
Supplementary Materials of “De-mystifying drop-outs in single cell UMI data”

This file includes figures and tables that supplement analyses in the main manuscript.
Section 1 introduces the data sets that are used for the analyses.
In Section 2, we study the relationship between zero proportions and gene means in the

publicly available, labeled UMI data sets of Zheng2017, Azizi2016, Tabula Muris, Tung2017,
Baron2016 (Figures SS1, S2, S3, S4, S5). We explore common cell types across different
datasets to emphasize that the sampling noise affects different data sets and different cell
types in the same way. We study the zero proportion and gene mean relationships in Figure
S6 and S7 for data generated from CEL-seq2 and Drop-seq. In Drop-seq, the noise level was
too high to assume the zero proportions follow the exponential curve relative to the gene
mean. It is either that Drop-seq data sets have different noise structure from the 10X data
sets, or in particular Macosko data of muscular retina cells have excessively high cellular
heterogeneity. In Zhang2017 data, cells from different disease types show a layered pattern
of zero inflation. This means that the Poisson noise model cannot separate the technical
effect from the biological confounder of disease type.

In Section 3, we show why zero proportion is a better test statistic compared to gene
variance and dispersion for cell-type heterogeneity using 4 data sets of Freytag2018, Zheng-
mix8eq, Tian2018, and Azizi2018.

Section 4 provides the details of the analysis that show immune-related genes are more
zero-inflated than others. Table SS3 shows the number of genes present within each func-
tional annotation for each data set. Table SS4 shows the result of enrichment analysis
for AziziPatient09Rep01 data set to demonstrate that zero-inflated genes are particularly
enriched in immune-related genes.

Section 5 compares the feature selection test statistic between HIPPO and scry package
that uses deviance statistic. We in particular consider two scenarios with data sets with
high UMI counts and low UMI counts, and show that in which case each method is more
appropriate. Also, we compare the two feature selection methods in Figure S11 and S12 by
looking at theri clustering performance, and for both high UMI count and low UMI count
data, the results are similar. Figure S13 evaluates the use of MLE in the Poisson mixture
model.

In Section 6, we show additional analyses that pre-processing steps before imputation and
normalization lead to adversarial consequences in downstream analyses. Figure S14 shows
that sequencing depths are confounded with the cell types, and normalization through size
factors can either deflate or inflate the biological signals. Figure S15 expands the result of
Figure 2 E by showing the differential expression analysis for known markers after DCA in
two cases: on homogeneous cell population and on heterogeneous population. Figure S16
shows the similar result for both DCA and SAVER but transcriptome-wide statistics for log
fold change, likelihood ratio, and p-values.

Section 7 evaluates the clustering performance for more data sets: Tian2018, Zheng-
mix4eq, Zhengmix4uneq, Zhengmix8eq, PBMC3k1, and PBMC4k1. Figure S17 shows the
adjusted rand index for the available labeled data sets. Figure S18 shows the sequential vi-
sualization of HIPPO’s clustering method for all of those data sets. Figure S19 evaluates the
performance of generalized PCA (gPCA) that can account for the count structure directly
[7].
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Section 8 includes applications of HIPPO to two different data sets of cells from muscular
brain tissue (1k Brain Cells from an E18 Mouse and 5k Cells from a combined cortex,
hippocampus and subventricular zone of an E18 mouse). Figure S20 shows the clustering
performance of HIPPO in two different data of un-labeled cells from brain tissue which
are known to have a high level of heterogeneity. Figure S21 shows an example analysis
pipeline implemented in HIPPO. Figure S22 compares two differential expression analysis
results using Poisson likelihood and Gaussian approximation of the mean. Lastly, Figure S23
visualizes the hierarchical structure of the clustering result of HIPPO through an external
tool “clustree”. [13].

Lastly, Section 9 discusses in detail about the choice of zero-inflation statistic. It discusses
the consequence of the simplification of the null distribution of the test statistic.
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1 Table S1: Data Sets

ID Data Set Species Protocol
10x 5KNeuron Mouse Neuron 10x (v3.1) CR* 3.0.2
10x 10KHeart Mouse Heart 10x (v3) CR 3.0.0

GSE111108 [10] Tian2018 Human Cell Lines 10x Chromium
GSE115189[5] Freytag2018 Human PBMC 10x (v2)

10x 1KNeuron Mouse Neuron 10x (v2) CR 2.1.0
SRP073767[15] Zhengmix4eq Human PBMC 10x (v1) CR 1.1.0

SRP073767 Zhengmix4uneq Human PBMC 10x (v1) CR 1.1.0
SRP073767 Zhengmix8eq Human PBMC 10x (v1) CR 1.1.0
SRP073767 PBMC3k Human PBMC 10x (v1) GemCode
SRP073767 PBMC4k Human PBMC 10x (v1) Chromium
SRP073767 PBMC68k Human PBMC 10x (v1) CR 1.1.0

GSE84133[2] Baron2016 Human Pancreas inDrop
GSE114724[1] AziziPatient09Rep1 Human Breast Tumor 10x CR 2.1.1
GSE114724 AziziPatient09Rep2 Human Breast Tumor 10x CR 2.1.1
GSE114724 AziziPatient10Rep1 Human Breast Tumor 10x CR 2.1.1
GSE114724 AziziPatient11Rep1 Human Breast Tumor 10x CR 2.1.1
GSE114724 AziziPatient11Rep2 Human Breast Tumor 10x CR 2.1.1
SDY998[14] Zhang2019 Human Joint Synovial CEL-seq2
GSE63473[8] Macosko2015 Mouse Drop-seq

GSE77288 [12] Tung2017 Human iPSC HiSeq 2500
Tabula Muris [3] Tabula Muris Mouse 10x (v2)

Table S1: List of data sets used in the main text and supplementary materials. * CR: Cell
Ranger
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2 Zero Proportions in a homogeneous cell population

follow a Poisson distribution.

2.1 Figure S1: Azizi 2016 across different samples

Figure S1: Zero proportions against gene means for Azizi data [1] for multiple samples and
replicates. The top plot shows that the zero proportion matches the curve across the data
sets for each cell type, while bottom plot across the cell types for each data set. The bottom
plot also shows that the zero proportions are off the curve in heterogeneous cell populations.
The consistent plots show that the sampling noise is the same across cell types and across
data sets.
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2.2 Figure S2: Zheng2017 across different subsets

Figure S2: Same analysis as Figure S1 with Zheng2017 data [15]
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2.3 Figure S3: Tabula Muris across different subsets

Figure S3: Same analysis as Figure S1 with Tabula Muris data [3] . The color codes are not
tissue-specific to maximize visibility.
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2.4 Figure S4: Hi-Seq

Figure S4: Results from Tung2017 [12] that uses Hi-Seq 2500. This data consists of homo-
geneous cell population of iPSC cell lines from three different individuals.
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2.5 Figure S5: in-Drop

Figure S5: In-drop is promising that it can be modeled using Poisson.
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2.6 Figure S6: CEL-Seq2

Figure S6: Results from Zhang2017 [14] that uses CEL-SEQ2 2500.
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2.7 Figure S7: Drop-seq

Figure S7: Results from Drop-seq[8]. However, the sampling noise of drop-seq data is too
high, and zero-inflation element seems necessary. When amacrine cells were taken out and
further clustered into subtypes, the noise level is closer to Poisson, so the culprit could
be the particularly higher level of cell type diversity. The black points are plotted using
heterogeneous cell population.
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3 Comparisons of zero proportions with gene variance

as feature selection criteria.

3.1 Figure S8: Gene variance for heterogeneous and homogeneous
Cells

Figure S8: Gene variance for homogeneous cell population (y axis) and heterogeneous cell
population (x-axis). For most genes, gene variance is similar for both heterogeneous and
homogeneous cells. Further quantifications are provided in Table S2.

3.2 Table S2: Comparison of gene variance

Cell Type Proportion of Genes with Higher Variance

B cells 0.4939857
Naive Cytotoxic 0.3700687

Monocytes 0.4969385
Regulatory T 0.4766347

Helper T 0.4620756
NK 0.7163943

Memory T 0.5348796
Naive T 0.3535812

Table S2: Proportion of genes that have higher variance in heterogeneous population than
in homogeneous population. Using gene variance as feature selection would not be effective
for detecting cellular heterogeneity.
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4 Immune-related genes are more zero-inflated than

other functional groups.

4.1 Table S3: Blacklist genes

68K Azizi09 Azizi10 Azizi11 Freytag PBMC3k1 PBMC4k2
Antisense 2356 1701 1571 1537 269 305 329

HLA 23 21 21 21 29 31 21
IG-C 0 9 11 10 13 13 13

IG-C pseudo 0 1 2 2 5 4 6
IG-J gene 0 0 1 3 1 2 0
IG-V gene 0 60 49 77 61 77 67

IG-V pseudo 0 6 6 5 1 7 6
lincRNA 2202 1258 1140 1170 183 210 216
miRNA 0 1 2 1 1 2 0

misc RNA 1 0 0 0 96 190 0
Mt-rRNA 0 0 0 0 2 2 0
MT-tRNA 0 0 0 0 12 11 0

Polymorphic pseudo 0 6 6 6 11 11 7
Processed transcripts 3 58 52 55 86 88 46

Protein coding 15338 13684 13493 14080 12326 13025 13347
rRNA 0 0 0 0 14 18 0

Sense intronic 0 4 5 4 31 51 1
Sense overlapping 0 1 1 1 3 3 0

snoRNA 2 0 0 0 17 38 0
snRNA 0 0 0 0 71 134 0

TR-C gene 0 5 5 5 5 5 5
TR-J gene 0 1 2 46 0 0 0
TR-V gene 0 92 90 90 69 76 80

TR-V pseudogene 0 12 10 9 4 3 5

Table S3: Gene counts for each data set and each gene type for PBMC data [1, 5, 15]. Most
of the genes are categorized as protein coding genes.
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4.2 Table S4: Enrichment Analysis

Azizi Patient 9 Rep1 z ≤ 3 z > 3 Proportion χ2
1 statistic

Before Clustering
Immune genes 98 109 52.66% 553.66

Others 15476 1262 7.54% p < 2.2e− 16

After Clustering
Immune Genes 826 678 45.08% 10960

Others 145941 5152 3.41% p < 2.2e− 16

Table S4: Azizi Patient9 Replication 1. Immune-related genes include HLA-gene, IG C
gene, IG C pseudogene, IG V gene, IG V pseudogene, TR C gene, TR J gene, TR V
gene, and TR V pseudogenes. The χ2

1 statistic is computed through Pearson’s chi squared
test for independence of the two by two table. Clustering was performed using the true
labels provided by the original paper [1]. Each gene is recorded once for each cell type,
explaining the increase of the number of genes. By repeating the Pearson’s chi squared test
for the combined data for each cell type, we are implicitly assuming that each cell types are
independent.
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5 Evaluation of Zero Inflation Test Statistic

5.1 Figure S9: Case of Low Count Data

Figure S9: Comparison of the test statistics between the proposed package HIPPO and
package scry [11]. The ordering of the statistic is similar between zero inflation test statistic
and deviance statistic, although the zero inflation test does not take account into the entire
distribution of the gene counts. There are a few genes that have high deviance but low zero
inflation in Freytag data. Those cases occur when there are no zeros recorded across all the
cells. Zero inflation test statistic becomes lower as gene mean increases.
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5.2 Figure S10: Case of High Count Data

Figure S10: Same analysis as Figure S8 with Tian2018 data which has higher UMI counts.
This analysis shows different relationship between zero inflation test and deviance test. When
the mean counts become large, the zero inflation test statistic is either extremely low (there
are no zeros recorded) or extremely high (there is at least 1 zero recorded). The problem
is more severe when there are fewer cells as arguments for the test statistic are asymptotic.
However, the HIPPO result shows that the zero-inflated genes still hold rich information for
reliable clustering.
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5.3 Figure S11: Comparison of Two Feature Selection Methods
on Clustering: Tian2018

Figure S11: Clustering results for two feature selection methods - zero inflation and deviance
with Tian2018 data that has high UMI counts. The truth labels are shown for both dimension
reductions using different sets of features.
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5.4 Figure S12: Comparison of Two Feature Selection Methods
on Clustering: Zhengmix4uneq

Figure S12: Clustering results for two feature selection methods in Zhengmix4uneq data
that has low UMI counts. The truth labels are shown for both dimension reductions using
different sets of features. The performance is very similar using two different methods.
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5.5 Figure S13: Comparison with MLE

Figure S13: Comparison of using maximum likelihood estimates of Poisson mixture and
using proposed zero inflation test. When data is generated from Negative Binomial, EM
algorithm for mixture estimate often breaks down, leading to very unstable result. Moreover,
EM algorithm is much more computationally intensive in the order of 104 to 105.
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6 Unwanted consequences of pre-processing when cell-

type heterogeneity is not appropriately accounted

for.

6.1 Figure S14: Sequencing Depths

Figure S14: Sequencing depth of monocytes and B cells for 10X data sets on the left in
PBMC and tumor data. Monocytes have consistently higher total UMI counts than B cells
in these particular data sets, and forcing all the cells to have the same sequencing depth
(size factor normalization) would either shrink the counts of B cells or inflate the counts of
monocytes . On the right, same analysis is performed on Zhang2017 data, and cell types
show slightly different patterns. This means that the UMI count difference among cell types
do not necessarily expand to different tissues or organisms.
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6.2 Figure S15: Imputation

Figure S15: Extension of Figure 2 E in the main text. The log-fold change is consistently
lower across data sets if DCA [4] is performed before the cell heterogeneity is accounted for.
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6.3 Figure S16: Distribution of statistics

Figure S16: Extension of Figure S15. Overall distribution of various statistics (log fold
change, likelihood ratio, and p-value) from differential expression test using edgeR’s likeli-
hood ratio test [9] after DCA [4] and SAVER [6]. Overall signal size is deflated if we perform
imputation first.
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7 Comparisons of clustering performance using differ-

ent tools

7.1 Figure S17: ARI comparison with Seurat and Sctransform

Figure S17: Adjusted Rand Index for various data sets comparing three methods. HIPPO
tends to work at least as well as Sctransform and Seurat.
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7.2 Figure S18: Sequential visualization

Figure S18: Visualization of the step-by-step clustering of HIPPO in various data sets. One
drawback is that when it can no longer identify distinct clusters and forced to cluster into
more groups, it can divide existing groups into subsets and drive down the adjusted rand
index.
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7.3 Figure S19: Generalized PCA

Figure S19: Generalized PCA (gPCA) [7] takes into acount the count structure of the data to
reduce the dimensions, and could be integrated into HIPPO procedure. However, empirically,
its results are similar to the result of log transformation + PCA, and the result does not
make up for the computational burden of gPCA.
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8 Analysis with HIPPO

8.1 Figure S20: HIPPO applied to Brain cells
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Figure S20: Example analysis of HIPPO for cells from two examples of brain tissues with
higher number of clusters. For each round of clustering, zero proportions are more aligned to
the Poisson line. The t-SNE plot is more finely separated as the number of clusters increase.
HIPPO can show the differentiation of cell types in sequencing manner.
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8.2 Figure S21: HIPPO Analysis pipeline

(a) (b)

(c)

(d)

(e)

Figure S21: Sample analysis of Zhengmix4eq using HIPPO. The software first shows the
diagnostic plot where zero-inflated genes are marked in red. Then it performs the clustering
which leads to three sequential plots: zero proportions, t-SNE, and UMAP. Lastly, it shows
the sequential differential expression analysis where color-coding matches the t-SNE and
UMAP plots.
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8.3 Figure S22: Two Methods of Differential Expression

Figure S22: Example of two differential expression methods in Zhengmix4eq data. Results
are very similar, and their test statistics’ spearman correlations are 0.98, 0.99, and 0.99
respectively for K = 2, K = 3, and K = 4.

8.4 Figure S23: Tree structure of Hierarchical Clustering

Figure S23: Clustree [13] package allows the tree-like visualization of the clustering result.
The hierarchical structure gives insight to the overall structure of cell types and subtypes.
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9 Text S1: Details about z-score

There are two ways to estimate the zero proportions. The observed zero proportion is

p̂g =
∑C

c=1 1Xgc=0

C
which measures the proportion of cells with zero counts across all cells. The

expected zero proportion is, under Poisson assumption, e−X̄g which is the exponential of the
negative average count X̄g which is used as a proxy for the true gene mean.

The distributions of the two estimates are as below.

• p̂g ∼ N (0, pg(1−pg)

C
), meaning

E(p̂g) = pg

V ar(p̂g) =
pg(1− pg)

C

• e−X̄g ∼ logN (λg, λg/C), which means

E(e−X̄g) = p
2C−1
2C

g

V ar(e−X̄) = (p−
1
C − 1)p

2C−1
C

The distribution of the difference of normal and log-normal distribution is not trivial,
especially because p̂g and X̄g are not independent. For practical convenience, e−X̄g is assumed
to be equal to e−λg , the expected zero proportion using the unobserved, true gene mean.

One consequence of this method is that there is a small bias. E(e−X̄g) = p
2C−1
2C

g is greater
than the true expected zero proportion e−λg = pg. However, as we deal with more than 1,000
cells, this difference is negligible and disappears asymptotically.

The second issue is the underestimation of variance — the variance of e−X̄ is ignored
when the distribution of p̂g − e−X̄g . However, the ultimate goal of this method is to select
the features rather than making correct inferences. The z-score threshold is defined by the
users, and they can alternatively choose to select top 2000 genes, in which case the variance
does not have an impact on feature selection as the ordering of the important genes are not
affected much by the variance. The method is still a valid approach for feature selection.
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