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1. Details on methods 
1.1. Additional information on data 

 
Human population density data at a resolution of 250m were obtained from the Global Human Settlement 
database [1] and administrative unit shapefiles were downloaded from the National Institute of Statistics [2]. 
The categorical location of cases was assigned on the basis of the place of residence with respect to the 
municipality shapefiles for Anzio and Rome; cases whose residence was outside the borders of either 
municipality were classified as “other”. Table S1 summarizes the information from epidemiological 
questionnaires administered during the outbreak. These data were used for the definition of cases exported 
from Anzio, i.e. those with an epidemiological link to this town in the days before symptom onset. Exported 
cases were excluded from the transmission chain reconstruction in the main analysis. 

 

Table S1. Data from epidemiological questionnaires (including all cases for which the geographical location is 
known). 

  epidemiological link 

  total 
export from 

Anzio 
transmission 

within same area 

re
sid

en
ce

 

Anzio 190 - 190 

Rome 169 97 72 

other 63 24 29 

total 412 121 291 

 

1.2. Baseline model (main analysis) 
The model assumes the following expression for the force of infection to which any case j was exposed at 
time t: 

𝜆!(𝑡) = & '𝛼 + 𝛽𝐾,𝑑!"; 𝜂01 	𝛤(𝑡 − 𝐸"; 𝑎, 𝑏)
	

"∈%!(')

 

where 𝑁!(𝑡) is the set of notified chikungunya cases resident in the same location of j who have been 
infected before time t. 𝛼 and 𝛽 are two scaling factors for the transmission rates relative to the local and 
focal mode of infection, respectively; 𝐾,𝑑!"; 	𝜂0 is a spatial kernel with parameter 𝜂, regulating the distance-
dependent probability of focal transmission; 𝑑!"  is the distance between the residences of individuals j and i; 
𝐸"	is the time at which individual i acquired infection; and 𝛤(𝑡; 	𝑎, 𝑏) is the gamma-distributed (with shape 𝑎 
and rate 𝑏) probability distribution function of the generation time, i.e. the time elapsed between infection 
times in a primary host and in its secondary cases. Since only information on the dates of symptom onset are 
available, the set of infection times 𝑬 = {𝐸!} was unknown and was considered as a set of nuisance 
parameters (augmented data) to be estimated together with model parameters. The generation time is 
assumed to be to be gamma-distributed with shape a and rate b; it reflects a time-varying level of 
infectiousness of cases after their initial infection and accounts for the length of incubation periods in both 
humans and mosquitoes (intrinsic and extrinsic incubation periods), the duration of human infectiousness 
and the lifespan of mosquitoes. The spatial kernel accounts for focal transmission and is assumed to follow a 

negative exponential distribution with parameter 𝜂, 𝐾,𝑑!"; 	𝜂0 =
)
*
𝑒+*,!"  [3]. 



For each j, we define a most likely infector, kj, such that 

𝛽𝐾(𝑑-!!; 	𝜂)𝛤(𝐸-! − 𝐸"; 𝑎, 𝑏) 	= 	𝑚𝑎𝑥"	(𝛽𝐾(𝑑"!; 	𝜂)𝛤(𝐸! − 𝐸"; 𝑎, 𝑏)); 

If the focal component of the most likely infector, 𝛽𝐾(𝑑-!!; 	𝜂), is lower than the local component 𝛼, the 
case is classified as locally transmitted and no specific infector is identified; otherwise kj is considered as the 
source of infection for j. The likelihood that j acquired infection at time Ej was defined as 

𝑃(𝑗) = B
𝛼 ∑ 𝛤(𝐸! − 𝐸"; 𝑎, 𝑏)	

"∈%!(') 																	if	𝛼 > 𝛽𝐾(𝑑-!!; 	𝜂)	(local	transmission)	

𝛽𝐾 '𝑑-!!; 	𝜂1 𝛤 '𝐸-! − 𝐸"; 𝑎, 𝑏1 							otherwise	(focal	transmission)																	
, 

while the likelihood that j was not infected before Ej is given by 𝑄,𝐸!0 = 𝑒𝑥𝑝	 '−∫ 𝜆!(𝑡)𝑑𝑡
.!
/ 1. 

The overall likelihood of a given parameter set 𝜃 = {𝛼, 𝛽, 𝜂, 𝑎, 𝑏} and of the ensuing transmission chain is given 
by: 

𝐿(𝜃) = ∏ 𝑃(𝑗)		𝑄,𝐸!0	
! . 

The transmission distance D(j) for each case j is defined by 𝑑-!!  when j was locally transmitted; for local and 
exported cases, we adopted the weighted average of the distances of all potential infectors, were the 
weights are represented by the generation time probability of each potential infector of j: 

𝐷(𝑗) =
∑ 𝑑"!𝛤(𝐸! − 𝐸")			
"∈0!(.!)

∑ 𝛤(𝐸! − 𝐸")		
"∈0!(.!)

 

where Cj(t) corresponds to Nj(t) for locally transmitted cases and to individuals infected in Anzio before time 
t for exported cases. 
 

1.3. Sensitivity analysis 

As a sensitivity analysis, we considered a number of alternative model versions, detailed below, where the 
information from epidemiological investigations was assumed to be unavailable. 

1.3.1. Baseline model without epidemiological information 

The model remains identical as in the main analysis, except for the fact the potential focal infector is 
searched among the set of all individuals in the dataset who have been infected before time t, N(𝑡), 
independently of the location of j (N(𝑡) substitutes N1(𝑡) in the expression of the force of infection). 
In addition, there are no cases classified as exported, therefore all cases for which a focal infector 
cannot be identified are considered as local, and the model is computed over all cases (n=412). 

1.3.2. Power-law kernel 

Here we considered a different functional form for the spatial kernel, adopting a power-law instead 
of a negative exponential one: 

𝐾,𝑑!"; 𝜙0 = (𝜙 − 1) ] )
)2,!"

^
3

, 

with 𝜙 > 1. The kernel so defined is normalized in such a way that its integral over all dij is equal to 1.  

1.3.3. Demographic-specific susceptibility 

In this model, we allowed parameter β to vary depending on the demographics of the infected 
individual, i.e. whether it was a child, c, defined as an individual of any gender with age strictly lower 



than 16 years  (32 cases in the dataset), an adult male, m (168 cases), or an adult female, f (212 
cases). The force of infection becomes: 

𝜆!(𝑡) = & ]𝛼 + 𝛽4!𝐾,𝑑!"; 𝜂0^ 	𝛤(𝑡 − 𝐸"; 𝑎, 𝑏)
	

"∈5(')

 

where δ1 ∈ {𝑐,𝑚, 𝑓}. 

1.3.4. Seasonal transmissibility 

In order to account for seasonal variations in the abundance of mosquitoes in the neighborhood of 
cases, and therefore on the probability of focal transmission, we assumed that transmissibility for 
focal infections may be dependent on time: 

𝜆!(𝑡) = ∑ '𝛼 + 𝛽d(𝑡)𝐾,𝑑!"; 𝜂01 	𝛤(𝑡 − 𝐸"; 𝑎, 𝑏)	
"∈5(') ; 

we assumed a truncated sinusoidal function for  𝛽d(𝑡):  

𝛽d(𝑡) = e𝛽	 sin f
2𝜋(𝑡 − 𝑡/)

365 l 											𝑓𝑜𝑟		𝑡/ ≤ 	𝑡 ≤ 	 𝑡/ + 180	𝑑𝑎𝑦𝑠

0																																														𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒																																					
 

With t0 corresponding with May 15th, so that focal transmission is assumed to occur between mid-
May and mid-November, with a peak probability on mid-August. 

1.3.5. Step-change in transmissibility 

As an alternative way to account for seasonal variations in transmission, we included a model where 
a step change in the probability of focal transmission is allowed [4]: 

𝛽d(𝑡) = w			𝛽											𝑓𝑜𝑟	𝑡 < 	 𝑡/𝜒𝛽										𝑓𝑜𝑟	𝑡 ≥ 𝑡/
 

Where 𝛽, 𝜒 and t0 are free model parameters. 

 

1.4. Calibration 

The calibration for all models was performed by adopting a Monte Carlo Markov Chain (MCMC) procedure. 
For free model parameters (𝑎, 𝑏, η, α,	and one or more values for β, depending on model formulation), we 
considered recursive normal jumps and uninformative (uniform) priors. For nuisance parameters, i.e. the 
unknown times of infection 𝐸!, we initialized them by subtracting from the date of symptom onset a number 
of days sampled from the distribution of the intrinsic incubation period [5], i.e. a uniform distribution with a 
minimum of 2 and a maximum of 4. At each step of the MCMC, the times of infection 𝐸!  for 10 randomly 
chosen individuals was updated, sampling from the same distribution. Parameter sets, together with the set 
of infection times 𝐸!  and the ensuing imputed transmission chain, were accepted or rejected on the basis of 
likelihood values according to a standard Metropolis-Hastings algorithm. We run each model for 2.5 million 
iterations and considered the last 500,000 MCMC samples for analysis. 

Average parameter values and their 95% credible interval computed from the corresponding quantiles of the 
posterior distributions estimated by the MCMC procedure are reported in Table S2 for all considered 
models. 

  



 

Table S2. estimated parameter values for all transmission chain reconstruction models: means (in bold) and 95% 
credible intervals from the estimated posterior distributions. 

Parameter/ 
Model 

Main analysis 
(baseline with 

epidemiological 
information) 

Baseline 
Power-law 

kernel 

Demographic-
specific 

susceptibility 

Seasonal 
transmissibility 

Step-change in 
transmissibility 

𝑎 
8.53 

7.47-9.60 
4.99 

4.32-5.93 
3.38 

3.28-3.45 
5.05 

4.30-6.02 
3.87 

3.74-4.07 
4.08 

3.86-4.44 

𝑏 
1.46 

1.21-1.77 
2.83 

2.08-3.59 
5.71 

5.52-6.09 
2.78 

2.03-3.61 
4.40 

4.01-4.67 
4.03 

3.43-4.46 

𝜂 
9.35 10-3 

(8.90-9.90) 10-3 

11.5 10-3 

(6.62-
14.3) 10-3 

- 
11.4 10-3 

(7.20-13.9) 
10-3 

14.3 10-3 

(14.2-14.5) 10-3 
10.8 10-3 

(10.6-11. 0) 10-3 

𝛼 
9.45 10-3 

(7.46-11.83) 10-3 

7.59 10-3 

(5.35-
9.50) 10-3 

7.76 10-3 
(7.38-

7.93) 10-3 

7.75 10-3 

(5.88-9.64) 
10-3 

8.26 10-3 
(8.13-8.48) 10-3 

10.2 10-3 
(10.1-10.2) 10-3 

𝛽 
35.2 

31.1-40.3 
32.0 

22.2-40.0 
46.8 

46.4-47.0 
- 

36.1 
34.4-37.7 

71.3 
69.6-73.1 

𝜙 - - 
23.6 

23.3-24.3 
- -  

𝛽# - - - 
33.5 

22.3-44.7 
-  

𝛽$ - - - 
27.0 

16.7-37.7 
-  

𝛽% - - - 
60.2 

2.3-151.0 
-  

𝜒      
0.199 

(0.122-0.275)  

𝑡&      
Sep 18th  

Sep 16th – Sep 
22th 

 

To ensure convergence of the MCMC for the main analysis, we have run four parallel chains with different 
starting points and computed the Gelman-Rubin diagnostic Rc [6] for each parameter, finding the following 
values: for a: 1.45; for b: 1.43; for η: 1.23; for β: 1.11; for α: 1.18. The only diagnostics that were significantly 
non-compliant with the convergence criterion of Rc < 1.2 [6] are those for parameters a and b, determining 
the shape and scale of the Gamma-distributed generation time; this is likely due to slight variations in the 
accepted augmented infection times, Ej, that can result in corresponding accommodations of the curve of 
the generation time distribution and therefore in some correlation among the accepted parameter values. 
Nonetheless, posterior distributions for a and b and for the corresponding distribution of the generation 
time were substantially robust in the four MCMCs from the point of view of epidemiological interpretation 
(see Table S3). 

As a further diagnostics we computed the effective sample size of the MCMC using the equation [7] 

𝐸𝑆𝑆 = 6
)27	∑ 9(-)'

 



where n=500,000 is the number of iterations and 𝜌(𝑘) is the correlation among likelihood values at lag k. 
We obtained a value of ESS=175.0 (ESS>100 is a generally accepted requirement for convergence of the 
MCMC). 

Table S3. Parameter estimates for four parallel MCMC chains in the main analysis 

MCMC chain / Parameter a b Mean generation time 
(days) 

MCMC  #1 8.53 (7.47-9.60) 1.46 (1.21-1.77) 12.4 (11.7-13.3) 

MCMC #2 8.15 (7.14-8.95) 1.56 (1.35-1.89) 12.6 (12.0-13.5) 

MCMC #3 8.59 (7.64-9.56) 1.44 (1.22-1.72) 12.3 (11.7-13.1) 

MCMC #4 8.86 (8.31-9.57) 1.37 (1.24-1.50) 12.1 (11.8-12.6) 

 

1.5. Branching process 

The branching process model attempts to reproduce the transmission of chikungunya within the 
municipality of Anzio using estimates for the distribution of notified secondary cases, the generation time 
and the spatial kernel obtained via the transmission chain reconstruction model. Each simulated outbreak is 
initialized with a single index case, which is marked as not notified, as in the actual outbreak. For each 
symptomatic case, a number s of symptomatic secondary cases that will be notified is first assigned by 
sampling from a distribution 𝜎. In particular, we assume 𝜎 to be a Poisson distribution with rate S, which 
varies over time and is set equal to the weekly estimated average number of secondary cases in the 
transmission chain reconstruction model (Figure S1). Secondary cases are iteratively generated with the 
following characteristics: 

• the date of symptom onset is assigned as 𝑇6:; = 𝑇"6,:< + 𝜏 , where 𝜏 is sampled from 𝛤(𝜏; 𝑎, 𝑏); 
• the position of the new case is assigned as (𝑥6:; , 𝑦6:;) = (𝑥"6,:< , 𝑦"6,:<) + 𝜌 ⋅ (cos(𝜃) , sin(𝜃))	, 

where 𝜌 is sampled from the reconstructed distribution of transmission distances (Figure S2), 
including both local and focal cases, and 𝜃 is uniformly sampled in [0, 2𝜋); 

• each individual may be assigned an asymptomatic status based on a Bernoulli sample with 
probability ps [8]; 

• symptomatic individuals may be notified based on a Bernoulli sample with probability equal to a 
reporting rate pd, while asymptomatic individuals will not be detected;  

For each case, secondary cases are generated until the number of symptomatic notified cases exceeds s (the 
case in excess is discarded). Outbreaks were halted when they reached the same number of symptomatic 
notified cases as the actual outbreak, i.e. 190; outbreaks resulting in stochastic extinctions in the first weeks 
were discarded and re-simulated. 

All parameters and probability distributions for the branching process are either obtained from literature or 
estimated from the transmission chain reconstruction model (Table S4). We assume a baseline value for the 
reporting rate of 100% in the main analysis and show the model behavior when its value is reduced to up to 
10% of all incident cases. In addition, we show the model performance when using different values of the 
notification rate for symptomatic cases before and after outbreak discovery on September 7. To do so, we 
switch the value of the notification rate when the number of notified symptomatic cases in the branching 
process reaches the value of 93, i.e. the number recorded in the Anzio outbreak on September 7. Results are  
reported in section 3.  



 

 

Table S4. Parameters for the branching process 

Parameter Sampling Distribution parameters Source 

Number of secondary 
symptomatic notified 
cases, S 

Poisson Time-varying (Fig. S1) Transmission chain 
reconstruction model 

Generation time, 𝜏 Gamma Shape: 8.53 

Scale: 1.46 

Transmission chain 
reconstruction model 

Transmission distance, 𝜌 Empirical (Fig. S2) - Transmission chain 
reconstruction model 

Transmission direction, 𝜃 Uniform Min: 0 

Max: 2𝜋 

Assumption 

Symptomatic cases Bernoulli ps = 81.8% [8] 

Baseline reporting rate for 
symptomatic cases 

- pD = 100% Assumption; sensitivity 
analysis over range 10-
100%. 

 

Figure S1. Poisson rates over time used for sampling the number of secondary symptomatic notified cases. 
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Figure S2. Overall distribution of the estimated transmission distances by mode of transmission, considering only 
cases transmitted within Anzio, i.e. excluding exportations. 

 

1.6. Spatial mechanistic model 

We developed a spatial mechanistic model of chikungunya transmission and insecticide spraying 
interventions to evaluate, on one hand, the effect of different intervention protocols, and on the other hand, 
the effect of long-distance mobility on the overall effectiveness of the currently adopted protocol. 

The model represents a spatial square of side approximately 20km, divided into a 251x251 grid of cells of 
size 𝑙. Each cell was initialized with a total number of human inhabitants and mosquitoes sampled from a 
Poisson distribution. For humans, the Poisson rate was given by 𝑛= = 𝐷=𝑙7, where 𝐷= is the average 
population density of the residential area of Anzio. Similarly, for mosquitoes we consider a Poisson rate given 
by 𝑛> = 𝐷>𝑙7, where the density of mosquitoes 𝐷> is computed by inverting the classical equation for R0 

[9]: 

𝐷> = 𝑅/𝐷=𝛾𝜇
𝜇 + 𝜔

𝑘7𝜒>𝜒=𝜔
 

We chose R0 as the average number of secondary transmissions in absence of interventions, as estimated by 
the transmission chain reconstruction model; all other epidemiological parameters (see Table S5) were taken 
from the literature. The same parameters were used in the model to determine epidemiological transitions 
within a classical SEIR-SEI structure. A single infectious individual is introduced  on June 25th (day of symptom 
onset for the first case detected in Anzio) in the central cell of the grid. We assumed that mosquitoes are at 
population equilibrium, so that in each cell and at each time step (1/1000th of a day), new susceptible adult 
mosquitoes replace dying mosquitoes. Mosquitoes can acquire the virus by infectious individuals residing 
within a square of side 5 pixels (corresponding to a radius of action of about 200m, which is approximately 
the flight range of Aedes albopictus [10]). Thus, at each time step, mosquitoes in a given cell with 
coordinates i, j, are subject to a force of infection given by 

 distance
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𝜆>[𝑖, 𝑗] = 	𝑘𝜒>
∑ ∑ 𝐼=[𝑋, 𝑌]

!27
?@!+7

"27
A@"+7

∑ ∑ 𝑁=[𝑋, 𝑌]
!27
?@!+7

"27
A@"+7

 

where 𝐼= and 𝑁= are the respectively the number of infectious and total individuals in a given cell.  

Similarly, we assumed that human infections produced by mosquitoes belonging to a given cell depend on 
the number of humans residing in neighboring cells with a force of infection 

𝜆=[𝑖, 𝑗] = 𝑘𝜒=
B([",!]

∑ ∑ %)[A,?]
!*+
,-!.+

"*+
/-".+

; 

To account for human mobility, the number of resulting new infections is distributed over the grid according to 
the estimated distribution of transmission distances in Anzio for focal and local cases (Figure S2), choosing at 
random the direction of displacement. 

Insecticide spraying interventions are modeled as follows: after outbreak detection (occurring at time 𝑇 in the 
simulation), any new infectious case triggered treatment in a square of size 2𝜌 centered on the residence of the 
new case, with a delay after symptom onset that was uniformly sampled over the interval [1, 2𝜏] days. Treatment 
resulted in the sudden death without replacement of a proportion 𝜙 of all susceptible, exposed and infectious 
mosquitoes in treated cells; the mosquito population recovered to pre-treatment equilibrium population sizes 
after a fixed number of days Θ (Table S5). 𝑇, 𝜌 and 𝜏 are considered parameters of the intervention protocols and 
are changed one at a time in the different scenarios shown in the main analysis (Figure 6). 

 

Table S5. Parameters for the spatial mechanistic model 

Parameter Value Unit Source 

Size of cell, 𝑙 80 m - 

Human population density, 𝐷! 30.0 Individuals/ha [1] 

Duration of infectious period in humans, 1/𝛾 4.5 days [9] 

Average number of secondary cases, 𝑅" 1.4 - Transmission chain 
reconstruction model 

Mosquito life span,	1/𝜇 6.8 days  [9] 

Duration of incubation period in mosquitos, 1/𝜔 2.5 days [9] 

Duration of incubation period in humans, 1/𝜔! 3 days [5] 

Mosquito biting rate,	𝑘 0.09 bites/mosquito/day [11] 

Probability of human to mosquito transmission 
per bite, 𝜒# 

77 % [9] 

Probability of mosquito to human transmission 
per bite, 𝜒! 

70 % [9] 

Effectiveness of insecticide spraying in reducing 
the mosquito population, 𝜙 

86 % [12] 

Time to recovery of the mosquito population, Θ 14 days [12] 

 



2. Sensitivity analyses with respect to different model formulations 

2.1. Baseline model 

Considering a random subsample of 10,000 reconstructed chains in the baseline model (out of a total of 
500,000) rather than only the most likely presented in the main text, we found a very limited variability in 
the identified infectors. In particular, 60% of all non-exported cases were consistently assigned the same 
infector in all transmission chains; in addition, a further 36% of them were assigned the same infector in 
more than three quarters of transmission chains; only for the remaining 4% the candidate infector was more 
uncertainly identified. The proportion of focally acquired cases varied from 54.8% to 55.1%. Therefore, the 
conclusions of this study are robust with respect to variability in reconstructed transmission chains. 

 

Figure S3. Reconstructed serial interval and probability distribution function of the generation time. 

Table S6. Quantitative estimates for all transmission chain reconstruction models. We report the central value of 
the distribution (in bold) and the 95% credible interval. *: central value is the mean; #: central value is the median. 

Output 
variable 

Main analysis 
(baseline with 

epidemiological 
information) 

Baseline 
Power-

law 
kernel 

Demographic-
specific 

susceptibility 

Seasonal 
transmissibility 

Step-change in 
transmissibility 

Generation 
time (days)* 

12.4 
11.7-13.3 

14.0 
12.4-15.5 

16.5 
14.3-20.3 

13.9 
12.2-15.5 

15.3 
13.7-17.8 

16.4 
15.2-17.2 

Transmission 
distance (m) * 

174 
169-179 

154 
119-251 

94 
51-114 

150 
117-230 

116 
102-128 

199.5 
187.8-213.7 

Number of 
clusters of size 

>3 # 

11 
10-11 

18 
15-22 

15 
13-18 

18 
15-22 

15 
13-18 

18 
16-21 

Number of 
clusters of size 

> 10 # 

3 
3-3 

4 
3-5 

4 
2-5 

4 
3-5 

5 
3-5 

4 
3-6 

Max cluster 
duration 
(days) # 

132 
132-132 

108 
92-108 

95 
88-108 

108 
92-108 

108 
92-108 

108 
108-108 

Cluster size * 
25.6 

24.6-26.8 
11.0 

9.7-13.3 
10.4 

7.1-12.1 
10.7 

9.4-12.6 
11.2 

9.8-12.7 
13.5 

12.1-15.2 
% of cases 

classified as 
focal # 

54.9 
54.8-55.1 

58.7 
53.1-67.7 

50.6 
37.7-53.1 

57.7 
52.3-63.8 

53.1 
51.3-54.3 

66.7 
66.2-66.9 

% of cases 
within 200m # 

38.3 
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Figure S3 shows the histogram of serial intervals for reconstructed focal transmissions (maximum likelihood 
estimate) and the corresponding probability distribution function of the generation time estimated by the 
MCMC procedure (average and 95%CI computed from the joint posterior distribution of a and b). 

In Table S6, we report a comparison of the main quantitative estimates across the different models and 
reconstructed transmission chain. In the remainder of this section we show results computed using the 
maximum-likelihood transmission chains for each model. 

 

2.2. Baseline model without epidemiological information 

The model still identifies two main clusters in Anzio, A1 and A2, with 78 and 57 focally transmitted cases 
overall, and one in Rome (with 20 secondary cases); the average speed of diffusion remained in the same 
range (300-600 m/month; Figure S4). The transmission distance was slightly longer compared to the main 
analysis, with a median of about 200m (instead of 127m), and this resulted in a slightly larger proportion of 
cases (68.9%, compared to 54.9% in the main analysis) being classified as focal (Figure S5). This increase in 
the proportion of focal cases also resulted from the identification of plausible focal infectors for cases which 
were exported from Anzio. The distribution of distances for local transmission in this model shows a clear 
bimodality, with a first peak between 1 and 20km and a second peak, substituting cases which were 
classified as exported in the main analysis, between 20 and 70km. 

 

Figure S4. Baseline model with no epidemiological information: main clusters and clusters spread. 
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Figure S5. Baseline model with no epidemiological information: transmission modes and cumulative distribution 
of focal transmission distance 

 

2.3. Power-law kernel 

The model with a power-law kernel does not deviate significantly from the negative-exponential kernel 
shown in the main analysis: parameters estimated in the two cases lead to practically identical probability 
distribution functions (see Figure S6). All results from the ensuing reconstruction of the transmission chains 
are also quite consistent with the main analyses, except for the fact that cluster A2 is split into two separate 
clusters (A2 and A3, Figure S7). The speed of the cluster diffusion is, again, between 250 and 400 m/month. 
The proportion of focally transmitted cases is estimated at about 59% and, of these, about 75% occur within 
200m (Figure S8). 

 

Figure S6. Comparison between estimated negative exponential and power law kernels. 
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Figure S7. Power-law kernel model: main clusters and clusters spread. 

 

Figure S8. Power-law kernel model: transmission modes and cumulative distribution of focal transmission 
distance. 
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2.4. Demographic-specific susceptibility 

Conclusions from the main analysis are also robust when considering a differential susceptibility by 
demographic class (adult males and females, children). The main clusters and the relative size were still the 
same (Figure S9) with a diffusion speed of 350-650m/month; the proportion of focal cases (68.1%) and the 
transmission distances (median: 175m) were similar to the model with uniform susceptibility across 
demographic classes shown in Section 2.2 (Figure S10). Significant differences in the estimated values of 
susceptibility for different classes (Table S2) did not result in a higher proportion of transmitted cases by any 
demographic class, just as in the main analysis (Figure S11). 

 

Figure S9. Model with demographic-specific susceptibility: main clusters and clusters spread. 
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Figure S10. Model with demographic-specific susceptibility: transmission modes and cumulative distribution of 
focal transmission distance. 

 

 

Figure S11. Model with demographic-specific susceptibility: average number of secondary cases by demographics 

 

2.5. Seasonal transmissibility 

Results from the model with seasonal transmissibility were also substantially similar to all other analysis. 
Cluster A2 is split into two simultaneous and close clusters because of the reduced transmissibility in the 
early part of the outbreak; diffusion speeds were 190-450 m/month (Figure S12). 62.6% of cases were 
classified as focal and 70% of these were transmitted within 200m (Figure S13). 
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Figure S12. Model with seasonal transmissibility: main clusters and clusters spread. 

 

Figure S13. Model with seasonal transmissibility: transmission modes and cumulative distribution of focal 
transmission distance. 
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2.6. Model with step-change in transmissibility 

When considering the possibility of a step-change in transmissibility, the model estimated an 80.1% (95%CI 
72.5-87.8%) relative reduction in transmission around September 18th (95%CI Sep 16th – Sep 22nd), i.e. just a 
few days after systematic treatment in the area had been implemented on September 14th.  It is tempting to 
consider this result as an estimate of treatment effectiveness; however such an interpretation would be far-
fetched, since mosquito population reductions due to falling temperatures in the same period of the year 
may have also played a significant role. In any case, the reconstructed spatiotemporal dynamics were 
analogous to those identified in the main analysis: the diffusion speed of the three main clusters were 180-
600m/month (Figure S14), 67.2% of transmissions were classified as focal and 60% of them were transmitted 
within 200m (Figure S15). 

 

Figure S14. Model with step change in transmissibility: main clusters and clusters spread. 
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Figure S15 Model with step change in transmissibility: transmission modes and cumulative distribution of focal 
transmission distance. 

 

3. Robustness of branching process results 

Figure S16 shows that the final outbreak diameter was substantially unaffected by the assumption on the 
value of the reporting rate, and that reporting rates pD below 50% are implausible: in such case, the 
outbreak would be expected to evolve over a much shorter time scale compared to observations, due to 
widespread background transmission. 

Figure S16. Effect of the reporting rate pD on the final diameter and temporal evolution of simulated 
outbreaks, compared with corresponding observations. 
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Figure S17 shows the mean squared error between the observed number of notified symptomatic cases per 
week and corresponding model predictions, using different combinations of the notification rate before and 
after outbreak detection on September 7. The figure confirms that the best model performance occurs when 
the notification rate of symptomatic cases is above 70% before outbreak detection and between 90 and 
100% after outbreak detection. For reference, the 2007 outbreak in Emilia Romagna, which was 
characterized by similar timing, intervention delay and surveillance effort [13], had an overall 78% reporting 
rate of symptomatic cases [8]. 

 

Figure S17. Mean squared error between model observed weekly number of symptomatic notified cases and 
corresponding model estimates using the branching process with different values of the notification rates before 

and after outbreak detection (September 7). 

 

4. Impact of long-distance transmission on the effectiveness of interventions 

Here, we show additional results obtained with the spatial mechanistic model under the baseline protocol of 
intervention (𝜌=200m, 𝜏=6 days and 𝑇=7th September) and two alternative scenarios for human mobility: 
one where local transmission is not allowed (“focal” scenario), and one where only focal transmission within 
200m is considered (“hyperfocal” scenario). Results show that about 47% (95%CI: 36-58%) and 81% (95%CI: 
71-91%) less cases after outbreak detection would be expected in the focal and hyperfocal scenarios 
respectively (Figure S18). This outcome depends on the fact that secondary cases residing within a buffer of 
200m from their infector will have a much lower probability of onward transmission, because the treatment 
performed for their infector has lowered significantly the mosquito abundance in the surrounding of their 
own residence: thus, the higher the proportion of cases transmitted at short distances, the better the 
improvement in control. This results also shows that, while current protocols for outbreak control are likely 
appropriate in territories with low human mobility [2], the frequent spread of infection over long distances 
observed for the Lazio outbreak may have significantly hurdled the ability of adopted interventions to 
effectively curb transmission. 
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Figure S18. Effect of the alternative human mobility scenarios on the potential effectiveness of the current 
protocol of insecticide spraying for infection control. 

 

5. Additional results 
5.1. Statistics on average numbers of secondary cases 

In Figure 4 of the main analysis we show the number of secondary cases focally transmitted by each 
individual, disaggregated by different covariates, i.e. demographics (adult females and males more than 15 
years old, children of age below or equal 15 years), age, and population density in a 500m radius of the case. 
To assess the statistical significance of these relationship, we computed Generalized Linear Models assuming 
a Poisson distribution of the independent variable (the number of secondary cases) with respect to the 
explanatory variable. For the demographic disaggregation, we found non-significant relative coefficients for 
either adult males (p=value: 0.164) or children (p-value: 0.340) with respect to adult females, supporting the 
conclusion of no difference in transmission among groups. Similarly, we found a p-value of 0.72 when age 
was considered as a predictor of the number of transmitted secondary cases. Conversely, the population 
density had a significant effect on transmission, with a p-value of 6.8 10-7. 
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