University Hospital Shinsuma General Hospital Shintakeohospital Shizuoka Children's Hospital Shizuoka City Shizuoka Hospital

5 6

7 8

9

10 11

12

13 14

15 16

17

18 19

20 21

22

23 24

25 26

27

28 29

30 31

32

33 34

35 36

37

44 45 46

Seisaburo Sakamoto Seiichiro Hoshi Yoshinari Okumura Sinichi Okabe Haruhiko Sato Hirosi Karibe Takashi Inoue Kazuyuki Kuwayama Tatsuya Mizoue Takashi Yoshida Takaharu Nakamura Tsutomu Hitotsumatsu Tomoaki Kameda Mitsukazu Nakai, Hiroshi Ishiguchi Masanobu Hokama Akinori Yamamura Kazuhiro Hongo Takeshi Kondoh Makoto Ichinose Yuzuru Tashiro Seiji Fukazawa

 BMJ Open

Shonan Kamakura General Hospital	Takahisa Mori
Showa Inan General Hospital	Shinsuke Muraoka
Showa University Fujigaoka Hospital	Tomoaki Terada
Shuuwa General Hospital	Tsuneo Shishido
Social Welfare Organization Saiseikai Imperial Gift Foundation Inc.	
Osaka Saiseikai Ibaraki Hospital	Yasunobu Gotou
Social Welfare Organization Saiseikai Imperial Gift Foundation	
Inc.Yamagata Saisei	Sunao Takemura
South Miyagi Medical Center	Hiroaki Arai
Southern Tohoku Hospital	Zenichiro Watanabe
St. Marianna University School of Medicine	Yuichiro Tanaka
St.Luke's International Hospital	Yasunari Niimi
Steel Memorial Yawata Hospital	Shinya Yamaguchi, Akira Nakamizo
Suiseikai Kajikawa Hospital	Shinichi Wakabayashi
Suwa Central Hospital	Hiroki Sato
Suwa Red Cross Hospital	Yukinari Kakizawa
Syakaiiryouhouzin Kouseikai Takai Hospital	Tetsuya Morimoto
Tachibana Medical Corporation Higashisumiyoshi Morimoto Hospital	Naofumi Isono
Tachikawa General Hospital	Hiroki Takano, Hiroshi Abe
Takamatsu Municipal Hospital	Norihito Shirakawa
Takamatsu Red Cross Hospital	Masahiro Kagawa

45 46

1

Takarazuka City Hospital Takarazuka Daiichi Hospital Takatsuki General Hospital Takeda General Hospital Organization Takeda Hospital Takikawa Neurosurgical Hospital Tanushimaru Central Hospital Teinekeijinkai Hospital Tenri Hospital Tenshindo Hetsugi Hospital Teraoka Memorial Hospital The Veritas Hospital Tobata Kyoritu Hospital Tohoku University Hospital Tokai University Hachioji Hospital Toki General Hospital Tokushima Red Cross Hospital Tokushima University Hospital Tokuyama Central Hospital Tokyo Dental College Ichikawa General Hospital Tokyo General Hospital

Eiichiro Mabuchi

Kazusige Maeno Takayuki Koizmi Waro Taki Yusuke Nakagaki Yoshihisa Matumoto Katuyuki Asaoka Yoshinori Akiyama Tadao Kawamura Atumi Takenobu Masayuki Yokota Taketoshi Tuji Teiji Tominaga Shigeru Nogawa, Masami Shimoda Sinji Noda Hajimu Miyake Shinji Nagahiro, Junichiro Satomi Kunihiko Harada Sadao Suga Shinichi Numazawa

 BMJ Open

Tokyo Medical and Dental University	Taketoshi Maehara
Tokyo Medical University Hachioji Medical Center	Hiroyuki Jimbo, Jyunya Tsurukiri
Tokyo Medical University Hospital	Michihiro Kohno
Tokyo Metropilitan Hiroo Hospital	Kensaku Yoshida
Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology	Koji Matuoka
Tokyo Metropolitan Tama Medical Center	Takahiro Ota
Tokyo Saiseikai Central Hospital	Haruhiko Hoshino
Tokyo Teisin Hospital	Makoto Noguchi
Tokyo Women's Medical University	Takakazu Kawamata
Tokyo Yamate Medical Center	Yasuaki Takeda
Tomakomaihigashi Hospital	Youichi Hashimoto
Tomei Atsugi Hopital	Keiichirou Onitsuka
Tominaga Hospital	Masahiko Kitano
Tomishiro Central Hospital	Jae-Hyun Son
Tottori Municipal Hospital	Keiichi Akatsuka
Tottori University	Masamichi Kurosaki, Takashi Watanabe
Toyama City Hospital	Miyamori Tadao
Toyama Prefectural Central Hospital	Hiroaki Hondo
Toyama Red Cross Hospital	Kazumasa Yamatani, Kotaro Tsumura
Toyama University Hospital	Satoshi Kuroda
Toyohashi Municipal Hospital	Hirofumi Oyama

Toyokawa City Hospital Toyooka Hospital Tsuchiura Kyodo General Hospital Tsukuba Medical Center Hospital Tsuruoka Municipal Shonai Hospital Tsutiura Kyodo Hospital Namegata District Medical Center Tsuyama Chuo Hospital Namegata District Medical Center Tsuyama Chuo Hospital Tyuubu Rousai Hospital Ube Kohsan Industries Hospital Uki General Hospital University of Fukui Hospital University of Occupational and Environmental Health University of The Ryukyus Hospital

University of Tsukuba Hospital University of Yamanashi Urasoe General Hospital Ushioda General Hospital Uwajima City Hospital Wakayama Medical University Hospital Wakayama Rosai Hospital

5 6

7 8

9

10 11

12

13 14

15 16

17

18 19

20 21

22

23 24

25 26

27

28 29

30 31

32

33 34

35 36

37

44 45 46

Takayuki Watanabe Kazuhiro Tanaka Shinji Yamamoto Kazuya Uemura Hirosi Maruya, Kazuhiko Sato Hitoshi Tabata Hideyuki Yoshida Noriaki Matubara Takafumi Nishizaki Hiroshi Egami Osamu Yamamura Junkoh Yamamoto Shogo Ishiuchi Yuji Matsumaru, Akira Matsumura, Tetsuya Yamamoto Hiroyuki Kinouchi Susumu Mekaru Hitoshi Ozawa Kiichiro Zenke Naoyuki Nakao Toshikazu Kuwata

 BMJ Open

Wakayama-Seikyo Hospital
Yaizu City Hospital
Yamagata City Hospital Saiseikan
Yamagata Prefectural Central Hospital
Yamagata Prefectural Shinjo Hospital
Yamagata University Hospital
Yamaguchi Prefectural Grand Medical Center
Yamaguchi Prefectural Grand Medical Center Yamaguchi Red Cross Hospital Yamaguchi University Hospital
Yamaguchi University Hospital
Yamanashi Prefectural Central Hospital
Yamanashi Redcross Hospital
Yamanashikouseibyouin
Yamato Municipal Hospital
Yao Tokushukai General Hospital
Yatsuo General Hospital
Yawata Medical Center
Yayoigaoka Kage Hospital
Yodogawa Christian Hospital
Yokohama City Minato Red Cross Hospital
Yokohama City University Hospital
Yokohama City University Medical Center

Teruyuki Habu Seiya Takehara Rei Kondo Takashi Kumagai Keiten So Yukihiko Sonoda Manabu Urakawa Yasuhiro Hamada Michiyasu Suzuki Shin Nakano, Hidehito Koizumi Hiroshi Ozawa Mikito Uchida Masaru Yamada Takashi Turuno Ryouichi Masuda Makoto Kimura Shin-Ichiro Ishihara Masashi Morikawa Yasunori Takemoto, Hiroaki Tanaka Hidetoshi Murata, Nobutaka Kawahara Katsumi Sakata

Yokohamasinmidorihospital

Yonezawa City Hospital

Yoshida Hospital

Yuaikaihospital

 Endo Sumio

Tooru Sasaki

Yasuhisa Yoshida

For peer review only Yoshihumi Teramoto

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	3
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			I
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6,7
Bias	9	Describe any efforts to address potential sources of bias	11
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	10
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	-
		(e) Describe any sensitivity analyses	-
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	11
		(b) Give reasons for non-participation at each stage	14
		(c) Consider use of a flow diagram	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	11-
		social) and information on exposures and potential confounders	14
		(b) Indicate number of participants with missing data for each variable of interest	14
Outcome data	15*	Report numbers of outcome events or summary measures	11-
		· · · · · · · · · · · · · · · · · · ·	14
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	11-
		estimates and their precision (eg, 95% confidence interval). Make clear	13

		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	11-
			13
		(c) If relevant, consider translating estimates of relative risk into absolute	11-
		risk for a meaningful time period	13
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	13
Discussion			
Key results	18	Summarise key results with reference to study objectives	14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias	13,14
		or imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	15-
		limitations, multiplicity of analyses, results from similar studies, and other	17
	21	relevant evidence	1.7
Generalisability	21	Discuss the generalisability (external validity) of the study results	15-
			17
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	19
		and, if applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Temporal trends and geographical disparities in comprehensive stroke centre capabilities in Japan from 2010 to 2018

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-033055.R2
Article Type:	Original research
Date Submitted by the Author:	07-May-2020
Complete List of Authors:	KUROGI, AI; Graduate School of Medical Sciences, Kyushu University, neurosurgery Nishimura, Ataru ; Graduate School of Medical Sciences, Kyushu University, neurosurgery Nishimura, Kunihiro; National Cerebral and Cardiovascular Center, Cerebrovascular Medicine Kada, Akiko ; National Hospital Organization Nagoya Medical Center, Department of Clinical Trials and Research Onozuka, Daisuke; Kyushu University, Hagihara, Akihito; Kyusyu University Graduate School of Medicine, Department of Health Services Management and Policy Ogasawara, Kuniaki; Iwate Medical University School of Medicine, Department of Neurosurgery Shiokawa, Yoshiaki ; Kyorin University Hospital, Department of Neurosurgery Kitazono, Takanari; Kyushu University, Neurosurgery Iihara, Koji ; Graduate School of Medical Sciences, Kyushu University, neurosurgery
Primary Subject Heading :	Neurology
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Stroke < NEUROLOGY, comprehensive stroke center, trends, Stroke medicine < INTERNAL MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

Temporal trends and geographical disparities in comprehensive stroke centre capabilities in Japan from 2010 to 2018

Ai Kurogi¹, Ataru Nishimura¹, Kunihiro Nishimura³, Akiko Kada⁴, Daisuke Onozuka³, Akihito Hagihara³, Kuniaki Ogasawara⁵, Yoshiaki Shiokawa⁶, Takanari Kitazono², Koichi Arimura¹, and Koji Iihara¹, on behalf of the J-ASPECT Study Collaborators

¹Department of Neurosurgery, and ²Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan ³Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Suita, Japan

 ⁴ Department of Clinical Research Management, Clinical Research Center, National Hospital Organization Nagoya Medical Centre, Nagoya, Japan
 ⁵ Department of Neurosurgery, Iwate Medical University, Morioka, Japan
 ⁶ Department of Neurosurgery, Kyorin University, Mitaka, Japan

Corresponding author: Koji Iihara, Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Higashi-ku, Maidashi, Fukuoka, 812-8582, Japan. Email: kiihara@ns.med.kyushu-u.ac.jp

1	
2	
3	
4	
5	
6	Keywords: stroke, comprehensive stroke centre, care quality
7	
8	Word count: 2,209
9	Word Count. 2,209
10	
11	
12	
13	
14	
15	
16	
17	
18 19	
19 20	
20 21	
21	
22	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
43 44	
44	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

ABSTRACT

Objectives: Comprehensive stroke centre (CSC) capabilities are associated with reduced in-hospital mortality due to acute stroke. However, it remains unclear whether there are improving trends in the CSC capabilities, or how hospital-related factors determine quality improvement. This study examined whether CSC capabilities changed in Japan between 2010 and 2018, and whether any changes were influenced by hospital characteristics. **Design:** A hospital-based cross-sectional study. Setting: We sent out questionnaires to the training institutions of the Japan Neurosurgical Society and Japan Stroke Society in 2010, 2014 and 2018. Participants: 749 in 2010, 532 in 2014 and 786 in 2018 hospitals that participate in the J-ASPECT study. Main outcome measures: CSC capabilities were assessed using the validated

scoring system (CSC score:1-25 points) in 2010, 2014, and 2018 survey. The effect of hospital characteristics was examined using multiple logistic regression analysis.

Page 5 of 65

BMJ Open

Results: Among the 323 hospitals that responded to all surveys, the implementation of 14 recommended items increased. The CSC score (median, interquartile range) was 16 (13-19), 18 (14-20), 19 (15-21), for 2010, 2014, and 2018, respectively (p< 0.001). There was a \geq 20% increase in six items (e.g. endovascular physicians, stroke unit, and interventional coverage 24/7), and a \leq 20% decrease in community education. A lower baseline CSC score (odds ratio 0.82, [95% confidence interval] 0.75-0.9), the number of beds \geq 500 (3.9 [1.2– 13.0]), and the number of stroke physicians (7-9) (2.6 [1.1-6.3]) was associated with improved CSC capabilities, independent of geographical location. **Conclusions:** There was a significant improvement in CSC capabilities between 2010 and 2018, which was mainly related to the availability of endovascular treatment and multidisciplinary care. Our findings may be useful to determine which hospitals should be targeted to improve CSC capabilities in a defined area.

Strengths and limitations of this study:

A large-scale, representative hospitals of Japan provided data on temporal trends in the CSC capabilities for this cross-sectional study.

Hospitals actively working to improve stroke care are more likely to respond to the

questionnaire, which may lead to information bias.

The CSC score was a significant composite measure to influence in-hospital mortality of acute stroke, but little information was established on the influence of

specific items.

•

INTRODUCTION

Stroke is the third leading cause of death and a leading cause of long-term disability in Japan. Primary and comprehensive stroke centres (CSCs) were developed to provide optimal implementation of intravenous recombinant tissue plasminogen activator (rt-PA) infusion and more intensive stroke care that includes endovascular and neurosurgical treatment. ^{1, 2} Organised care in a stroke unit is associated with better quality of care and reduced death and dependency. ^{3, 4} In addition to the influence of this process, previous studies have shown that patient outcomes associated with stroke and cardiovascular diseases are influenced by the hospital case volume, ^{5, 6} number of physicians, and geographical locations of the facility ⁷. Progressive rural-urban disparities in acute stroke care have been reported in the United States, ⁸ but it is not known whether such disparity exists in other countries.

In 2010, we launched the J-ASPECT study, a nationwide survey of acute stroke care capacity for proper designation of a comprehensive stroke centre in Japan. ^{9 10} The J-ASPECT stroke database is a hospital-based, Japan-wide stroke

registry. We demonstrated significant geographical differences in CSC capabilities in 2010,⁹ and that CSC capabilities of a facility are associated with reduced in-hospital mortality from acute stroke.¹⁰ Thus continuous monitoring of the CSC capabilities may be clinically meaningful to improve stroke outcomes. ^{10, 11} Since 2010, we have conducted nationwide benchmark analyses to allow participating hospitals to facilitate improvement of stroke care. However, it remains unclear whether there are improving trends in the CSC capabilities, or how hospital-related factors determine quality improvement.

AIMS

We aimed to examine whether CSC capabilities in Japan changed from 2010 to 2018 and whether any recorded changes were influenced by hospital characteristics.

1.04

METHODS

Institutional survey of CSC capabilities

BMJ Open

This cross-sectional survey used the DPC discharge database from participating institutions in the J-ASPECT study. Participation in the J-ASPECT study was voluntary. Of the 1369 training institutions certified by the Japan Neurosurgical Society, the Japanese Society of Neurology, and the Japan Stroke Society, 621 agreed to participate in this study. The J-ASPECT study group analysed the Diagnosis Procedure Combination (DPC) database to gain new clinical insights on ischaemic and haemorrhagic stroke, an approach we applied again for this cross-sectional survey. In this study, we sent out questionnaires to the training institutions of all three societies in 2010, 2014, and 2018 to assess CSC capabilities. The CSC capabilities of each facility were assessed with a validated scoring system (CSC score), using 25 items recommended by the Brain Attack Coalition ^{2, 5-7}.

All items were classified into five categories: personnel, diagnostic, specific expertise, infrastructure, and education. A score of 1 was assigned for meeting each item, yielding a total CSC score of up to 25. Content, constructs, and predictive validity of this scoring system have been previously reported.^{12, 13}

Other hospital characteristics

Hospital characteristics including number of beds, annual stroke hospitalisations, stroke physicians, academic status, adoption of the Diagnosis Procedure Combination (DPC)-based payment system ⁹, and geographic location were obtained from the 2010 survey. The geographic location was classified according to urban employment areas (UEAs) divided into Metropolitan Employment Areas (MEAs) and Micropolitan Employment Areas (McEAs).⁹ The MEAs were further classified into central and outlying areas based on the commuting pattern of their inhabitants. Details of UEAs, such as total population or total land area, have been previously described.¹⁰

Statistical analysis

To explore trends in CSC capabilities, we examined implementation of the 25 items and the CSC score in the 323 consecutively participating hospitals that responded to all surveys. To examine the influence of hospital-related factors

Page 11 of 65

BMJ Open

on the change in CSC capabilities, we divided the hospitals into those with or without a temporal improvement of CSC score (≥1-point increase between 2010 and 2018). The increase of "One point" was set based on our previous report on the CSC score.¹¹ In that study, we showed that even a small preceding improvement of the CSC score was associated with reduced in-hospital mortality, reduced poor outcomes, and higher use of acute reperfusion therapy in AIS patients; our findings also suggested the difficulty in improving the CSC score in a relatively short time period. We used a chi-squared test to detect differences between consecutively participating hospitals and other hospitals in the number of each hospital item. We did not perform multiple tests. Wilcoxon rank sum test was used to compare total CSC scores between consecutively participating hospitals and other hospitals. To explore the influence of hospital-related factors on temporal improvement of CSC capabilities, multiple logistic regression models were used. To assess selection bias, we compared hospital characteristics between consecutively participating hospitals with the others. We also examined the relationship between

"number of physicians" and "hospital size" and the relationship between "number of physicians" and "CSC score" using chi-squared tests. All analyses were performed using the JMP Statistical Version 12 Software (SAS Institute Inc., Cary, NC,

USA). P values of <0.05 were considered statistically significant.

Patient and public involvement

Data for this study are based on information collected by the J-ASPECT study. Patients and the public were not involved in the development of this study.

Liez

RESULTS

Trends in the CSC capabilities from 2010 to 2018

A total of 749, 532, and 786 hospitals responded to the survey in 2010, 2014, and 2018, respectively. The implementation rates of each item are shown in Table 1. The median (interquartile range) of the CSC scores was 14 (11-18), 17 (13-19), and 17 (12-20.3), for each year, respectively (Table 1).

Among consecutively participating hospitals, there was an increase in

BMJ Open

implementation rates of the 14 items, and the CSC scores were (median, interquartile range): 16 (13-19), 18 (14-20), 19 (15-21), for 2010, 2014, and 2018, respectively (p <0.001) (Table 1). A marked increase (\geq 20%) was noted in six items related to endovascular treatment (endovascular physicians and interventional coverage 24/7) and multidisciplinary care (stroke unit, specialists of emergency medicine and physical medicine/rehabilitation, and stroke rehabilitation nurses). In addition, a moderate increase ($\leq 20\%$) was noted in eight items: 24/7 availability of diffusion-weighted magnetic resonance imaging, digital and CT angiography, carotid ultrasound, coiling of an intracranial aneurysm, and implementation of stroke registry. In contrast, there was a marked decrease $(\leq 20\%)$ in community education.

Geographical differences in CSC capabilities between 2010 and 2018

Among the seven items with significant geographical differences in 2010, all items in the personal component still showed a gap, despite overall

improvement at all locations in 2018 (Table 2). In contrast, geographical differences in all infrastructure items diminished with overall improvement and a marked improvement in the McEA in 2018.

Over the study period, geographical differences emerged in intra-arterial reperfusion therapy and the number of specialists in physical medicine/rehabilitation. The remaining item, coiling of intracranial aneurysms,

showed no changes.

Influence of hospital characteristics on change in CSC capabilities

Among consecutively participating hospitals, 23 were excluded due to missing data. Temporal improvement of CSC capabilities between 2010 and 2018 was noted in 198 hospitals (66.0%). As for hospital characteristics, there were weakly significant differences in bed number (p=0.016) and CSC score in 2010 (p=0.032) between the two groups on univariable analysis (Table 3). In the logistic regression analyses, the following variables had an association

with temporal improvement of CSC capabilities (Table 4): a lower baseline CSC

BMJ Open

score (odds ratio 0.82 [95% confidence interval 0.75-0.9]), bed volume ≥500 (3.90, [1.17–13.0]), and moderate (7-9) number of stroke physicians (2.63, [1.10-6.27]). In contrast, geographical location, academic status, DPC-based payment system, and case volume of stroke did not show a significant association. We also performed the logistic regression analysis adjusting tertile, instead of quartile, of stroke physician volume in addition to the other adjusting factors. Except for Q3 of stroke physician volume, we found very similar results (Supplementary Table 1). Additionally, there was a significant relationship between hospital size and number of physicians (P<0.001), and between CSC score and number of

physicians (P<0.001).

Selection bias

The response rates of the 2010, 2014, and 2018 surveys were 55.0%, 39.7%, and 49.9%, respectively. We found that a selection bias did exist; in fact, the total CSC scores and most of the implementation rates of each item were significantly higher for the consecutively participating hospitals than for the

others in all three surveys (Table 1). Consecutively participating hospitals were

more likely to be MEA-central, academic, have a larger number of hospital beds,

higher annual stroke admission rate, and more stroke physicians

(Supplementary Table 2).

DISCUSSION

We found an overall improvement in CSC capabilities between 2010 and 2018, and different trends in geographical disparities for different items. Hospitals with a higher number of hospital beds, intermediate number of stroke physicians, and a lower baseline CSC score had a higher likelihood of improving their CSC capabilities.

Temporal Changes to CSC capabilities

In addition to a significant increase in CSC capabilities, there was a marked increase in implementation of the items, mainly related to endovascular

BMJ Open

treatment and multidisciplinary care. Of note, we previously showed that interventional 24/7 coverage and the presence of physical medicine/rehabilitation specialists were associated with reduced in-hospital mortality for patients with subarachnoid haemorrhage, whereas availability of neurologists and stroke units were associated with reduced in-hospital mortality and better functional outcomes, respectively, for those with ischaemic stroke.¹³

These findings are consistent with those of prior studies, which have shown that admission to a stroke unit with organised stroke care is associated with better quality of care and outcomes in those who experience an acute stroke. ^{14 3} Although the use of mechanical thrombectomy for large vessel acute ischaemic stroke (AIS) has been rapidly increasing, only 3.3% of 15.1% potentially eligible AIS patients received it in 2016. ¹⁵ Improvement of CSC capabilities, especially related to endovascular treatment and multidisciplinary care, should contribute to improved quality of care and outcomes in patients with acute stroke.

may be explained by the limited number of stroke physicians available for this purpose due to an increased burden of stroke care (e.g. emergent endovascular calls). ¹⁶ Stroke educational campaigns have the potential to improve knowledge and awareness, but public campaigns are usually expensive and short-lived and may not achieve any significant improvement. ¹⁷

Diminished and emerging geographical disparities

Determining rural/urban differences in CSC capabilities may support the development of targeted interventions to improve stroke care and outcomes in rural areas. We found differing trends in implementation of the items according to personnel and infrastructure components. Rural areas are associated with reduced access to optimal stroke care and a lower use of acute stroke intervention.¹⁸ The diminished disparities in implementation of stroke units in this study might result in a higher use of rt-PA infusion in rural areas.¹⁹

The emerging disparities in implementation of intraarterial reperfusion therapy deserve some attention. Since the evidence regarding the efficacy of

BMJ Open

acute endovascular reperfusion therapy was established in 2015,²⁰ relocation of relevant specialists might have occurred from rural to urban areas to meet the urgent need created by more widespread use. In addition, a high prevalence of neurointerventional physician burnout may require centralisation of acute endovascular reperfusion treatment.²¹

Influence of hospital-related factors on improvement of CSC capabilities Our study showed the impact of specific hospital-related factors on improvement of CSC capabilities, which may be useful to determine which hospitals should be targeted to improve CSC capabilities, and in what regions. In rural areas, where medical resources are limited, centralisation of acute stroke care in large hospitals may be needed. We also found a significant relationship between CSC score and number of physicians. This means that, in 2010, institutions with more physicians tended to have higher baseline CSC scores. The reason that a physician volume of more than 10 did not affect the improvement of the CSC score may be explained by the ceiling effect of a high baseline CSC score in 2010.

Limitations

There are several limitations of this study. First, since the total CSC scores and most of the implementation rates of each item were significantly higher for the consecutively participating hospitals than for the others in all three surveys, our findings may have included biased information. Second, the CSC score was a significant composite measure to influence in-hospital mortality of acute stroke, but little information was established on the influence of specific items. Third, we did not determine the influence of unmeasured confounders. Fourth, the CSC score is a self-reported questionnaire rather than the result of any formal certification process. In Japan, the official certification process for PSCs (primary stroke centres) just began in 2019. The criteria for CSC certification is now under discussion by the Japan Stroke Society. The results of this study could have a significant impact on the recommended items and criteria for the designation of official CSCs in Japan. After the official certification process for CSCs is implemented, we plan to reassess the effect of CSC capabilities on AIS patients. Finally, the 2014 data did not factor into this analysis

 BMJ Open

because of the small number of participants in that year. Further research is required to examine the effect of 2014 data on the analysis.

Conclusions

The CSC capabilities in Japan improved between 2010 and 2018, especially related to endovascular treatment and multidisciplinary care. Our findings may be useful to determine which hospitals should be targeted to improve CSC capabilities in a defined area.

Funding

The J-ASPECT study is supported by the Practical Research Project for lifestyle-related diseases, including cardiovascular diseases and diabetes mellitus, managed by the Japan Agency for Medical Research and Development [JP19ek0210088 and JP19ek0210129]; Grants-in-Aid from the Japanese Ministry of Health, Labour, and Welfare; and KAKENHI grants [19AC0101] from the Japan Society for the Promotion of Science.

Competing interests statement

None declared.

Ethics approval

The study was approved by the Kyushu University Institutional Review Board,

which waived the requirement for individual informed consent (No. 28-335)

Data availability statement

We have documented the data, methods, and materials used to conduct the research in

this report. The individual patient data are not publicly available because of the

memorandum signed by the director of the participating hospitals and the principal

investigator of the J-ASPECT Study group.

Authors and contributors

A Kurogi and KI drafted the manuscript. AN, KN, A Kada, DO, AH and KI

BMJ Open

were involved in study concept, design and obtaining funding. A Kada, DO, AH, KO, YS, TK, KA and KI were involved in analysis and of data. KO, YS, TK and KI were involved in acquisition of data. All authors reviewed the study report, made comments or suggestions on the manuscript drafts, and approved

the final version.

Acknowledgements

We thank the Japan Neurosurgical Society and the Japan Stroke Society for their collaboration. We also thank all participating hospitals in the J-ASPECT study for contributing to this project. The institutions and names of the J-ASPECT Study Collaborators are listed in Supplemental Appendix 1.

Patient consent for publication

Not required.

References

 Alberts MJ, Hademenos G, Latchaw RE, et al. Recommendations for the establishment of primary stroke centers. Brain Attack Coalition. *JAMA* 2000;283:3102-9.

Alberts MJ, Latchaw RE, Selman WR, et al. Recommendations for
 Comprehensive Stroke Centers: A Consensus Statement From the Brain Attack
 Coalition. *Stroke* 2005;36:1597-616.

Collaboration SUT. Organised inpatient (stroke unit) care for stroke.
 Cochrane Database of Systematic Reviews 2013;Sep 11;(9):CD000197.

4. Bray BD, Ayis S, Campbell J, et al. Associations between the organisation of stroke services, process of care, and mortality in England: prospective cohort study. *BMJ* 2013;346:f2827.

5. Hall RE, Fang J, Hodwitz K, Saposnik G, Bayley MT. Does the Volume of Ischemic Stroke Admissions Relate to Clinical Outcomes in the Ontario Stroke System? *Circ Cardiovasc Qual Outcomes* 2015;8(6 Suppl 3):S141-7.

6. Ross JS, Normand SL, Wang Y, et al. Hospital volume and 30-day mortality for three common medical conditions. *N Engl J Med* 2010;362:1110-8.

 Howard G, Kleindorfer DO, Cushman M, et al. Contributors to the Excess Stroke Mortality in Rural Areas in the United States. *Stroke* 2017;48:1773-8.

BMJ Open

8. Gonzales S, Mullen MT, Skolarus L, Thibault DP, Udoeyo U, Willis AW. Progressive rural-urban disparity in acute stroke care. Neurology 2017;88:441-8. 9. Iihara K, Nishimura K, Kada A, et al. The impact of comprehensive stroke care capacity on the hospital volume of stroke interventions: a nationwide study in Japan: J-ASPECT study. J Stroke Cerebrovasc Dis 2014;23:1001-18. 10. UEA Urban Employment Area. Available: http://www.csis.u-tokyo.ac.jp/UEA/uea data e.htm [Accessed 13 Jan. 2020]. Kada A, Ogasawara, K, Kitazono, T, et al. National trends in outcomes of 11. ischemic stroke and prognostic influence of stroke center capability in Japan, 2010-2016. Int J Stroke. 2019. Iihara K, Nishimura K, Kada A, et al. Effects of comprehensive stroke care 12. capabilities on in-hospital mortality of patients with ischemic and hemorrhagic stroke: J-ASPECT study. PLoS One 2014;9:e96819. 13. Kada A, Nishimura K, Nakagawara J, et al. Development and validation of a score for evaluating comprehensive stroke care capabilities: J-ASPECT Study. BMC Neurol 2017;17:46. Svendsen ML, Ehlers LH, Ingeman A, Johnsen SP. Higher stroke unit 14. volume associated with improved quality of early stroke care and reduced length of stay. Stroke 2012;43:3041-5. Smith EE, Saver JL, Cox M, et al. Increase in Endovascular Therapy in 15.

Get With The Guidelines-Stroke After the Publication of Pivotal Trials. *Circulation* 2017;136:2303-10.

16. Williams MM, Wilson TA, Leslie-Mazwi T, et al. The burden of neurothrombectomy call: a multicenter prospective study. *J Neurointerv Surg* 2018.

17. Rasura M, Baldereschi M, Di Carlo A, et al. Effectiveness of public stroke educational interventions: a review. *Eur J Neurol* 2014;21:11-20.

18. Kapral MK, Austin PC, Jeyakumar G, et al. Rural-Urban Differences in Stroke Risk Factors, Incidence, and Mortality in People With and Without Prior Stroke. *Circ Cardiovasc Qual Outcomes* 2019;12:e004973.

19. Domino JS, Baek J, Meurer WJ, et al. Emerging temporal trends in tissue plasminogen activator use: Results from the BASIC project. *Neurology* 2016;87:2184-91.

20. Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. *The Lancet* 2016;387:1723-31.

21. Fargen KM, Arthur AS, Leslie-Mazwi T, et al. A survey of burnout and professional satisfaction among United States neurointerventionalists. *J Neurointerv* Surg 2019.

to beet terien only

			2010				2014				2018		
		All	Consecutively			All	Consecutively			All	Consecutively		
Components	Items	participating	participating	Other Hsps.		participating	participating	Other Hsps.		participating	participating	Other Hsps.	
		Hsps.	Hsps.	(n=426)	p value	Hsps.	Hsps.	(n=209)	p value	Hsps.	Hsps.	(n=464)	p valu
		(n=749)	(n=323)			(n=532)	(n=323)			(n=786)	(n=323)		
Personnel	Neurologists	358 (47.8)	176 (54.5)	182 (42.7)	0.001	283 (53.2)	177 (54.8)	106 (50.7)	0.357	452 (57.5)	210 (65.0)	242 (52.2)	< 0.00
	Neurosurgeons	694 (92.7)	314 (97.2)	380 (89.2)	< 0.001	515 (96.8)	317 (98.1)	198 (94.7)	0.03	754 (95.9)	317 (98.1)	437 (94.2)	0.006
	Endovascular physicians	272 (36.3)	146 (45.2)	126 (29.6)	<0.001	280 (52.6)	196 (60.7)	84 (40.2)	< 0.001	428 (54.4)	211 (65.3)	217 (46.8)	< 0.00
	Emergency medicine	162 (21.6)	96 (29.7)	66 (15.5)	<0.001	207 (38.9)	146 (45.2)	61 (29.2)	< 0.001	427 (54.3)	205 (63.5)	222 (63.5)	< 0.00
	Physical medicine and	113 (15.1)	61 (18.9)	52 (12.2)	0.011	143 (26.9)	95 (29.4)	48 (23.0)	0.102	313 (39.8)	137 (42.4)	176 (37.9)	0.206
	rehabilitation			c= (1=.=)	0.011	1.0 (20.7)		(25.0)	0.10	010 (05.0)		110 (01.5)	0.200
	Rehabilitation therapy	742 (99.1)	321 (99.4)	421 (98.8)	0.435	529 (99.4)	321 (99.4)	208 (99.5)	0.832	779 (99.1)	321 (99.4)	458 (98.7)	0.354
	Stroke rehabilitation nurses	102 (13.6)	48 (14.9)	54 (12.7)	0.388	157 (29.5)	116 (35.9)	41 (19.6)	< 0.001	285 (36.2)	146 (45.2)	139 (30.0)	< 0.00
Diagnostic	СТ	742 (99.1)	322 (99.7)	420 (98.6)	0.122	527 (99.1)	322 (99.7)	205 (98.1)	0.061	763 (97.1)	322 (99.7)	441 (85.0)	< 0.00
	MRI with diffusion	647 (86.4)	291 (90.1)	356 (83.6)	0.01	504 (94.7)	311 (96.3)	193 (92.3)	0.047	732 (93.1)	314 (97.2)	418 (90.1)	< 0.00
	Digital cerebral	602 (80.3)	288 (89.2)	314 (73.7)	< 0.001	476 (89.4)	305 (94.4)	171 (81.8)	<0.001	638 (81.2)	299 (92.6)	399 (73.1)	< 0.001
	angiography	002 (00.3)	200 (0).2)	511(15.1)	0.001	170 (05.1)	505 (51.1)	1,1 (01.0)	0.001	000 (01.2)	2,5, (52.0)	577 (15.1)	0.00
	CT angiography	627 (83.7)	289 (89.5)	338 (79.3)	< 0.001	492 (92.5)	305 (94.4)	187 (89.5)	0.034	701 (89.2)	309 (95.7)	392 (84.5)	< 0.00
	Carotid duplex ultrasound	257 (34.3)	126 (39.0)	131 (30.8)	0.018	219 (41.2)	153 (47.4)	66 (31.6)	< 0.001	343 (43.6)	169 (52.3)	174 (37.5)	< 0.00
	TCD	121 (16.2)	70 (21.7)	51 (12.0)	< 0.001	123 (23.1)	87 (26.9)	36 (17.2)	< 0.010	162 (20.6)	95 (29.4)	67 (14.4)	< 0.00
Specific	Carotid endarterectomy	603 (80.5)	292 (90.4)	311 (73.0)	< 0.001	458 (86.1)	288 (89.2)	170 (81.3)	0.011	613 (78.0)	284 (87.9)	329 (70.9)	< 0.00

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1			1	I			1	1			1	1		
2 3	Expertise													
4		Clipping of intracranial	(95 (01 5)	214 (07.2)	271 (07.1)	<0.001	504 (04 7)	215 (07.5)	180 (00.4)	<0.001	70((90 9)	214 (07.2)	202 (94 5)	<0.001
5 6		aneurysm	685 (91.5)	314 (97.2)	371 (87.1)	< 0.001	504 (94.7)	315 (97.5)	189 (90.4)	<0.001	706 (89.8)	314 (97.2)	392 (84.5)	<0.001
7 8		Hematoma	(80,02,0)	215 (07.5)	274 (97 9)	<0.001	505 (05 0)	215 (07.5)	100 (00 0)	<0.001	719 (01 2)	214 (07.2)	404 (97.1)	<0.001
9		removal/draining	689 (92.0)	315 (97.5)	374 (87.8)	< 0.001	505 (95.0)	315 (97.5)	190 (90.9)	<0.001	718 (91.3)	314 (97.2)	404 (87.1)	<0.001
10 11		Coiling of intracranial	2(0 (49 1)	102 (50.4)	1(9(204)	<0.001	222 ((2.4)	222 ((0,0)	100 (52 2)	<0.001	449 (57.0)	222 ((0,0))	225 (49.5)	<0.001
12 13		aneurysm	360 (48.1)	192 (59.4)	168 (39.4)	< 0.001	332 (62.4)	223 (69.0)	109 (52.2)	<0.001	448 (57.0)	223 (69.0)	225 (48.5)	< 0.001
14		Intra-arterial reperfusion	109 (66 5)	245 (75.0)	252 (50 4)	< 0.001	398 (74.8)	261 (80.8)	127 (65 6)	<0.001	510 (64.9)	247 (76.5)	262(56.7)	< 0.001
15 16		therapy	498 (66.5)	245 (75.9)	253 (59.4)	<0.001	398 (74.8)	201 (80.8)	137 (65.6)	<0.001	510 (64.9)	247 (70.5)	263 (56.7)	<0.001
17 18	Infrastructure	Stroke unit	132 (17.6)	74 (22.9)	58 (13.6)	< 0.001	202 (38.0)	136 (42.1)	66 (31.6)	0.015	342 (43.5)	171 (52.9)	171 (36.9)	< 0.001
19		Intensive care unit	445 (59.4)	214 (66.3)	231 (54.2)	<0.001	362 (68.0)	224 (69.4)	138 (66.0)	0.422	467 (59.4)	220 (68.1)	247 (53.2)	< 0.001
20 21		Operating room staffed 24/7	451 (60.2)	230 (71.2)	221 (51.9)	<0.001	339 (63.7)	239 (74.0)	100 (47.9)	< 0.001	487 (62.0)	243 (75.2)	244 (52.6)	<0.001
22 23		Interventional services	279 (37.3)	147 (45.5)	132 (31.0)	< 0.001	317 (59.6)	218 (67.5)	99 (47.4)	<0.001	452 (57.5)	219 (67.8)	233 (50.2)	<0.001
24		coverage 24/7	219 (31.3)	147 (45.5)	152 (51.0)	-0.001	517 (59.0)	210 (07.5)))(1/.1)	-0.001	+52 (57.5)	217 (07.0)	255 (50.2)	-0.001
25 26		Stroke registry	235 (31.4)	133 (41.2)	102 (23.9)	< 0.001	260 (48.9)	172 (53.3)	88 (42.1)	0.012	349 (44.4)	164 (50.8)	185 (39.9)	0.003
27 28	Education	Community education	369 (49.3)	188 (58.2)	181 (42.5)	< 0.001	144 (27.1)	91 (28.2)	53 (25.4)	0.476	204 (26.0)	98 (30.3)	106 (22.8)	0.018
29		Professional education	436 (58.2)	207 (64.1)	229 (53.8)	0.005	326 (61.3)	208 (64.4)	118 (56.5)	0.066	429 (54.6)	184 (57.0)	245 (52.8)	0.249
30 31	Total CSC score													
32 33	median, (IQR)		14 (11, 18)	16 (13, 19)	13 (10, 17)	< 0.001	17 (13, 19)	18 (14, 20)	15 (12, 18)	< 0.001	17 (12, 20)	19 (15, 21)	15 (10, 19)	< 0.001

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

35Hsp, hospital; CT, computed tomography; MRI, magnetic resonance imaging; TCD, transcranial Doppler.

Table 2. Characteristics of comprehensive stroke care capabilities according to the geographical differences

		a) 2010				b) 2018			
		MEA central	MEA outlying	McEA	P value	MEA central	MEA outlying	McEA	P value
		(n=186) (n=79) (n=35)			(n=186)	(n=79)	(n=35)		
	Neurologists	115 (61.8)	44 (55.7)	10 (28.6)	0.001	133(71.5)	55(69.6)	14 (40.0)	0.001
	Neurosurgeons	181 (97.3)	77 (97.5)	34 (97.1)	0.995	183 (98.4)	78 (98.7)	34 (97.1)	0.826
	Endovascular physicians	101 (54.3)	31 (39.2)	8 (22.9)	< 0.001	136 (73.1)	49 (62.0)	14 (40.0)	< 0.001
Dersonnal	Emergency medicine	57 (30.7)	25 (31.7)	7 (20.0)	0.406	122 (65.6)	54 (68.4)	16 (45.7)	0.052
Personnel	Physical medicine and rehabilitation	36 (19.4)	16 (20.3)	5 (14.3)	0.740	83 (44.6)	42 (53.2)	3 (8.6)	<0.001
	Rehabilitation therapy	185 (99.5)	78 (98.7)	35 (100)	0.701	185 (99.5)	78 (98.7)	35 (100)	0.701
	Stroke rehabilitation nurses	33 (17.8)	9 (11.4)	1 (2.9)	0.049	90 (48.4)	41 (51.9)	9 (25.7)	0.027
	СТ	185 (99.5)	79 (100.0)	35 (100.0)	0.735	185 (100)	79 (100)	35 (100)	0.735
	MRI with diffusion	167 (89.8)	69 (87.3)	33 (94.3)	0.530	179 (96.2)	78 (98.7)	35 (100)	0.299
D: ()	Digital cerebral angiography	165 (88.7)	70 (88.6)	34 (97.1)	0.303	168 (90.3)	76 (96.2)	33 (94.3)	0.232
Diagnostic	CT angiography	163 (87.6)	72 (91.1)	32 (91.4)	0.627	176 (94.6)	77 (97.5)	34 (97.1)	0.525
	Carotid duplex ultrasound	71 (38.1)	30 (38.0)	14 (40.0)	0.977	95 (51.1)	48 (60.8)	15 (42.9)	0.164
	TCD	43 (23.1)	18 (22.8)	3 (8.6)	0.146	54 (29.0)	29 (36.7)	5 (14.3)	0.052
Specific	Carotid endarterectomy	173 (93.0)	68 (86.1)	32 (91.4)	0.196	166 (89.3)	71 (89.9)	28 (80)	0.260
Expertise	Clipping of intracranial aneurysm	183 (98.4)	75 (94.9)	34 (97.1)	0.280	181 (97.3)	77 (97.5)	34 (97.1)	0.995

Page 31 of 65

 BMJ Open

	Hematoma removal/draining	183 (98.4)	76 (96.2)	34 (97.1)	0.546	182 (97,9)	77 (97.5)	35 (94.3)	0.4
	Coiling of intracranial aneurysm	119 (64.0)	46 (58.2)	13 (37.1)	0.012	143 (76.9)	49 (62.0)	17 (48.6)	<0.
	Intra-arterial reperfusion therapy	142 (76.3)	58 (73.4)	27 (77.1)	0.859	153 (82.3)	57 (72.2)	22 (62.9)	0.0
	Stroke unit	50 (26.9)	17 (21.5)	2 (5.7)	0.023	106 (57.0)	44 (55.7)	13 (37.1)	0.0
	Intensive care unit	123 (66.1)	54 (68.4)	21 (60.0)	0.685	134 (72.0)	54 (68.4)	18 (51.4)	0.0
Infrastructura	Operating room staffed 24/7	143 (76.9)	59 (74.7)	15 (42.9)	< 0.001	148 (79.6)	56 (70.9)	22 (62.9)	0.0
Infrastructure	Interventional services coverage 24/7	103 (55.4)	30 (38.0)	6 (17.1)	<0.001	133 (71.5)	54 (68.4)	18 (51.4)	0.0
	Stroke registry	81 (43.6)	31 (29.1)	15 (42.9)	0.808	93 (50.0)	47 (59.5)	15 (42.9)	0.1
Education	Community education	110 (59.1)	53 (67.1)	17 (48.6)	0.164	55 (29.6)	28 (35.4)	8 (22.9)	0.3
Education	Professional education	125 (67.2)	53 (67.1)	17 (48.6)	0.095	105 (56.5)	47 (59.5)	17 (48.6)	0.5
*MEA metr	opolitan, McEA microplita	in.		17 (40.0)					

Table 3. Hospital characteristics those with/without temporal improvement of the CSC capabilities.

	all Consecutively	Improvement	No improvement	
Hospital-related factors in 2010	participating	Hsps.	Hsps.	p value [#]
	Hsps. (n=300)	(n=198)	(n=102)	
Hospital locations	\sim			0.478
MEA central	186 (62.0)	121 (61.1)	65 (63.7)	
MEA outlying	79 (26.3)	56 (28.3)	23 (22.6)	
McEA	35 (11.7)	21 (10.6)	14 (13.7)	
		8		
CSC score in 2010		The second		
median (IQR)	16 (13, 19)	16 (13, 18)	17 (13, 20)	0.032
Academic hospital	58 (19.3)	42 (21.2)	16 (15.7)	0.251
DPC* hospital	225 (75.0)	145 (73.2)	80 (78.4)	0.325
Number of hospital beds				0.016
1-99	17 (5.7)	9 (4.6)	8 (7.8)	
100-299	68 (22.7)	37 (18.7)	31 (30.4)	
300-499	96 (32.0)	62 (31.1)	34 (33.3)	
≥500	119 (39.7)	90 (45.5)	29 (28.4)	

 BMJ Open

Annual stroke case volume				0.915
0-99	34 (11.3)	21 (10.6)	13 (12.8)	
100-199	73 (24.3)	47 (23.7)	26 (25.5)	
200-299	67 (22.3)	45 (22.7)	22 (21.6)	
≥300	126 (42.0)	85 (42.9)	41 (40.2)	
	0r			
Number of stroke physician volume	6			
median (IQR)	6 (3, 9)	6 (3.8, 9)	5 (3, 9.3)	0.139
Number of stroke physician volume		C/-		
quartile		16		
Q1 (0-3)	82 (27.3)	49 (24.8)	33 (32.4)	
Q2 (4-6)	68 (22.7)	43 (21.7)	25 (24.5)	
Q3 (7-9)	80 (26.7)	61 (30.8)	19 (18.6)	
Q4 (≥10)	70 (23.3)	45 (22.7)	25 (24.5)	
Number of stroke physician volume				
tertile				
T1 (0-4)	114 (38.0)	72 (36.4)	42 (41.2)	
T2 (4-8)	96 (32.0)	63 (31.8)	33 (32.4)	
T3 (≥9)	90 (30.0)	63 (31.8)	27 (26.5)	

*DPC: Diagnostic Procedure Combination, Hsp: hospital, # p value: Improvement vs. No improvement hospitals, MEA:

metropolitan, McEA: micropolitan

 For peer review only

44 45 46 BMJ Open

0.76-2.65 0.269

0.36-1.86 0.632

0.75-0.90 < 0.001

0.54-3.48 0.506

0.41-1.42 0.397

0n/

P value

95%CI

4 5 5	Hospital-related factors in 2010	Odds ratio
5 7 3	Hospital locations	
9 10	MEA central	ref.
11 12	MEA outlying	1.42
13 14 15	McEA	0.82
16 17		$-\rho_{\rm O}$
18 19 20	CSC score in 2010	0.82
21 22		
23 24 25	Academic hospital	1.37
26 27		
28 29 30	DPC hospital	0.77
81 82		
33 34	Number of beds	
35 36	1-99	ref.
37 38 39	100-299	1.16
40 41		
2		

characteristics on one-point increases of the CSC score

0.37-3.66 0.794

1	
2 3	
2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 25 26 27 8 9 30 12 33 4 5 6 7 8 9 10 11 23 24 25 26 27 8 9 30 31 23 34 35 36 37 38 37 37 38 37 37 38 37 37 37 37 37 37 37 37 37 37 37 37 37	
5	
6	
7	
8 9	
, 10	
11	
12	
13 14	
14	
16	
17	
18	
20	
21	
22	
23	
24 25	
26	
27	
28	
29 30	
31	
32	
33	
34 25	
36	
37	
50	
39 40	
40 41	
42	
43	
44 45	
45 46	
40	

300-499	1.68	0.56-5.10	0.358	
		1.17-13.0		
≥500	3.9	0	0.027	
~				
Annual stroke case volume	6			
1-99	ref.			
100-199	1.62	0.64-4.07	0.305	
200-299	2.41	0.89-6.49	0.083	
≥300	2.74	0.99-7.54	0.051	
			6	
Number of stroke physician volume quartile				
Q1 (0-3)	ref.			
Q2 (4-6)	1.77	0.81-3.88	0.153	
Q3 (7-9)	2.63	1.10-6.27	0.030	
Q4 (≥10)	1.58	0.57-4.38	0.380	

*DPC: Diagnostic Procedure Combination, Hsp: hospital, # p value: Improvement vs. No improvement hospitals, MEA:

metropolitan, McEA: micropolitan.

 BMJ Open

Supplemental material

eTable 1. Multivariable analysis of the impact of the hospital characteristics on one-point increase of the CSC score

eTable 2. Univariable analysis of association between consecutively participating hospitals in all three surveies and the others

Supplemental Appendix 1. List of the J-ASPECT Study Collaborators.

. .et of the hospital characteristics o. .etation between consecutively participating . . of the J-ASPECT Study Collaborators.

eTable 1 Multivariable analysis of the impact of the hospital characteristics on one-point increase of the CSC score

Hospital-related factors in 2010	Odds	95%CI	P value
Hospital locations			
MEA central	ref.		
MEA outlying	1.35	0.36-2.48	0.339
McEA	0.78	0.35-1.75	0.549
CSC score in 2010	0.83	0.76-0.91	<0.001
Academic hospital	1.29	0.52-3.24	0.582
DPC hospital	0.72	0.39-1.34	0.302
Number of beds			
1-99	ref.		
100-299	1.1	0.36-3.41	0.868
300-499	1.82	0.60-5.48	0.285
\geq 500	3.81	1.16-12.54	0.028
Annual stroke case volume			

1-99	ref.			
100-199	1.68	0.67-4.18	0.267	
200-299	2.47	0.92-6.61	0.072	
≥300	3.17	1.16-8.66	0.024	
Number of stroke physician	ns, tertile			
T1 (0-4)	ref.			
T2 (4-8)	1.12	0.58-2.16	0.745	
T3 (≥9)	1.35	0.57-3.21	0.492	

1	
2 3	
4	
5 6	
7	
8 9	
10	
11 12	
13	
14 15	
16	
12 13 14 15 16 17 18 19 20	
19	
21	
,,	
23 24	
25	
26 27	
28	
29 30	
31 32	
32 33	
34	
34 35 36 37	
38 39	
40	
41 42	
43	
44 45	
46	

eTable 2 Univariable analysis of association between consecutively participating hospitals in all three surveies and the others

	All Hsps. in 2010 (n=749)	Consecutively participating Hsps. (n=323)	Other Hsps. (n=426)	p value
Hospital location				< 0.001
MEA central	381 (50.9)	193 (59.8)	188 (44.1)	
MEA outlying	239 (31.9)	83 (25.7)	156(36.6)	
McEA	102 (13.6)	38 (11.8)	64 (15.0)	
Unclassified	27 (3.6)	9 (2.8)	18 (4.2)	
CSC score at 2010				
median (IQR)	14 (11, 18)	16 (13, 19)	13 (10, 17)	<0.001
Academic hospital	90 (12.1)	61 (18.9)	29 (6.8)	<0.001
DPC hospital	553 (73.8)	237 (73.4)	316 (74.2)	0.804
Number of beds				<0.001
-99	50 (6.7)	19 (5.9)	31 (7.3)	
100-299	232 (31.0)	75 (23.2)	157 (36.9)	
300-499	260 (34.7)	105 (32.5)	155 (36.4)	
≥500	207 (27.6)	124 (38.4)	83 (19.5)	
Annual stroke volume				< 0.001
-99	129 (17.2)	36 (11.2)	93 (21.8)	

BMJ Open

physicians, median	4 (3, 7)	5 (3, 9)	4 (2, 6)	< 0.001
Number of stroke				
N/A	38 (5.1)	14 (4.3)	24 (5.6)	
≥300	228 (30.4)	127 (39.3)	101 (23.7)	
200-299	155 (20.7)	70 (21.7)	85 (20.0)	
100-199	199 (26.5)	76 (23.5)	123 (28.9)	

*DPC: Diagnostic Procedure Combination, Hsp: hospital, MEA: metropolitan, McEA: micropolitan

Supplemental Appendix 1. List of the J-ASPECT Study Collaborators.

All Contributors were involved in collection of data.

Hospitals	Responsible persons
Ainomiyako Neurosurgery Hospital	Isao Sasaki
Aizawa Hospital	Takao Hasimoto
Akita University Hospital	Hiroaki Shimizu
Akocity Hospital	Minoru Asahi
Almeida Memorial Hospital	Makoto Goda
Aomori City Hospital	Atsuhito Takemura
Aomori Prefectural Central Hospital	Tatsuya Sasaki
Asahi General Hospital	Saburo Watanabe
Ashiya Municipal Hospital	Seiko Kataoka
Atsuchi Neurosurgical Hospital	Kouji Takasaki
Ayabe City Hospital	Kouji Shiga Hidehuku Gi Ryunosuke Uranishi
Baba Memorial Hospital	Hidehuku Gi
Bellland General Hospital	Ryunosuke Uranishi
Beppu Medical Center	Yasuyuki Nagai
Chiba Cancer Center	Toshihiko Iuchi
Chiba Cerebral and Cardiovascular Center	Toshio Machida, Junichiro Shimada
Chiba Neurosurgical Clinic	Kenji Wakui
Chiba Rosai Hospital	Takashi Saegusa

 BMJ Open

Chiba Tokushukai Hospital	Isao Kitahara
Chidoribashi Hospital	Yasushi Ejima
Chigasaki Municipal Hospital	Takaakira Yokoyama
Chikamori Hospital (Chikamori Health Care Group)	Satoru Hayashi
Chutoen General Medical Center	Toshikazu Ichihashi
Corporate Medical Association Shoikai Kasai Shoikai Hospital	Junichi Harashina
Daiichitowakaihospital	Tsugumichi Ichioka
Daiyukai General Hospital	Takayuki Kato, Shinichi Shirakami
Date Red Cross Hospital	Takeshi Matsuoka
Department of Neurosurgery Shiroyama Hospital	Kenichi Murao
Dokkyo Medical University Koshigaya Hospital	Akio Hyodo, Tomoyuki Miyamoto
Doutounoushinnkeigekabyouinn	Teruo Kimura
Ebina General Hospital	Tomonori Kobayashi
Ehime Prefectural Central Hospital	Shinji Iwata
Faculty of Medicine, Saga University	Tatsuya Abe
Faculty of Medicine, University of Miyazaki	Hideo Takeshima
Fuchu Hospital	Kazunori Yamanaka
Fuji City General Hospital	Satoru Morooka
Fujii Neurosurgical Hospital	Hideo Kunimine
Fujita General Hospital	Satoshi Taira
Fujita Health University Hospital	Ichiro Nakahara, Yuichi Hirose

45 46

1

Fujiyoshida Municipal Hospital Fukaya Red Cross Hospital Fukuchiyama City Hospital Fukui Katsuyama General Hospital Fukuoka Seisyukai Hospital Fukuoka Tokushukai Medical Center Fukuoka University Chikushi Hospital Fukuoka University Hospital Fukuoka Wajiro Hospital Fukuokashinmizumaki Hospiral Fukushima Medical University Hospital Fukushima Red Cross Hospital Gifu Municipal Hospital Gifu Prefectural Tajimi Hospital Gifu University Hospital Hachisuga Hospital Hakodate Central General Hospital Hakodate Municipal Hospital Hakodate Neurosurgical Hospital Hakujyuji Hospital Hamamatsu Medical Center

Syougo Imae Hirochiyo Wada Mamoru Murakami Masanori Kabuto Masaharu Tani, Isao Inoue Hidenori Yoshida Kiyoshi Kazekawa Tooru Inoue Kouzou Fukuyama Shigenari Kin Taku Sato Yoichi Watanabe Tetsuya Tanigawara Junki Ito Toru Iwama Yoshihisa Maeda Makoto Takeda Jun Niwa Mikio Nishiya Shuji Hayasi Teiji Nakayama

 BMJ Open

Hamanomachi Hospital
Harasanshin Hospital
Hata Kenmin Hospital
Higashiosaka City Medical Center
Higashitotsuka Memorial Hospital
Higashiyamato Hospital
Hirosaki Stroke and Rehabilitation Center Hirosaki University Hospital Hiroshima City Hiroshima Citizens Hospital
Hirosaki University Hospital
Hiroshima City Hiroshima Citizens Hospital
Hiroshima Prefectural Hospital
Hiroshima Red Cross Hospital & Atomic Bomb Survivors Hospital
Hiroshima University Hospital
Hito Medical Center
Hokkaido Medical Center
Hokkaido University Dept. Neurosurgery
Hokushikai Megumino Hospital
Hokuto Hospital
Hospital
Hospital Nanbu Tokushukai
Hukuoka City Hospital
Hyogo College of Medicine

Koichirou Matsukado Tadahisa Shono Hiroyuki Nishimura Takatoshi Fujimoto, Ryo Tamaki Satoshi Utsuki Ikuo Kobayashi, Hirotoshi Ohtaka Takamitsu Uchizawa Hiroki Ohkuma Shigeki Nishino Atsushi Tominaga Masayuki Sumida Takahito Okazaki, Shirou Aoki Naoki Shinohara Satoshi Ushikoshi Syunsuke Terasaka, Kiyohiro Houkin Mitsunobu Kaijima Kimito Kondo, Kazumi Nitta Toshiki Ikeda, Hidetoshi Ooigawa Tutomu Kadekaru Katsuyuki Hirakawa Shinichi Yoshimura

46

1

Hyogo Prefectural Awaji Medical Center Hyogo Prefectural Kakogawa Medical Center Hyogokenritu_Nishinomiya_Hospital Ibaraki Prefectural Central Hospital Ibaraki Seinan Medical Center Hospital **Iida Municipal Hospital** Imari Arita Kyoritsu Hospital Ina Central Hospital Inagi Municipal Hospital Institute of Brain and Blood Vessels Mihara Memorial Hospital Irixyouhoujin Okinawatokushuukai Uwajimatokushukai Hospital Iryohojin Seiwakai Wada Hospital Iryouhoujinsyadanjinmeikai Akiyamanousinnkeigeka Iryouhouzinsyadan Meihoukai Yokohamashintoshinoushinkeigekabyouin Isahaya General Hospital Ise Red Cross Hospital Ishikawa Prefectural Central Hospital Ishinomaki Red Cross Hospital Itabashi Chuo Medical Center Itami Kousei Neurosurgical Hospital

Yoshio Sakagami Hideo Aihara Takayuki Sakaki Hiroko Oyama, Yuuji Kujiraoka Keishi Fujita Sumio Kobayashi Nobuaki Momozaki Atsushi Sato Hideki Murakami, Tatsuo Iwasita Akazi Kazunori, Takao Kanzawa Hiromichi Sadashima Shiro Miyata Takekazu Akiyama Akihiro Nemoto, Masafumi Morimoto Yoshihiro Nishiura Fumitaka Miya, Masunari Sibata Yutaka Hayashi Syuichi Ishikawa Miura Naohisa Shinya Noda

46

Iwaki Kyoritsu General Hospital Iwata Municipal General Hospital Iwate Medical University Iwate Prefectural Central Hospital Iwate Prefectural Iwai Hospital Iwate Prefectural Kuji Hospital Iwate Prefectural Ninohe Hospital Izumi Hospital Izumino Hospital Japan Community Health Care Organization Chukyo Hospital Japan Community Health Care Organization Kyushu Hospital Japan Community Health Care Organization Tokyo Takanawa Hospital Japan Organization of Occupational Health and Safety Kumamoto Rousai Hospital Japanese Red Cross Akita Hospital Japanese Red Cross Asahikawa Hospital Japanese Red Cross Fukuoka Hospital Japanese Red Cross Kitami Hospital Japanese Red Cross Kumamoto Hospital Japanese Red Cross Maebashi Hospital

Yasuhiro Suzuki Shinji Amano Kuniaki Ogasawara Takayuki Sugawara Keiichi Saitou Kazuyuki Miura Akinori Yabuta Makoto Hasebe Masato Seike Akira Ikeda Satoshi Inoha Hirofumi Hiyama Hiromasa Tsuiki, Shigeo Yamashiro Keiichi Nishimaki Katsumi Takizawa, Kenichi Makino Hitoshi Tsugu, Jiro Kitayama Nozomi Suzuki Shu Hasegawa, Tadashi Terasaki Ken Asakura

Japanese Red Cross Medical Center Japanese Red Cross Society Hachinohe Hospital Japanese Red Cross Takayama Hospital Japanese Redcross Fukui Hospital Jcho Hitoyoshi Medical Center Jcho Kobe Central Hospital Jcho Kumamoto General Hospital Jcho Nankai Medical Center Juntendo Universty Hospital Kaetsu Hospital Kaga Medical Center Kagawa Rosai Hospital Kagawa University Hospital Kagoshima City Hospital Kagoshima Prefectural Kanoya Medical Center Kagoshima Tokushukai Hospital Kagoshima University Hospital Kan-Etsu Hospital Kanazawa Medical Univercity Kanazawa Neurosurgical Hospital Kanazawa University Hospital

5 6

7 8

9

10 11

12

13 14

15 16

17

18 19

20 21

22

23 24

25 26

27

28 29

30 31

32

33

34

35 36

37 38

44 45 46 Ichiro Suzuki Hiromu Konno Katsunobu Takenaka Hiroki Toda, Taketo Hatano Keizou Yamamoto Keigo Matsumoto Kazunari Koga Takamitu Hikawa Hajime Arai Kazuaki Awamori Naoki Shirasaki Kimihiro Yoshino Takashi Tamiya Kazuho Hirahara Shunichi Tanaka Teruaki Kawano Sei Sugata, Kazunori Arita Masahiko Tanaka Shunsuke Shiraga Syuji Sato Mitsutoshi Nakada

 BMJ Open

Kaneda Hospital	Kimihisa Kinoshita
Kanmon Medical Center	Katsuhiro Yamashita
Kano Hospital	Nakazawa Kazutomo
Kansai Electric Power Hospital	Yasuhiro Fujimoto
Kansai Medical University Hospital	Kunikazu Yoshimura
Kanto Rosai Hospital	Takayuki Tachizawa
Kasaoka Daiichi Hospital	Akira Watanabe
Kashiwaba Nourosagical Hospital	Tetsuyuki Yoshimoto
Kansai Medical University Hospital Kanto Rosai Hospital Kasaoka Daiichi Hospital Kashiwaba Nourosagical Hospital Kasugai Municipal Hospital Kawasaki Medical School Hospital	Naoto Kuwayama
Kawasaki Medical School Hospital	Masaaki Uno
Kazuno Kosei Hospital	Masayuki Sasou
Keiju Medical Center	Sotaro Higashi
Keishunkai Medical Corporation Kobari General Hospital	Naoaki Sato
Kenwakai Hospital	Masakazu Kitahara
Kenwakai Otemati Hospital	Hiroshi Yoneda
Kieikai Hospital	Satoshi Suzuki
Kindai University Hospital	Toshiho Ohtsuki, An
Kindai University Sakai Hospital	Yusaku Nakamura
Kiryu Kosei General Hospital	Satoshi Magarisawa
Kishiwada City Hospital	Kenji Hashimoto
Kishiwada Tokushukai Hospital	Hiroyuki Matsumoto

suhiro Yamashita kazawa Kazutomo uhiro Fujimoto nikazu Yoshimura ayuki Tachizawa ra Watanabe suyuki Yoshimoto oto Kuwayama saaki Uno sayuki Sasou aro Higashi oaki Sato sakazu Kitahara oshi Yoneda oshi Suzuki shiho Ohtsuki, Amami Kato saku Nakamura oshi Magarisawa nji Hashimoto oyuki Matsumoto

45 46

1

Kita-Harima Medical Center Kitakami Saiseikai Hospital Kitakyusyu General Hospital Kitakyusyu Municipal Medical Center Kitamurayama Hospital Kitasato University School of Medicine Kobe City Medical Center General Hospital Kobe Ekisaikai Hospital Kobe Red Cross Hospital Kobe University Hospital Kochi Health Sciences Center Kochi Medical School Hospital Kohka Public Hospital Kohnan Hospital Kohsei General Hospital Kokura Memorial Hospital Komaki City Hospital Komatsu Municipal Hospital Komoro Kosei General Hospital Koshigaya Municipal Hospital Koto Memorial Hospital

Hirotoshi Hamaguchi, Shigeru Miyake Tomohiko Satou Masaru Idei Masahiro Mizoguchi Eiichiro Kamatsuka Toshihiro Kumabe Nobuyuki Sakai Takashi Tominaga Haruo Yamashita Eiji Kohmura, Tatsushi Toda Tsuyoshi Oota, Masanori Morimoto Tetsuya Ueba Kazuyoshi Watanabe Hidenori Endo Kenjirou Hujiwara, Minoru Nakagawa Taketo Hatano, Akira Ishii Toshinori Hasegawa Hisashi Nitta Takayuki Kuroyanagi Akira Tunoda Hisao Hirai

46

Koyama Memorial Hospital Kugayama Hospital Kumamoto City Hospital Kurashiki Central Hospital Kurashiki Heisei Hospital Kurosawa Hospital Kurosishi General Hospital Kurosu Hospital Kurume University Hospital Kyorin University Hospital Kyoritsu Hospital Kyoto Okamoto Memorial Hospital Kyoto Second Red Cross Hospital Kyoto Universiity Hospital Kyoto Yamashiro General Medical Center Kyotokatsura Hospital Kyotomin-Iren Chuohospital Kyushu Central Hospital of The Mutual Aid Association of Public School Teachers Kyushu Rosai Hospital

Takuya Kawai Mitsuyuki Fujitsuka Akira Takada, Seiji Tajiri Masaki Chin Hidemiti Sasayama Sigehiro Ohmori Seiko Hasegawa Kazuhiro Kikuchi, Mikio Teduka Motohiro Morioka Yoshiko Unno, Hiroki Yoshida, Teruyuki Hirano Masayuki Yokota Minoru Kidooka Hiroshi Tenjin Susumu Miyamoto Yoshihiro Iwamoto Yasumasa Yamamoto Yuko Shikata Hitonori Takaba Sei Haga

Kyushu University Hospital	Koji Iihara
Local Incorporated Administrative Agency Tokushima Prefecture	
Naruto Hospital	Masahito Agawa
Makita General Hospital	Yoshinori Arai
Maruko Central Hospital	Toshiyuki Tsukada
Matsushita Memorial Hospital	Nozomu Murai
Matsuyama Shimin Hospital	Masakazu Suga
Mazda Hospital	Kawamoto Yukihiko
Medical Corporation Ijinkai Nakamura Memorial Hospital	Kenji Kamiyama
Medical Corporation Meiseikai Abashiri Neurosurgicalrehabilitation	
Hospital	Naoto Izumi
Meitetsu Hospital	Youtarou Takeuchi
Midorigaoka Hospital	Motohiro Arai
Mie University Hospital	Hidenori Suzuki Shinji Okumura Makoto Yoshikawa
Mimihara General Hospital	Shinji Okumura
Minamata City General Hospital and Medical Center	Makoto Yoshikawa
Minami Wakayama Medical Center	Yoshinari Nakamura
Minato Medical Coop-Kyoritsu General Hospital	Hisashi Tanaka
Mito Kyodo General Hospital	Yasusi Sibata
Mitoyogeneralhospital	Tetsuya Masaoka
Mitsugi General Hospital	Takashi Matsuoka

 BMJ Open

Miyakonojo Medical Association Hospital
Miyoshi Central Hospital
Moriguchi-Ikuno Memorial Hospital
Morioka Red Cross Hospital
Munakata Suikokai General Hospital
Muroran City General Hospital
Nagahama City Hospital
Nagano Municipal Hospital
Nagaoka Chuo General Hospital
Munakata Suikokai General Hospital Muroran City General Hospital Nagahama City Hospital Nagano Municipal Hospital Nagaoka Chuo General Hospital Nagasaki Kawatana Medical Center
Nagasaki University Hospital
Nagasakiken Shimabara Hospital
Nagoya City University
Nagoya Daini Red Cross Hospital
Nagoya University Hospital
Naha City Hospital
Nakamura Memorial South Hospital
Nakatsu Municipal Hospital
Nara Medical University
Narita Red Cross Hospital
National Cerebral and Cardiovascular Center

Hajime Ohta Osamu Hamasaki Misao Nishikawa Naohiko Kubo Yosimasa Kinosita Hiroshi Ooyama Taro Komuro Yoshikazu Kusano Shigekazu Takeuchi Ei-Ichirou Urasaki Takayuki Matsuo Yoshiharu Tokunaga Mitsuhito Mase Yukio Seki, Keizo Yasui Yoshio Araki Naoki Tomiyama Taiichiro Watanabe, Koji Oka Hiromichi Koga Hiroyuki Nakase Michio Nakamura Jun Takahashi

45 46 National Hospital Organization Chiba Medical Center National Hospital Organization Hamada Medical Center National Hospital Organization Himeji Medical Center National Hospital Organization Kyushu Medical Center National Hospital Organization Nagoya Medical Center National Hospital Organization Okayama Medical Center National Hospital Organization Osakaminami Medidcal Center National Hospital Organization Tochigi Medical Center National Hospital Organization Toyohashi Medical Center National Hospital Organization Ureshino Medical Center National Hospital Organization, Iwakuni Clinical Center Nayoro City Hospital Nho Sendai Medical Center Nho Shinshu Ueda Medical Center Nihon University Itabashi Hospital Niigata City General Hospital Niigata Prefectural Central Hospital Niigata Tokamachi Hospital Niigata University Medical and Dental Hospital Niigatanougekabyouin Nishikobe Medical Center

Hirokazu Tanno Takato Kagawa Osamu Narumi Akira Nakamizo, Shinji Nagata Noriyuki Suzaki Yoichiro Namba Tomonori Yamada Masayuki Ishihara Hideki Sakai Masayuki Miyazono Kotaro Ogihara Naoki Tokumitsu Masayuki Ezura Saito Keiichi Sakai Atsuo Yoshino Kenichi Morita, Akihiko Saito Igarashi Michitoku Mitsuo Kouno Yukihiko Fujii, Osamu Onodera Kiyoshi Onda Naoya Takeda

 BMJ Open

Nishinomiya Kyoritsu Neurosurgical Hospital	Hiroji Miyake
Nishio Municipal Hospital	Toshio Yokoe
Nishitokyo Central General Hospital	Tatsuya Nakamura
Nissan Tamagawa Hospital	Takayuki Kubodera
Nitobe Memorial Nakano General Hospital	Mitsuhiko Hokari
Noshiro Kosei Medical Center	Yasunari Otawara
Noshiro Kosei Medical Center Noto General Hospital Nozaki Tokushukai Hospital Obara Hospital	Cheho Park
Nozaki Tokushukai Hospital	Hidemitu Nakagawa
Obara Hospital	Souichi Obara
Obase Hospital	Haruki Takahashi
Obihiro Kosei General Hospital	Masafumi Ohtaki
Odate Municipal General Hospital	Atsuya Okubo
Ogaki Tokushukai Hospital	Katsuhiko Hayashi
Ohnishi Neurological Center	Hideyuki Ohnishi, Yoshihiro Kuga
Ohta Nishinouchi Hospital	Masahisa Kawakami
Oita Prefectural Hospital	Yu Takeda
Oitaken Koseiren Tsurumi Hospital	Akihiko Kaga
Okaya City Hospital	Ryoichi Hayashi
Okayama City Hospital	Koji Tokunaga
Okayama Kyokuto Hospital	Hiroyuki Nakashima
Okayama University Hospital	Isao Date

Okinawa Kyodo Hospital	Koji Idomari, Nobuyuki Kaneko
Okinawa Prefectural Nanbu Medical Center and Children's Medical	
Center	Tomoaki Naganine
Okitama Public General Hospital	Toshihiko Kinjo
Ome Municipal General Hospital	Yoshiaki Takada, Osamu Tao
Omihachiman Community Medical Center	Masayuki Nakajima
Omori Red Cross Hospital	Akira Isoshima
Omuta City Hospital	Terukazu Kuramoto
Onomichi Municipal Hospital	Shigeru Daido
Osaka Medical College	Toshihiko Kuroiwa
Osaka National Hospital	Kazuo Hashikawa
Osaka Neurological Institute	Akatsuki Wakayama
Osaka Neurosurgical Hospital	Naoki Hayashi
Osaka University Hospital	Kouich Iwatsuki, Toshiki Yoshimine
Osaki Citizen Hospital	Masahiro Yoshida
Otaru General Hospital	Yoshimasa Niiya
Otsu City Hospital	Motohiro Takayama
Otsu Red Cross Hospital	Masaaki Saiki
Rakuwakaiotowa Hospital	Kazuo Yamamoto
Research Institute For Brain and Blood Vessels-Akita	Junta Moroi, Taizen Nakase, Tatsuya Ishikawa
Saga-Ken Medical Centre Koseikan	Shuji Sakata, Hiroshi Sugimori

BMJ Open

46

Saiseikai Futsukaichi Hospital Saiseikai Imabari Hospital Saiseikai Kumamoto Hospital Saiseikai Kurihashi Hospital Saiseikai Kyouto Hospital Saiseikai Matsusaka General Hospital Saiseikai Nagasaki Hospital Saiseikai Toyama Hospital Saiseikai Yahata General Hospital Saiseikai Yokohamashi Tobu Hospital Saiseikaiustunomiya Hospital Saitama City Hospital Saitama Medical Center Saitama Red Cross Hosoital Sakai City Medical Center Saku Central Hospital Advanced Care Center Sanyudohospital Sapporo Azabu Neurosurgical Hospital Sapporo Medical University Hospital Sapporo Shiroishi Memorial Hospital Sapporoteishinkaihospital

Naoko Fujimura Osamu Nishizaki Toru Nishi Hiroshi Wanihuti Nobukuni Murakami Hiroto Murata Wataru Haraguchi Yukio Horie Yuji Okamoto Makoto Inaba Masashi Nakatsukasa Atsuhiro Kojima Kyoichi Nomura Toshie, Yamamoto Kenji Takahashi Yoshikazu Nakajima Takaaki Yoshida Yohei Kudoh Toshitaka Nakamura Nobuhiro Mikuni Akira Takahashi Rokuya Tanikawa

Sasebo Chuo Hospital Secomedic Hospital Seikeikai Hospital Seirei Memorial Hospital Seirei Mikatahara General Hospital Sendai City Hospital Shakaiiryouhoujinzaidanshinwakaiyachiyobyouin Shikoku Medical Center For Children and Adults Shimane Prefectural Central Hospital Shimizu Hospital Shimonoseki City Hospital Shin Koga Hospital Shin-Oyama City Hospital Shingu Municipal Medical Center Shinonoi General Hosapital Shinsapporo Neurosurgical Hospital Shinshu University Hospital Shinsuma General Hospital Shintakeohospital Shizuoka Children's Hospital Shizuoka City Shizuoka Hospital

5 6

7 8

9

10 11

12

13 14

15 16

17

18 19

20 21

22

23 24

25 26

27

28 29

30 31

32

33

34

35 36

37 38

44 45 46

Seisaburo Sakamoto Seiichiro Hoshi Yoshinari Okumura Sinichi Okabe Haruhiko Sato Hirosi Karibe Takashi Inoue Kazuyuki Kuwayama Tatsuya Mizoue Takashi Yoshida Takaharu Nakamura Tsutomu Hitotsumatsu Tomoaki Kameda Mitsukazu Nakai, Hiroshi Ishiguchi Masanobu Hokama Akinori Yamamura Kazuhiro Hongo Takeshi Kondoh Makoto Ichinose Yuzuru Tashiro Seiji Fukazawa

 BMJ Open

Shonan Kamakura General Hospital	Takahisa Mori
Showa Inan General Hospital	Shinsuke Muraoka
Showa University Fujigaoka Hospital	Tomoaki Terada
Shuuwa General Hospital	Tsuneo Shishido
Social Welfare Organization Saiseikai Imperial Gift Foundation Inc.	
Osaka Saiseikai Ibaraki Hospital	Yasunobu Gotou
Social Welfare Organization Saiseikai Imperial Gift Foundation	
Inc.Yamagata Saisei	Sunao Takemura
South Miyagi Medical Center	Hiroaki Arai
Southern Tohoku Hospital	Zenichiro Watanabe
St. Marianna University School of Medicine	Yuichiro Tanaka
St.Luke's International Hospital	Yasunari Niimi
Steel Memorial Yawata Hospital	Shinya Yamaguchi, Akira Nakamizo
Suiseikai Kajikawa Hospital	Shinichi Wakabayashi
Suwa Central Hospital	Hiroki Sato
Suwa Red Cross Hospital	Yukinari Kakizawa
Syakaiiryouhouzin Kouseikai Takai Hospital	Tetsuya Morimoto
Tachibana Medical Corporation Higashisumiyoshi Morimoto Hospital	Naofumi Isono
Tachikawa General Hospital	Hiroki Takano, Hiroshi Abe
Takamatsu Municipal Hospital	Norihito Shirakawa
Takamatsu Red Cross Hospital	Masahiro Kagawa

45 46

1

Takarazuka City Hospital Takarazuka Daiichi Hospital Takatsuki General Hospital Takeda General Hospital Organization Takeda Hospital Takikawa Neurosurgical Hospital Tanushimaru Central Hospital Teinekeijinkai Hospital Tenri Hospital Tenshindo Hetsugi Hospital Teraoka Memorial Hospital The Veritas Hospital Tobata Kyoritu Hospital Tohoku University Hospital Tokai University Hachioji Hospital Toki General Hospital Tokushima Red Cross Hospital Tokushima University Hospital Tokuyama Central Hospital Tokyo Dental College Ichikawa General Hospital Tokyo General Hospital

Eiichiro Mabuchi

Kazusige Maeno Takayuki Koizmi Waro Taki Yusuke Nakagaki Yoshihisa Matumoto Katuyuki Asaoka Yoshinori Akiyama Tadao Kawamura Atumi Takenobu Masayuki Yokota Taketoshi Tuji Teiji Tominaga Teiji Tonnnaga Shigeru Nogawa, Masami Shimoda Hajimu Miyake Shinji Nagahiro, Junichiro Satomi Kunihiko Harada Sadao Suga Shinichi Numazawa

 BMJ Open

Tokyo Medical and Dental University	Taketoshi Maehara
Tokyo Medical University Hachioji Medical Center	Hiroyuki Jimbo, Jyunya Tsurukiri
Tokyo Medical University Hospital	Michihiro Kohno
Tokyo Metropilitan Hiroo Hospital	Kensaku Yoshida
Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology	Koji Matuoka
Tokyo Metropolitan Tama Medical Center	Takahiro Ota
Tokyo Saiseikai Central Hospital	Haruhiko Hoshino
Tokyo Teisin Hospital	Makoto Noguchi
Tokyo Women's Medical University	Takakazu Kawamata
Tokyo Yamate Medical Center	Yasuaki Takeda
Tomakomaihigashi Hospital	Youichi Hashimoto
Tomei Atsugi Hopital	Keiichirou Onitsuka
Tominaga Hospital	Masahiko Kitano
Tomishiro Central Hospital	Jae-Hyun Son
Tottori Municipal Hospital	Keiichi Akatsuka
Tottori University	Masamichi Kurosaki, Takashi Watanabe
Toyama City Hospital	Miyamori Tadao
Toyama Prefectural Central Hospital	Hiroaki Hondo
Toyama Red Cross Hospital	Kazumasa Yamatani, Kotaro Tsumura
Toyama University Hospital	Satoshi Kuroda
Toyohashi Municipal Hospital	Hirofumi Oyama

Toyokawa City Hospital Toyooka Hospital Tsuchiura Kyodo General Hospital Tsukuba Medical Center Hospital Tsuruoka Municipal Shonai Hospital Tsutiura Kyodo Hospital Namegata District Medical Center Tsuyama Chuo Hospital Tyuubu Rousai Hospital Ube Kohsan Industries Hospital Uki General Hospital University of Fukui Hospital University of Occupational and Environmental Health University of The Ryukyus Hospital University of Tsukuba Hospital

University of Yamanashi Urasoe General Hospital Ushioda General Hospital Uwajima City Hospital Wakayama Medical University Hospital Wakayama Rosai Hospital

5 6

7 8

9

10 11

12

13 14

15 16

17

18 19

20 21

22

23 24

25 26

27

28 29

30 31

32

33

34

35 36

37 38

44 45 46 Takayuki Watanabe Kazuhiro Tanaka Shinji Yamamoto Kazuya Uemura Hirosi Maruya, Kazuhiko Sato Hitoshi Tabata Hideyuki Yoshida Noriaki Matubara Takafumi Nishizaki Hiroshi Egami Osamu Yamamura Junkoh Yamamoto Shogo Ishiuchi Yuji Matsumaru, Akira Matsumura, Tetsuya Yamamoto Hiroyuki Kinouchi Susumu Mekaru Hitoshi Ozawa Kiichiro Zenke Naoyuki Nakao Toshikazu Kuwata

 BMJ Open

Wakayama-Seikyo Hospital
Yaizu City Hospital
Yamagata City Hospital Saiseikan
Yamagata Prefectural Central Hospital
Yamagata Prefectural Shinjo Hospital
Yamagata University Hospital
Yamaguchi Prefectural Grand Medical Center
Yamaguchi Prefectural Grand Medical Center Yamaguchi Red Cross Hospital Yamaguchi University Hospital
Yamaguchi University Hospital
Yamanashi Prefectural Central Hospital
Yamanashi Redcross Hospital
Yamanashikouseibyouin
Yamato Municipal Hospital
Yao Tokushukai General Hospital
Yatsuo General Hospital
Yawata Medical Center
Yayoigaoka Kage Hospital
Yodogawa Christian Hospital
Yokohama City Minato Red Cross Hospital
Yokohama City University Hospital
Yokohama City University Medical Center

Teruyuki Habu Seiya Takehara Rei Kondo Takashi Kumagai Keiten So Yukihiko Sonoda Manabu Urakawa Yasuhiro Hamada Michiyasu Suzuki Shin Nakano, Hidehito Koizumi Hiroshi Ozawa Mikito Uchida Masaru Yamada Takashi Turuno Ryouichi Masuda Makoto Kimura Shin-Ichiro Ishihara Masashi Morikawa Yasunori Takemoto, Hiroaki Tanaka Hidetoshi Murata, Nobutaka Kawahara Katsumi Sakata

Yokohamasinmidorihospital Yonezawa City Hospital Yoshida Hospital For peer review only Yuaikaihospital

Endo Sumio

Tooru Sasaki

Yasuhisa Yoshida

Yoshihumi Teramoto

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	3
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			1
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6,7
Bias	9	Describe any efforts to address potential sources of bias	11
Study size	10	Explain how the study size was arrived at	8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	10
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	-
		(e) Describe any sensitivity analyses	-
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	11
		(b) Give reasons for non-participation at each stage	14
		(c) Consider use of a flow diagram	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	11-
		social) and information on exposures and potential confounders	14
		(b) Indicate number of participants with missing data for each variable of interest	14
Outcome data	15*	Report numbers of outcome events or summary measures	11- 14
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	11-
		estimates and their precision (eg, 95% confidence interval). Make clear	13

		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	11-
			13
		(c) If relevant, consider translating estimates of relative risk into absolute	11-
		risk for a meaningful time period	13
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	13
Discussion			
Key results	18	Summarise key results with reference to study objectives	14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias	13,1
		or imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	15-
		limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	17
Generalisability	21	Discuss the generalisability (external validity) of the study results	15-
			17
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	19
		and, if applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.