
Original Article
Exosomes from SIRT1-Overexpressing ADSCs
Restore Cardiac Function
by Improving Angiogenic Function of EPCs
Hui Huang,1,4 Zhenxing Xu,1,4 Yuan Qi,1 Wei Zhang,1 Chenjun Zhang,1 Mei Jiang,2 Shengqiong Deng,3

and Hairong Wang1

1Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China; 2Department of Neurology, Shanghai Pudong New Area Gongli

Hospital, Shanghai 200135, P.R. China; 3Department of Clinical Laboratory, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
Acute myocardial infarction (AMI) is one of the leading causes
of mortality in cardiovascular diseases. The aim of this study
was to investigate whether exosomes from Sirtuin 1 (SIRT1)-
overexpressing adipose-derived stem cells (ADSCs) had a pro-
tective effect on AMI. The expression of C-X-C chemokine re-
ceptor type 7 (CXCR7) was significantly downregulated in pe-
ripheral blood endothelial progenitor cells (EPCs) from AMI
patients (AMI-EPCs) compared with that in healthy donors,
which coincided with impaired tube formation. The exosomes
from SIRT1 overexpression in ADSCs (ADSCs-SIRT1-Exos)
increased the expression of C-X-C motif chemokine 12
(CXCL12) and nuclear factor E2 related factor 2 (Nrf2) in
AMI-EPCs, which promoted migration and tube formation
of AMI-EPCs, and overexpression of CXCR7 helped AMI-
EPCs to restore the function of cell migration and tube forma-
tion. Moreover, CXCR7was downregulated in themyocardium
of AMI mice, and knockout of CXCR7 exacerbated AMI-
induced impairment of cardiovascular function. Injection of
ADSCs-SIRT1-Exos increased the survival and promoted the
recovery of myocardial function with reduced infarct size and
post-AMI left ventricular remodeling, induced vasculogenesis,
and decreased AMI-induced myocardial inflammation. These
findings showed that ADSCs-SIRT1-Exos may recruit EPCs
to the repair area and that this recruitment may be mediated
by Nrf2/CXCL12/CXCR7 signaling.
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INTRODUCTION
Acute myocardial infarction (AMI) is a myocardial necrosis caused by
acute coronary artery and persistent ischemia and hypoxia, which has
a high mortality rate.1 In recent years, it has been reported that adi-
pose-derived stem cell (ADSC) transplantation is an effective treat-
ment for the pathophysiology of AMI.2 Early studies have shown
the multi-differentiation potential of ADSCs, such as their ability to
differentiate into cardiomyocytes, vascular endothelial cells, and
vascular smooth muscle cells.3,4 However, subsequent studies have
failed to reproduce this significant differentiation of ADSCs, because
transplanted ADSCs have poor survival in the inflammatory and
ischemic microenvironments of AMI.5,6 Furthermore, studies have
Molecular Therapy
This is an open access article under the CC BY-NC-
shown that ADSCs promote angiogenesis and repair damaged
myocardial tissue by the secretion of paracrine factors.7,8 We, there-
fore, speculated that paracrine factors secreted by ADSCs play an
important role in the repair and regeneration of heart tissue.

Exosomes are vesicles secreted by various types of cells, with a diam-
eter of 30–100 nm. They are widely distributed in body fluids and
contain proteins, lipids, nucleic acids, and other contents.9 Studies
have confirmed that exosomes play a wide range of roles, involving
cell signaling, cell differentiation, immune regulation, substance
metabolism, gene regulation, tumor cell growth, and other pro-
cesses.10,11 Xu et al.12 showed that exosomes from ADSCs can stimu-
late most myocardial protective factors; inhibit myocardial cell
apoptosis; promote angiogenesis; and, thus, improve cardiac function
and protect myocardium. However, the exact mechanism of exo-
somes from ADSCs in myocardial protection of AMI has not been
fully elucidated.

Silencing information regulator factor 1 (SIRT1), a histone deacety-
lase, plays an important role in cell metabolism, cell survival, cell
senescence, DNA repair, cell proliferation, differentiation, apoptosis,
inflammation, and other physiological and pathological pro-
cesses.13,14 SIRT1 is reported to be involved in controlling many pro-
cesses such as aging, osteoporosis, diabetes, and cardiovascular dis-
ease.15,16 Studies have shown that SIRT1 is involved in myocardial
injury during diabetes.17 It has also been reported that overexpression
of SIRT1 in mesenchymal stem cells promotes dentin formation18 and
protects against bone defects19 and that activation of the SIRT1
pathway improves survival of ADSCs.20 However, whether exosomes
from ADSCs overexpressing SIRT1 promote angiogenesis and
myocardial repair of AMI has not been reported.
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Oxidative stress can be induced by both ischemic hypoxia and post-
ischemic reperfusion in local tissues during myocardial infarction. It
has been reported that SIRT1 may regulate oxidative stress and anti-
oxidant enzymes.21 Nuclear factor E2 related factor 2 (Nrf2) is an
important antioxidant factor. A study has shown that activation of
the SIRT1/Nrf2 pathway alleviated myocardial ischemia/reperfusion
injury.22 We, therefore, hypothesized that exosomes from ADSCs
overexpressing SIRT1 could promote myocardial functional repair
of AMI by activating Nrf2.

Endothelial progenitor cells (EPCs) are involved not only in embry-
onic angiogenesis but also in the formation of new blood vessels af-
ter birth.23 The EPC content in peripheral circulation is small.
Although EPCs can be mobilized after the occurrence of AMI,
they are far from enough to meet the needs of repair. Moreover,
common complications of coronary heart disease, such as diabetes,
hypertension, and lipid metabolic disorders, severely weaken their
ability to mobilize homing and angiogenesis.24 Fish et al.25 showed
that exosomes from ADSCs enhanced the homing ability of EPCs
and promoted angiogenesis to repair myocardial functions. Stromal
cell-derived factor 1 (SDF-1), also known as C-X-C motif chemo-
kine 12 (CXCL12), is a key chemokine that regulates the transport
of hematopoietic stem cells between the bone marrow and periph-
eral blood circulation and attracts EPCs to the ischemic region.
C-X-C chemokine receptor type 4 (CXCR4) was once considered
to be the only CXCL12 receptor, and many studies have shown
that the CXCL12/CXCR4 axis plays a role in the mobilization of
stem cells and EPCs from the bone marrow to target tissues; it
also plays a role in chemotaxis, adhesion, and angiogenesis.26

CXCR7 is the second CXCL12 receptor discovered in recent years,
and its affinity with CXCL12 is 10 times greater than that of
CXCR4.27 Zhang et al.28 found that the expression of CXCR7 in
EPCs of hypertensive patients was low, which led to a decrease in
in vitro function and in vivo re-endothelialization of EPCs of hyper-
tensive patients. In the present study, EPCs were isolated from the
peripheral blood of AMI patients and healthy subjects, and the AMI
model was constructed using CXCR7 knockout mice to study
whether the exosomes from ADSCs overexpressing SIRT1 could
promote the homing of EPCs and thereby promote myocardial
functional repair.

RESULTS
AMI Reduced the Expression of CXCR7 in EPCs and Decreased

the Angiogenesis Function of EPCs

As shown in Figure 1A, EPCs surface markers were examined by flow
cytometry, which showed that peripheral blood EPCs in healthy sub-
jects (controls) and AMI patients were positive for the CD34 and
CD133 surface markers and negative for CD45. To determine how
EPCs were affected by AMI, we detected the expression of the
CXCL12 receptor, CXCR7, in peripheral blood EPCs of both healthy
subjects and AMI patients, as well as the tube formation capacity of
EPCs. The expression of CXCR7 in the EPCs of AMI patients
(AMI-EPCs) was significantly lower than that of healthy subjects
(Figures 1B and 1C; p < 0.05). Compared with the EPCs of healthy
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subjects, the length of tubes formed by AMI-EPCs was significantly
shorter, which indicated a functional deficiency (Figures 1D and
1E; p < 0.01).

Exosomes from ADSCs Promoted EPC Migration and Tube

Formation, and Upregulation of CXCR7 Helped Restore the

Function of AMI-EPCs

To determine whether ADSC exosomes and the CXCL12 receptor,
CXCR7, were involved in the chemotaxis and tube formation of
EPCs, EPCs from healthy subjects (control-EPCs) were transiently
transfected with lentiviral small interfering RNA (siRNA) control
plasmid or small interfering CXCR7 (siCXCR7) plasmid, while
AMI-EPCs were transfected with lentiviral vector control (vector)
or overexpressed CXCR7 vector (Lv-CXCR7) for 48 h. Isolated
ADSCs were labeled with different cell-surface marker antibodies to
determine the cell phenotype. Figure S1 shows that ADSCs were pos-
itive for the CD90 and CD29mesenchymal cell markers. CXCR7 pro-
tein levels were also analyzed in all cells using western blotting (Fig-
ure 2A). Control-EPCs transfected with siCXCR7 showed a
significant decrease in CXCR7 compared with the non-transfected
control-EPCs (p < 0.01), and AMI-EPCs transfected with the Lv-
CXCR7 showed a significant increase in CXCR7 expression, as ex-
pected, compared with the non-transfected AMI-EPCs (p < 0.01;
Figure 2B).

To analyze the chemotaxis of control-EPCs transfected with siRNA
or siCXCR7 and AMI-EPCs transfected with lentiviral vectors or Lv-
CXCR7 (upper chamber), the cells were cultured in Transwell cham-
bers with ADSCs with or without GW4869 (lower chamber) for
24 h (Figure 2C). The results showed that the migration ability of
EPCs co-cultured with ADSCs was significantly improved,
compared with that of the Dulbecco’s Modified Eagle’s Medium
(DMEM) group (p < 0.05). The increase in ADSC response was
almost completely blocked when control-EPCs were transfected
with siCXCR7 or ADSCs pretreated with GW4869 (p < 0.05,
Figure 2D).

For the tube formation assays, different transfected control-EPCs and
AMI-EPCs were cultured for 48 h with cell-culture supernatants of
ADSCs with or without GW4869 (Figure 2E). The same trend was
seen for tube formation assays as was seen for the chemotaxis of
EPCs (Figure 2F). These results indicated that exosomes from ADSCs
and CXCR7 were important for the recruitment and tube formation
of EPCs.

Direct Transfer of SIRT1 from ADSCs to EPCs Using Exosome

Delivery

We used lentiviral overexpression of SIRT1 plasmids to transfect
ADSCs (Figure S2), and exosomes were isolated from ADSCs or
ADSCs overexpressing SIRT1 and then were characterized by
transmission electron microscopy, nanoparticle tracking analysis,
and western blotting. Electron micrographs showed that the
collected products had a spheroid morphology (Figure 3A); the
size distribution ranged from 80 to 120 nm (Figure 3B). The



Figure 1. AMI Reduced the Expression of CXCR7 in

EPCs and Decreased the Angiogenesis Function of

EPCs

(A) Flow cytometry analysis of the expression of CD34/

CD133/CD45 (green lines) in the peripheral blood EPCs of

healthy subjects (control) and AMI patients, which were

compared with isotype controls (red lines). (B) Expression

of CXCR7 of EPCs was detected by western blots. (C)

The western blot results were normalized to b-actin. *p <

0.05, compared to the control group. (D) The angiogenic

function of EPCs was evaluated by tube formation as-

says. Scale bars, 100 mm. (E) The tube lengths were

measured, and the control-EPCs were normalized to 1.

**p < 0.01, compared to the control group.
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results of western blotting showed that overexpression of SIRT1
increased the protein expression level of SIRT1 in exosomes
more than that in non-transfected control ADSCs, and specific
exosome surface proteins (CD63 and TSG101) were found in the
exosomes of both ADSCs (ADSCs-Exos) and SIRT1-overexpressed
ADSCs (ADSCs-SIRT1-Exos), while they were almost undetectable
in ADSCs (Figure 3A). To determine whether the exosomes could
be taken up by EPCs, PKH26-labeled exosomes were incubated
with AMI-EPCs for 24 h. Fluorescent microscopic imaging showed
that ADSCs-Exos were found in AMI-EPCs (Figure 3D). To
further determine whether SIRT1 was directly transferred from
ADSCs to AMI-EPCs, exosomes were isolated from ADSCs or
ADSCs, which had been transfected with green fluorescent protein
Molecular Therap
(GFP)-labeled SIRT1, and were added to
AMI-EPCs. Confocal microscopy showed flu-
orescently labeled signals in the AMI-EPCs
incubated with exosomes obtained from cells
transfected with GFP-labeled SIRT1 (Fig-
ure 3E), confirming that SIRT1 was trans-
ferred from ADSCs to AMI-EPCs via
exosomes.

Exosomes from ADSCs Overexpressing

SIRT1 Restored AMI-EPC Migration and

Tube Formation involving Nrf2 Activation

and CXCL12 Secretion

To investigate whether ADSCs-SIRT1-Exos
enhanced the migration ability and angiogen-
esis of AMI-EPCs, AMI-EPCs were pretreated
with ADSCs-Exos or ADSCs-SIRT1-Exos. The
results showed that the migration ability of
AMI-EPCs pretreated with ADSCs-Exos was
significantly improved, compared with that of
the untreated group (p < 0.05). Moreover, the
highest migration ability was observed in the
ADSCs-SIRT1-Exo group among the three
groups (Figures 4A and 4B). The same trend
was seen for angiogenesis assays as that for
the migration ability of AMI-EPCs (Figures
4C and 4D). In contrast, pretreatment with ADSCs-siSIRT1-Exos
did not affect the migration and angiogenesis abilities of AMI-EPCs
(Figure S3).

It has been reported that high expression of CXCR7 enhanced the
angiogenic function of EPCs by enhancing the activity of Nrf2.29

To investigate whether Nrf2 and CXCL12 were involved in the effects
of ADSCs-SIRT1-Exos, the expressions of Nrf2 and CXCL12 in AMI-
EPCs were detected by western blotting. The results showed that
ADSCs-SIRT1-Exo treatment significantly increased the levels of
Nrf2 and CXCL12 in AMI-EPCs when compared with the untreated
group (p < 0.01; Figures 4E–4G). To determine the potential
molecular mechanism of SIRT1 inducing Nrf2 protein expression
y: Nucleic Acids Vol. 21 September 2020 739
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Figure 2. Exosomes from ADSCs Promoted EPC Migration and Tube Formation, and Upregulation of CXCR7 Helped AMI-EPCs Restore Cell Migration and

Tube Formation

(A and B) EPCs from healthy controls (control-EPCs) were transfected with interfering plasmid or lentiviral interfering CXCR7 plasmid, while EPCs from acute myocardial

infarction (AMI) patients (AMI-EPCs) were transfected with lentiviral plasmid or lentiviral overexpression of the CXCR7 plasmid, and cultured for 48 h. (A) Expression of CXCR7

was detected by western blotting. (B) The western blot results were normalized to b-actin. **p < 0.01, compared to the non-transfected cells of control- or AMI-EPCs. (C) Cell

migration was measured using Transwell assays. The upper chamber contained EPCs; the lower chamber contained DMEM containing 10% FBS or ADSCs with or without

pretreatment with 2.5 mMGW4869 for 8 h. Scale bars, 100 mm. (D) Migrated cells were calculated. *p < 0.05, compared to the DMEM control group; #p < 0.05, compared to

the ADSC-treated group. (E and F) The indicated EPCs treated with supernatants of ADSCs with or without pretreatment with GW4869. (E) The tube formation assay. Scale

bars, 100 mm. (F) The tube lengths were measured. The control-EPCs transfected with siRNA were normalized to 1. *p < 0.05, compared to the untreated group; #p < 0.05,

compared to the ADSCs-supernatant-treated group.

Molecular Therapy: Nucleic Acids
in AMI-EPCs, we assessed the levels of acetylated Nrf2 by immuno-
precipitation. Figure 4H shows that ADSCs-SIRT1-Exo treatment led
to the deacetylation of Nrf2, indicating that Nrf2 served as a direct
substrate of SIRT1 in AMI-EPCs. Together, these results indicated
that ADSCs-SIRT1-Exos promoted the recruitment and tube forma-
tion of the AMI-EPCs involved in upregulating expressions of Nrf2
and CXCL12.

Injection of Exosomes from ADSCs Overexpressing SIRT1

Helped Restore Cardiac Function in the AMI of Wild-Type (WT)

Mice but Not in CXCR7 Knockout Mice

The levels of CXCR7 were measured in myocardial tissues of mice at
28 days after AMI or sham surgery to investigate the relationship be-
740 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
tween CXCR7 and AMI. Western blotting showed that the CXCR7
levels of AMI mice were significantly lower than those of sham-sur-
gery mice (Figure 5A). Next, we investigated whether CXCR7
knockout (CXCR7�/�) mice had an effect on cardiac function in
response to AMI. CXCR7 expression was confirmed in WT and
CXCR7�/� mice by western blotting (Figure 5B). Kaplan-Meier sur-
vival analysis showed that injection of ADSCs-SIRT1-Exos into WT
mice had significantly better results after AMI than injection of
vehicle or ADSCs-Exos into mice (Figure 5C). We measured the car-
diac function of WT and CXCR7�/� mice subjected to AMI for
28 days after injection of phosphate-buffered saline (PBS; vehicle),
ADSCs-Exos, or ADSCs-SIRT1-Exos (Figure S4). The AMI-induced
high left ventricular enddiastolic dimension (LVEDD), and left



Figure 3. Direct Transfer of SIRT1 from ADSCs to

EPCs Using Exosome Delivery

(A) Transmission electron microscopy of exosomes from

ADSCs (ADSCs-Exos group) or ADSCs overexpressing

SIRT1 (ADSCs-SIRT1-Exos group). Scale bars, 100 nm. (B)

Nanoparticle tracking analysis of the exosome diameters (in

nanometers). (C) Expression of SIRT1 and specific exoso-

mal surface markers (CD63 and TSG101) were detected by

western blotting of ADSCs and exosomes. (D) Localization

of PKH26-labeled ADSCs-Exos (red) in AMI-EPCs visual-

ized by confocal microscopy at 0 and 24 h post-ADSCs-

Exos incubation. Scale bars, 10 mm. (E) Fluorescence mi-

croscopy analysis was performed to assay the green fluo-

rescent signals in AMI-EPCs co-cultured with ADSCs-Exos

with or without GFP-labeled SIRT1 treatment. Scale bars,

10 mm.
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ventricular endsystolic dimension (LVESD), and low fractional short-
ening (FS) and ejection fraction (EF) were significantly enhanced in
mice with CXCR7 deletion compared with WT mice (Figures 5D–
5G). CXCR7 knockout also exacerbated the effects of AMI on the
maximal fall and rise of left ventricular pressure (+dP/dt and �dP/
dt, respectively) compared with that in CXCR7�/� mice (Figures
5H and 5I). Compared with the PBS control group, the injection of
ADSCs-Exos significantly improved the myocardial dysfunction
induced by AMI in WT mice, while it did not improve cardiac func-
tion in CXCR7�/� mice. These results indicated that CXCR7 deletion
enhanced AMI-induced myocardial dysfunction, suggesting that
CXCR7 may have a protective effect against AMI-induced impair-
ment of cardiovascular function. ADSCs-SIRT1-Exo injection helped
restore cardiac function in AMI of WT mice but not in that of
CXCR7�/� mice, showing that the presence of CXCR7 was necessary
for the efficacy of ADSC-SIRT1-Exo injection, which was consistent
with the results of our in vitro experiments.

Injection of Exosomes from ADSCs Overexpressing SIRT1

Reduced AMI-Induced Infarct Size

Failure to inhibit fibrosis and inflammation can lead to poor ventric-
ular remodeling, which eventually leads to heart failure and death.
Given the improvement of myocardial function by injection of
ADSCs-SIRT1-Exos, we then examined the cardiac structural
response to AMI and modified it by injecting ADSCs-SIRT1-Exos.
As shown after Masson’s trichrome staining, in macro- and micro-
images of hearts from WT mice treated with sham or AMI surgery
(Figure 6A), a large area of blue collagen deposition was seen in the
Molecular Therap
AMImice treated by PBS (AMI + vehicle), indi-
cating a severe infarcted myocardium. The AMI
hearts treated by injection of ADSCs-Exos or
ADSCs-SIRT1-Exos had significantly reduced
degrees of fibrosis compared with the PBS
group (p < 0.05 and p < 0.01, respectively).
Compared with the ADSCs-Exo group, the in-
jection of ADSCs-SIRT1-Exos was more effec-
tive. The quantitative data in Figure 6A show
that decreases inthe fibrosis area (Figure 6B) and the infarct size (Fig-
ure 6C) were observed in both the ADSCs-Exo and ADSCs-SIRT1-
Exo groups, and the ADSCs-SIRT1-Exo group had a more positive ef-
fect on the recovery and reconstruction of cardiac function after AMI.

Injection of Exosomes from ADSCs Overexpressing SIRT1

Reduced AMI-Induced Inflammation

The inflammatory response is the first stage of cardiac remodeling
and repair after AMI. In this process, macrophages play a key role
in the transition between inflammation and repair.30–32 In our study,
myocardial inflammation was assessed by measuring the infiltration
of macrophages at 3 and 7 days after AMI. The results showed that
the ADSCs-Exo and ADSCs-SIRT1-Exo groups significantly reduced
the increases of macrophages at 3 and 7 days after AMI, indicating
that ADSCs-Exos and ADSCs-SIRT1-Exos—especially ADSCs-
SIRT1-Exos—reduced the myocardial inflammatory response
induced by AMI (Figures 7A and 7B). In addition, assessments of
the levels of tumor necrosis factor alpha (TNF-a), interleukin (IL)-
1b, and IL-10 by enzyme-linked immunosorbent assays (ELISAs) in
the heart homogenates from sham mice and AMI mice with the indi-
cated exosome injections at 24 h after surgery showed that ADSCs-
Exos and ADSCs-SIRT1-Exos—especially ADSCs-SIRT1-Exos—
significantly attenuated the AMI-induced upregulation of TNF-a
and IL-1b and the downregulation of IL-10 (Figures 7C–7E).
Together, these results suggested that ADSCs-SIRT1-Exos were
more capable of regulating ventricular remodeling and inflammatory
responses, potentially shifting the balance toward a more favorable
outcome.
y: Nucleic Acids Vol. 21 September 2020 741
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Figure 4. Exosomes from ADSCs Overexpressing SIRT1 Restored AMI-EPC Migration and Tube Formation

(A) Cell migration was measured using Transwell assays. Upper chamber: AMI patient endothelial progenitor cells (EPCs) with or without pretreatment with 200 mg/mL

ADSCs-Exos or ADSCs-SIRT1-Exos for 24 h; lower chamber: DMEM containing 10% FBS. Scale bars, 100 mm. (B) The number of migrated cells was calculated. *p < 0.05;

**p < 0.01, compared with the untreated group; #p < 0.05, compared with the ADSCs-Exo-treated group. (C–H) EPCs from AMI patients were pretreated with ADSCs-Exos

or ADSCs-SIRT1-Exos for 24 h. (C) Tube formation assay. Scale bars, 100 mm. (D) The tube lengths weremeasured. The AMI-EPCswithout any treatment were normalized to

1. *p < 0.05; **p < 0.01, compared with the untreated group; #p < 0.05, compared with the ADSCs-Exos-treated group. (E) Expressions of Nrf2 and CXCL12 in AMI-EPCs

were detected by western blotting. (F and G) Thewestern blot results were normalized to b-actin; (F) Nrf2 and (G) CXCL12. **p < 0.01, compared with the untreated group. (H)

Acetylated Nrf2 levels were measured by immunoprecipitation.
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Injection of Exosomes from ADSCs Overexpressing SIRT1

Induced Vasculogenesis

Finally, we assessed the effect of ADSCs-SIRT1-Exos on angiogenesis.
We performed immunofluorescent staining for a-smooth muscle
actin (a-SMA) or von Willebrand factor (vWF), which served as
markers of mature new blood vessels in peri-infarcted myocardium
at 28 days post-AMI (Figure 8). Regarding the density of arterioles
(a-SMA + vessels), a significantly greater number of arterioles in
WT mice was observed in the ADSCs-Exo and ADSC-SIRT1-Exo in-
jection groups when compared to the sham or PBS control group
(vehicle), and the highest expression of a-SMA was observed in the
ADSC-SIRT1-Exo group, suggesting the recovery of myocardial
injury after AMI. No statistical difference was found among all the
knockout mice (Figures 8A and 8B). The vWF is mainly derived
from vascular endothelial cells and plays an important role in regu-
742 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
lating platelet adhesion to the vessel wall. As shown in Figures 8C
and 8D, the trend of vWF staining was similar to that of a-SMA, indi-
cating the ability of ADSCs-SIRT1-Exos to induce beneficial angio-
genesis for infarcted myocardium. Together, these findings suggested
that ADSC-SIRT1-Exos had the greatest effect on angiogenesis but
that the effect was blocked after CXCR7 knockout.

DISCUSSION
AMI is a disease with high worldwide mortality and morbidity.
Although more than a decade of clinical trials has been conducted
on stem cell transplantation for the treatment of cardiovascular dis-
eases, there has been no major breakthrough in treatment efficacy.33

The main reason may be the lack of a blood supply to the infarction
myocardium, leading to a conservative therapeutic effect for AMI
treatments. Angiogenesis is a physiological process involving the



Figure 5. Injection of Exosomes from ADSCs Overexpressing SIRT1 Helped Restore Cardiac Function in AMI of WT mice but Not in CXCR7–/– Mice

AMI was produced by surgical ligation of the left anterior descending (LAD) coronary artery. LAD artery ligation or sham surgery was performed in mice; injection of

phosphate-buffered saline (PBS; vehicle), ADSCs-Exos, or ADSCs-SIRT1-Exos was performed after AMI surgery, and myocardial tissue samples were collected at 28 days

after surgery. (A and B)Western blot analyses of the expression levels of CXCR7. The CXCR7 levels were normalized to b-actin. *p < 0.05, compared with the sham group. (C)

Survival analysis of mice treated as indicated each day after surgery. (D–I) Echocardiographic and hemodynamic measurements of the left ventricular enddiastolic dimension

(LVEDD) (D); left ventricular endsystolic dimension (LVESD) (E); fractional shortening (FS) (F); ejection fraction (EF) (G); rates of maximal rise in left ventricular pressure (+dP/dt)

(H); and the rate of maximal fall in left ventricular pressure (�dP/dt) (I). *p < 0.05; **p < 0.01, compared with the sham group; #p < 0.05, compared with the AMI + vehicle group

of WT mice; &p < 0.05, compared with the AMI + vehicle group of WT mice; n = 6 per group.
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formation of new blood vessels from existing blood vessels, which is
manifested as the proliferation, migration, and tube formation of
endothelial cells. In AMI patients, the number of EPCs decreases,
and endothelial dysfunction and local angiogenesis are impaired.34

We, therefore, need to promote vascular formation and repair the
damaged myocardial function.

In the present study, we showed that CXCR7 was significantly down-
regulated and EPCs were dysfunctional in peripheral blood fromAMI
patients. To decrease the dysfunction of AMI-EPCs, ADSCs were
selected. A large number of ADSCs can be obtained by liposuction,
and 2,500 times more can be isolated from bone marrow mesen-
chymal stem cells (BMSCs) isolated from fresh bone marrow.35,36

Clinical trials on AMI patients treated with ADSC injections have
shown that ADSCs are safe and feasible for the treatment of AMI,
which is specifically manifested as improved cardiac function, signif-
icantly reduced myocardial infarction area, and decreased myocardial
fibrosis.37 However, due to excessive inflammatory reactions and
oxidative stress, aging and low survival rates limit the effectiveness
of ADSCs in tissue repair and limit the optimal effect of cell therapy.
Exosomes are membrane vesicles with a diameter of 80–120 nm and
are secreted by a variety of cells and distributed widely in body fluids,
containing proteins, lipids, nucleic acids, etc.9,10,38 Studies have
shown that the role of exosomes is very extensive, involving cell
signaling, cell differentiation, immune regulation, substance meta-
bolism, gene regulation, and tumor cell growth.39–41

Studies have shown that SIRT1 can protect human umbilical-cord-
derived fibroblasts from senescence induced by in vitro subculture
by promoting telomerase reverse transcriptase transcription.42 Yuan
et al.43 found that SIRT1 improved the senescence of young MSCs
during in vitro subculturing. Studies have also reported that SIRT1
prevents cardiovascular aging and vascular wall dysfunction by pro-
moting the homeostasis mechanism of antioxidative stress.44,45 Dou-
lamis et al.46 reported that the combined effects of low SIRT1 and
high MMP2 were significantly correlated with AMI.
Molecular Therapy: Nucleic Acids Vol. 21 September 2020 743
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Figure 6. Injection of Exosomes from ADSCs Overexpressing SIRT1

Reduced the Infarct Size and Post-AMI Left Ventricular Remodeling

(A) Cardiac structures in the groups as revealed by Masson’s trichrome straining.

Scale bars, 100 mm. (B andC) Quantitative analysis of the fibrosis area (B) and infarct

size (C). *p < 0.05; **p < 0.01, compared with the AMI + vehicle group; #p < 0.05,

compared with the AMI + ADSCs-Exo group; n = 6 per group. n.d., not determined.
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Our study showed that exosomes from ADSCs overexpressing SIRT1
positively regulated the expression levels of Nrf2 and chemokine
CXCL12 in AMI-EPCs. In addition, functional and morphological
studies showed that ADSCs-SIRT1-Exos reduced AMI-induced
myocardial fibrosis and inflammation responses and promoted angio-
genesis in mice. Secretions of TNF-a, IL-1b, and IL-10 are associated
with the Th17 and Th9 subsets of T helper cells, which are recruited
to the heart post-AMI.47,48 Nrf2 is a widely expressed transcription fac-
tor, and the SIRT1/Nrf2 signaling pathway plays an important role in
oxidative stress.49 Wang et al.22 reported that activation of the SIRT1/
Nrf2 signaling pathway reduced myocardial ischemia/reperfusion
injury. Qiu et al.50 showed that CXCL12upregulation played an anti-in-
flammatory and anti-apoptotic role in improving myocardial function.
A potential mechanism involves SIRT1 enhancing the function of EPCs
and, ultimately, improving themyocardial function ofAMImice, which
may be related to the activation of Nrf2 and the upregulation of
CXCL12. After AMI, the regeneration ability of the heart is limited,
leading tofibrosis ofmyocardial tissue,which leads to impairedmyocar-
dial function.51 Increasing vascular density is an effective method to
restore blood flow in ischemic regions through angiogenesis.52

CXCR7 is necessary for the regulation of various cellular functions,53

and it is a receptor with a strong affinity for CXCL12.27 It has been
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reported that CXCR7 plays a key role in the adhesion and survival
regulation of EPCs from both rat bone marrow and human umbilical
cord blood.54,55 Our results showed that ADSC-SIRT1-Exos pro-
moted AMI-EPC migration and tube formation, which may be due
to increased CXCL12 by ADSCs-SIRT1-Exos and its subsequent
binding to the receptor CXCR7. This study also found that the over-
expression of CXCR7 saved the impaired function of AMI-EPCs,
indicating that the upregulation of CXCR7 restored angiogenesis.
In contrast, downregulation of CXCR7 resulted in impaired EPC
function in healthy subjects, and CXCR7 knockout completely dis-
rupted the effect of ADSC-SIRT1-Exos on improving myocardial
function in AMI mice. These results confirmed that CXCR7 played
an important role in the function of EPCs.

In conclusion, we have provided convincing evidence for the mecha-
nism of cardiac functional repair in AMI by injecting ADSC-SIRT1-
Exos (Figure 8). First, we found that the expression level of CXCR7
was closely related to EPC functioning in AMI, which was manifested
as the downregulation of CXCR7 levels in AMI-EPCs and myocardial
tissue of AMI mice. Downregulation of CXCR7 in control-EPCs
caused EPC dysfunction, while overexpression of CXCR7 in AMI-
EPCs restored EPC function. Second, we found that ADSCs-SIRT1-
Exos promoted the migration and tube formation of AMI-EPCs
and that ADSCs-SIRT1-Exo injection improved heart function and
reduced the infarct area. Finally, we found that the myocardial repair
function of ADSCs-SIRT1-Exos involved the activation of Nrf2 and
the existence of a CXCL12/CXCR7 axis. This study may provide
new ideas for the treatment of AMI.

MATERIALS AND METHODS
Patients

Peripheral blood mononuclear cells were collected from patients with
AMI (n = 65) and healthy controls (n = 38) at Shanghai Gongli Hos-
pital (Shanghai, China) between January 2016 and December 2017.
Characteristics of patients and healthy control subjects are presented
in Table 1. Patients with previous AMI or coronary artery bypass sur-
gery, previous severe heart valvular disease, acute or chronic liver dis-
ease, and elevated serum creatinine levels on admission were
excluded. None of the patients in the study had been treated with sta-
tins, and none had systemic inflammation or malignancies. All partic-
ipants were informed of the purpose of the study and gave written
informed consent. The study adhered to the Declaration of Helsinki
regarding the use of human blood and was approved by the local
ethics committee.

Isolation and Culture of EPCs

EPCs were obtained and cultured as previously described.56 Briefly,
20 mL peripheral blood was collected immediately after admission.
Peripheral blood from healthy subjects was used as the control group.
Peripheral blood mononuclear cells were isolated using density
gradient centrifugation and then inoculated at 5� 105/cm into fibro-
nectin-coated, 6-well plates in Endothelial Basal Medium-2 (Hy-
Clone, Logan City, UT, USA) containing 20% fetal bovine serum
(FBS; GIBCO, Grand Island, NY, USA), vascular endothelial growth



Figure 7. Injection of Exosomes from ADSCs Overexpressing SIRT1 Decreased AMI-Induced Myocardial Inflammation

(A) Macrophage density was assessed using Mac3 staining. Scale bars, 100 mm. (B) Quantification of infiltrated macrophages per area in frozen sections of infarcted hearts at

days 3 and 7 after AMI surgery. #p < 0.05; ##p < 0.01, compared with the AMI + vehicle group; &p < 0.05, compared with the AMI + ADSCs-Exos group; n = 6 per group. (C–E)

The levels of TNF-a (C), IL-1b (D), and IL-10 (E) measured in heart homogenates after AMI or sham surgery for 24 h. *p < 0.05; **p < 0.01, versus the sham group; #p < 0.05,

compared with the AMI + vehicle group; &p < 0.05, compared with the AMI + ADSCs-Exos group; n = 6 per group.
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factor, insulin-like growth factor, ascorbic acid, heparin, and antibi-
otics and cultured at 37�C in 5% CO2. After 4 days of culture, the
non-adherent cells were removed with PBS. The adherent cells were
cultured for another 3 days before subsequent experiments. EPCs
were confirmed by assessing the surface markers CD34, CD133,
and CD45 (Abcam, Cambridge, MA, USA) with flow cytometry ana-
lyses, and isotype control antibodies were used as negative controls.

Lentiviral Vector Construction and Transfection

To overexpress SIRT1 in ADSCs and for the overexpression of
CXCR7 in AMI-EPCs, the cDNAs of human SIRT1 and CXCR7
were amplified by PCR using specific primers (SIRT1, forward
primer: 50-AGT CTC GAG TGG AAG ATG GCG GAC GAG-30,
and reverse primer: 50-CTC GGA TCC TCT CTG GAA CAT
CAG GCT C-30; CXCR7, forward primer: 50-CGA CTC GAG
ATC CTG CTG ACC TCC TAC-30, and reverse primer: 50-CCG
GGA TCC AAG CTA CTT TGC TTT GCT-30). The purified PCR
product was cloned into pLVX plasmid vector (Clontech, Mountain
View, CA, USA) encoding GFP to generate the Lv-SIRT1 or
Lv-CXCR7 plasmid. For lentiviral production, Lv-SIRT1 or
Lv-CXCR7 recombinant vectors or control vector with psPAX2
and pMD2, were co-transfected into HEK293T cells. After transfec-
tion for 48 h, lentiviral supernatants were collected through a
0.45-mm filter (Millipore, Billerica, MA, USA). ADSCs or AMI-
EPCs were infected overnight with the corresponding lentiviral
vector (recombinant SIRT1 or CXCR7 or control vector) at a mul-
tiplicity of infection (MOI) of 25. At 48 h after transfection, the
infection efficiency was determined by western blots.
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Figure 8. Injection of Exosomes from ADSCs Overexpressing SIRT1-Induced Vasculogenesis

(A and B) Arteriole density from a-SMA staining. Representative images (A, Scale bars, 100 mm.) and quantification (B) of arteriole density in the peri-infarcted myocardium at

28days after AMI, analyzed bya-SMAstaining. #p<0.05; ##p<0.01, comparedwith theAMI+ vehicle group; &p<0.05, comparedwith theAMI+ADSCs-Exos group; n=6per

group. (C andD) Capillary density from vWF-positive vessels; representative images (C, Scale bars, 100 mm.) and quantification (D). The blood vessel density is indicated as the

vessel number per square millimeter. #p < 0.05; ##p < 0.01, comparedwith the AMI + vehicle group; &p < 0.05, comparedwith the AMI + ADSCs-Exos group; n = 6 per group.
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To knock down SIRT1 in ADSCs and knock down CXCR7 in control-
EPCs, lentiviruses containing siRNA against SIRT1, CXCR7, or
nonsense siRNA were constructed (siSIRT1: 50-GCG GCT TGA
TGG TAA TCA GTA-30; siCXCR7: 50-CGC TCT CCT TCA TTT
ACA TTT-30; and nonsense siRNA: 50-CAG CCA TCA ACT CAG
ATT GTT-30) by Hanbio Biotechnology (Shanghai, China). The
transfection was performed following the procedure described earlier.
After transfection for 48 h, the expression of SIRT1 and CXCR7 was
determined by western blot.

Isolation and Identification of Exosomes

Exosomes from ADSCs culture media were extracted by differential
centrifugation, as described previously.38,57 The ultrastructure of
the exosomes was visualized using a transmission electron micro-
scope (Libra 120; Zeiss, Oberkochen, Germany). The sizes of exo-
somes were directly tracked using nanoparticle tracking analysis us-
ing a Nanosight LM10 (Malvern Instruments, Malvern, UK) and
the results were analyzed with NTA v.3.0 software (Malvern Instru-
ments). Western blotting using antibodies against CD63 and
TSG101 (representative markers of exosomes) was used to identify
the collected exosomes.
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PKH26-Labeled Exosomes and Tracking in EPCs

To track ADSCs-Exos in EPCs, PKH26 (Sigma-Aldrich, St. Louis,
MO, USA) and labeled ADSCs-Exos (PKH26-ADSCs-Exos) were
added to AMI-EPCs and incubated at 37�C for 24 h. The cells were
washed to remove the uninternalized exosomes, and the fluorescent
images were visualized using a confocal microscope.

Western Blot Assays

Proteins from exosomes, EPCs, ADSCs and mouse myocardial tis-
sues were extracted by using lysates. The bicinchoninic acid
(BCA) assay kit (Beyotime Institute of Biotechnology, Jiangsu,
China) was used to determine the protein concentration of each
sample. Forty micrograms of total protein was separated by 10%
SDS-PAGE and transferred to nitrocellulose membranes (Milli-
pore, Jaffrey, NH, USA). After blocking in 5% nonfat milk for 1
h, the membranes were incubated with primary antibodies against
CXCR7 (1:500; Abcam), SIRT1 (1:200; Santa Cruz Biotechnology,
Santa Cruz, CA, USA), CD63(1:500; Abcam), TSG101(1:500; Ab-
cam), Nrf2 (1:500; Abcam), CXCL12 (1:1,000; Abcam), or b-actin
(1:2,000; Abcam) overnight at 4�C. After washing, the membranes
were incubated with horseradish peroxidase (HRP)-conjugated



Table 1. Clinical Characteristics of AMI Patients and Healthy Controls

Included in the Study

Variable
AMI Patients
(n = 65)

Healthy Controls
(n = 38) p

Age in years (mean ± SD) 57.26 ± 9.17 54.31 ± 5.29 0.163

Male, n (%) 35 (53.85) 21 (55.26) 0.511

Body mass index in kg/m2

(mean ± SD)
26.14 ± 2.45 27.35 ± 1.84 0.347

Smoking, n (%) 33 (50.77) 14 (36.84) 0.209

Hypertension, n (%) 45 (69.23) 13 (34.21) 0.192

Hypercholesterolemia, n (%) 37 (56.92) 10 (26.32) 0.104

Diabetes mellitus, n (%) 8 (12.31) 2 (5.26) 0.095

Family history of CAD, n (%) 11 (16.92) 5 (10.53) 0.218

Data are expressed as the mean ± SD or percentage (%) (n). AMI, acute myocardial
infarction; SD, standard deviation; CAD, coronary artery disease, n, number.
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secondary antibodies at room temperature for 1 h. The signals
were detected using an enhanced chemiluminescence (ECL) detec-
tion system (Thermo Scientific, Rockford, IL, USA). The relative
protein levels were determined after normalization with b-actin.
Densitometric analysis of the bands was performed using ImageJ
software (National Institutes of Health, Bethesda, MD, USA).
Detection of Acetylated Nrf2

AMI-EPCs were pretreated with exosomes (200 mg/mL) from ADSCs
or SIRT1-overexpressing ADSCs for 24 h, and cell lysates of total pro-
teins were incubated with Nrf2 antibody (1:500) and precipitated with
Protein A/G PLUS-Agarose (Santa Cruz Biotechnology, Santa Cruz,
CA, USA). Finally, western blotting was performed using anti-acety-
lated-lysine antibody (1:200; Abcam).
Cell Migration Assay

The migratory ability of EPCs was assessed using a modified Trans-
well chamber assay as previously described.58 EPCs from healthy con-
trols transfected with lentiviral siCXCR7 or control siRNA and AMI-
EPCs transfected with lentiviral Lv-CXCR7 or control vector were
seeded in the upper chambers. DMEM containing 10% FBS was
added to the lower chambers, or they were seeded with ADSCs
with or without pretreatment with 2.5 mM GW4869 (exosome inhib-
itor; Sigma-Aldrich) for 8 h. To investigate whether exosomes from
ADSCs overexpressing SIRT1 enhanced the migration ability of
AMI-EPCs, the upper chambers were seeded with AMI- EPCs pre-
treated with 200 mg/mL exosomes from ADSCs or SIRT1-overex-
pressing ADSCs for 24 h. DMEM containing 10% FBS was added
to the bottom chambers. After the cells were cultured in Transwell
chambers for 24 h, the chambers were washed with PBS to remove
non-migrating EPCs. Migrating cells were fixed by 4% paraformalde-
hyde and stained with hematoxylin. The numbers of migrated cells on
the lower side of the membrane were counted in 10 random high-po-
wer fields using an inverted light microscope (Leica DMIL, Wetzlar,
Germany).
Tube Formation Assay

A Matrigel basement membrane matrix (Trevigen, Gaithersburg,
MD, USA) was placed in a 24-well cell-culture plate, and 1 � 104

EPCs with indicated transfections were added to the wells containing
supernatants of ADSCs with or without pretreatment with GW4869.
To determine whether ADSCs-SIRT1-Exos promoted the angiogen-
esis of AMI-EPCs, AMI-EPCs were pretreated with exosomes from
ADSCs or SIRT1-overexpressing ADSCs for 24 h. After another
48 h of incubation, tube structures were observed with an invertedmi-
croscope (Leica). The tube lengths were measured in 10 random fields
per sample by investigators who were unaware of the study’s purpose.

Mouse AMI Model and Exosome Injection

All animal experiments were performed in accordance with the Chi-
nese legislation on the use and care of laboratory animals and were
approved by the Institutional Animal Care and Utilization Commit-
tee of Shanghai Pudong New Area Gongli Hospital. WT and CXCR7
knockout (CXCR7�/�) C57BL/6J littermate male mice, 8 weeks old,
were purchased from The Jackson Laboratory (Bar Harbor, ME,
USA). A mouse AMI model was established by left anterior descend-
ing (LAD) coronary artery ligation as described previously.59 Briefly,
mice were injected intraperitoneally with ketamine (50 mg/kg) for
anesthesia. The LAD artery was ligated using a silk suture at 1–
2 mm between the left side of the pulmonary conus and the right
side of the left atrial appendage, and then the heart was put back
into the chest, and the incision was sutured. The sham-surgery
mice underwent the same procedure without a coronary artery liga-
tion and served as controls.

WT and CXCR7�/� mice were randomly assigned to four groups as
follows: the sham group (n = 8 for each time point of WT and
CXCR7�/�), in which mice received a sham operation; the AMI +
vehicle group (n = 12 for each time point of WT and CXCR7�/�),
in which mice suffering AMI received a intra-myocardial injection
of PBS; the AMI + ADSCs-Exo group (n = 12 for each time point
of WT and CXCR7�/�), in which mice suffering AMI received an
intra-myocardial injection of exosomes from ADSCs; and the
AMI + ADSCs-SIRT1-Exo group (n = 12 for each time point of
WT and CXCR7�/�), in which mice suffering AMI received an
intra-myocardial injection of exosomes from ADSCs infected with
SIRT1-overexpressed lentivirus. Exosome injection was performed
at 1 h after induction of AMI and then once a week. Exosomes
(100 mg protein) in 20 mL PBS were myocardially injected near the
ligation site in the free wall of the left ventricle.60 Survival analysis
was performed by daily cage inspection for up to 28 days after surgery.

Echocardiographic and Hemodynamic Measurements

Echocardiography (Vevo 2100 imaging system; Vevo 2100, Visual-
Sonics, Toronto, ON, Canada) was used to examine the cardiac func-
tion of mice after surgery for 28 days. The echocardiography param-
eters were recorded in mice anesthetized with ketamine.
Echocardiography parameters included LVEDD, LVESD, left ventric-
ular FS, and left ventricular EF. For hemodynamic measurements, the
tip of the left ventricle was punctured, and a miller catheter connected
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to the pressure sensor was inserted. +dP/dt and�dP/dt of left ventric-
ular pressure were recorded. The researchers were unaware of the
treatment assignment when performing and reading echocardiogra-
phy and hemodynamic parameters.

Histology and Immunohistochemistry

Some mice were euthanized at 3 or 7 days after surgery, and others
were euthanized at 28 days after echocardiography and hemodynamic
measurements. The hearts were cut into three transverse sections,
fixed at 4�C with 4% paraformaldehyde, dehydrated in a graded series
of ethanol, and then embedded in paraffin. Sections were sliced into
10-mm-thick slices and were stained withMasson’s trichrome. ImageJ
software was used to quantitate the fibrotic area and the size of the
infarct area. The percentage of fibrotic area was the ratio of the fibrotic
area to the area of the entire high-power field image. The infarct size
was calculated by averaging the percentage of the concentrated area
near the midsection of the infarct tissue.

For immunofluorescence staining overnight, the sections were incu-
bated overnight at 4�C with antibodies to a-SMA (1:200) or vWF
(1:200) (Abcam). After washing with PBS three times, the sections
were incubated with secondary antibodies for 2 h at 4�C, then with
DAPI staining for 2 min, and examined using a fluorescence
microscope.

For immunohistochemistry analyses, macrophages were detected by
using Mac3 antibody (1:200; Abcam). The quantitative assessment
of macrophage density was done by double-blind counting of Mac3
immunoreactive cells in five different regions of the infarct area. Im-
ages were captured using an inverted microscope.

ELISA Analysis

To detect TNF-a, IL-1b, and IL-10 levels in mouse hearts, myocardial
tissues from sham mice and AMI mice with the indicated ADSCs-
exosome injection at 24 h after surgery were homogenized in PBS
buffer. Total protein was extracted with a protein extraction kit (Be-
yotime). Levels of TNF-a, IL-1b, and IL-10 in heart homogenates
were measured with an ELISA kit (R&D Systems), according to the
manufacturer’s instructions. The results were expressed as protein
in picograms per milligram.

Statistical Analysis

Results are expressed in the mean ± SEM from at least three separate
experiments. All data were verified for normal distribution. All statis-
tical analyses were performed using GraphPad Prism-5 software.
One-way analysis of variance (ANOVA) followed by Tukey’s post
hoc test was applied to determine the significance among groups. Stu-
dent’s t test was used for statistical analysis to investigate whether
there was a significant difference in between groups. p <0.05 was
considered statistically significant.
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Figure S1 Characteristics of adipose-derived stem cells (ADSCs). Determination of 

cell surface markers (CD90 and CD29) with immunofluorescence staining. Scale bar = 

10 μm. 

 



 

Figure S2. Overexpression and interference efficiency verification. Adipose-

derived stem cells were transfected with (A) lentiviral plasmid (vector), lentiviral 

overexpression of SIRT1 plasmid (Lv-SIRT1), (B) lentiviral interfering control plasmid 

(siRNA), or lentiviral interfering CXCR7 plasmid (siSIRT1) and cultured for 48 h. 

Expression of SIRT1 was detected by western blotting. The western blot results were 

normalized to β-actin. **p < 0.01 compared to the non-transfected cells. 



 

Figure S3. The effect of exosomes from adipose-derived stem cells (ADSCs) 

interfering with SIRT1 during cell migration and tube formation of AMI-EPCs. 

(A) Cell migration was measured using Transwell assays. Upper chamber, acute 

myocardial infarction (AMI) patient endothelial progenitor cells with or without 

pretreatment with 200 μg/mL ADSCs-siRNA-Exos or ADSCs-siSIRT1-Exos for 24 h; 

lower chamber, Dulbecco’s Modified Eagle’s Medium containing 10% fetal bovine 

serum. Scale bar = 100 μm. (B) The number of migrated cells was calculated. *p < 0.05 

compared with the untreated group; #p < 0.05 compared with the ADSCs-siRNA-Exos 

treated group. (C) EPCs from AMI patients were pretreated with ADSCs-siRNA-Exos 

or ADSCs-siSIRT1-Exos for 24 h. The tube formation assay was performed. Scale bar 

= 100 μm. (D) The tube lengths were measured. The AMI-EPCs without any treatments 

were normalized to 1. *p < 0.05 compared with the untreated group; #p < 0.05 compared 

with the ADSCs-siRNA-Exos-treated group. 



 

Figure S4. Echocardiogram of mice heart in different groups at 28 days after 

surgery. 

 

Supplemental Methods 

Isolation and culture of human ADSCs 

The human tissue and cell processing procedures were approved by the local ethics 

committee. Human adipose tissues were donated for research purposes with written 

informed consent. The human adipose tissues used in the experiments were from 

healthy females undergoing liposuction at Shanghai Gongli Hospital. Adipose-derived 

stem cells (ADSCs) were isolated and cultured as described previously.1 Briefly, the 

adipose tissues were washed twice with PBS, and then digested by 0.075% collagenase 

I (Sigma-Aldrich, St. Louis, MO, USA) at 37oC, with shaking for 1 h. After 

centrifugation for 10 min at 1200 × g, the cells were resuspended in DMEM containing 

10% FBS and antibiotics, and inoculated in 6-well plates at a density of 5 × 105/cm, 

and incubated in 37oC and 5% CO2 in a saturated humidity incubator. When the primary 



cells reached 80%–90% confluency, they were digested and subcultured. The first 

inoculated primary cells were taken as passage 0. In this study, cells were cultured to 

passage 3.  

To identify cell characteristics, we used passage 3 cells for immunofluorescence 

staining.2 After cell slide culture, the cells were fixed with 4% paraformaldehyde for 30 

min, and 5% bovine serum albumin (BSA) was added at room temperature for 30 min. 

Then, antibodies against CD90 or CD29 (1:100; Abcam, Burlingame, CA, USA) were 

added, and incubated at 4oC overnight. FITC- or PE-labeled rabbit anti-rat secondary 

antibody (1:200; Abcam) was added and incubated for 3 h at 37oC. DAPI (Sigma-

Aldrich) was used to stain nuclei at room temperature for 5 min, and fluorescence 

microscopy was used to observe and photograph the cells (Olympus, Tokyo, Japan). 
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