

ADDITIONAL FILE 2: Figure S2. In intact cells, C-terminal truncated MIA40 variants can be stabilized by proteasomal inhibition.

(A) Emetine chase analyses of truncated MIA40 variants. As **Figure 2B** except that tagged MIA40 variants were expressed (1 μ g ml⁻¹ doxycyclin for 24 h). Mature MIA40^{Δ 108} is equally stable as MIA40^{WT} independently of the presence of a tag. Quantification using Image Lab. Data from at least 2 experiments (HA tagged: n= 3, Strep tagged: n=2) were combined and standard deviations are presented if n>2. Black arrowhead, endogenous MIA40; gray arrowhead, MIA40-HA; blue arrowhead, signal of MIA40^{Δ 108}

(**B**) Steady state levels of MIA40^{Δ 108} and MIA40^{WT} upon proteasomal inhibition. As **Figure 2C** except that tagged MIA40 variants were expressed (1 µg ml⁻¹ doxycyclin and 1 µM MG132 for 16 h). MIA40^{Δ 108} is present at strongly decreased levels compared to MIA40^{WT} but can be partially stabilized by proteasomal inhibition independently of the presence of a tag. Quantification using Image Lab. Data from (HA tagged: n= 2, Strep tagged: n=2) experiments were combined and standard deviations are presented if n>2. Black arrowhead, endogenous MIA40; gray arrowhead, MIA40-HA; blue arrowhead, signal of MIA40^{Δ 108}

(C) Pulse analysis of MIA40 variant synthesis. HEK293 cells stably and inducibly expressing MIA40^{WT}-HA and MIA40^{Δ 108}-HA were pulse-labeled with ³⁵S-methionine for different times. Cells were lysed and MIA40 variants isolated by immunoprecipitation against the HA tag. Eluates were analyzed by SDS-PAGE and autoradiography. Synthesis of both variants followed similar kinetics although absolute levels were higher for MIA40^{WT} indicating degradation of MIA40^{Δ 108} during the radioactive pulse.. Quantification using ImageQuantTL. Data from 2-3 experiments were combined and standard deviations are presented if n>2. Black arrowhead, wildtype MIA40; blue arrowhead, signal of MIA40^{Δ 108}

(**D**) Pulse analysis of MIA40 variant synthesis upon proteasomal inhibition. Experiment was performed as in (**C**), except that cells were treated with MG132 or DMSO. The wildtype is not stabilized by MG132 treatment. MIA40^{Δ 108} became stabilized upon MG132 treatment indicating that already during the radioactive pulse degradation takes place. Quantification using Image Lab. Data from 2-3 experiments were combined and standard deviations are presented if n>2. Black arrowhead, wildtype MIA40; blue arrowhead, signal of MIA40^{Δ 108}

(E) Steady state levels of MIA40 truncation variants in HEK293-based YME1L deletion cells upon proteasomal inhibition. The experiment was performed as in **Figure 2A** except that cells were treated with MG132 or DMSO (1 μ g ml⁻¹ doxycyclin and 1 μ M MG132 for 16 h). MIA40^{Δ 108} is present at decreased levels compared to MIA40^{WT}. It is stabilized by MG132 treatment but not by loss of YME1L. Combination of both MG132 and loss of YME1L did not further increase MIA40 levels. Quantification using Image Lab. Data from 2 experiments were combined. Black arrowhead, wildtype MIA40; blue arrowhead, signal of MIA40^{Δ 108}