Supporting information for the article

Remote, autonomous real-time monitoring of environmental DNA from commercial fish

Brian K. Hansen¹, Magnus W. Jacobsen¹, Anne Lise Middelboe², Christina M. Preston³, Roman Marin III³, Dorte Bekkevold¹, Steen W. Knudsen^{4,5}, Peter R. Møller⁵ & Einar E. Nielsen¹

¹Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark.

²DHI, Agern Allé 5, 2970 Hørsholm

³Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, California, United States of America

⁴ NIVA-Denmark, Njalsgade 76, 2300 Copenhagen S

⁵Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark

Corresponding author: bkha@aqua.dtu.dk

Running title: Autonomous in situ eDNA analysis

Common name Scientific name		Abundance	Fish/m ³
Teleost			
Atlantic mackerel ^a	Scomber scombrus	1400	3.11E-01
Corkwing wrasse	Symphodus melops	150	3.33E-02
European seabass	Dicentrarchus labrax	55	1.22E-02
European plaice ^a	Pleuronectes platessa	50	1.11E-02
Garfish	Belone belone	50	1.11E-02
Greater weever	Trachinus draco	50	1.11E-02
Atlantic horse mackerel	Trachurus trachurus	30	6.67E-03
Atlantic bonito	Sarda sarda	23	5.11E-03
Whiting	Merlangius merlangus	20	4.44E-03
Ballan wrasse	Labrus bergylta	10	2.22E-03
Common sole	Solea solea	9	2.00E-03
Tub gurnard	Chelidonichthys lucerna	6	1.33E-03
Grey gurnard	Eutrigla gurnardus	6	1.33E-03
Gilthead seabream	Sparus aurata	4	8.89E-04
Lemon sole	Microstomus kitt	4	8.89E-04
Mullet	Mugilidae spp.	3	6.67E-04
Surmullet	Mullus surmuletus	1	2.22E-04
European flounder ^a	Platichthys flesus	1	2.22E-04
Ocean sunfish	Mola mola	1	2.22E-04
European eel ^a	Anguilla Anguilla	0-1	2.22E-04
Elasmobranchs			
Picked dogfish	Squalus acanthias	37	8.22E-03
Thornback ray	Raja clavata	15	3.33E-03
Lesser spotted dogfish	Scyliorhinus caniculus	12	2.67E-03
Nursehound	Scyliorhinus stellaris	8	1.78E-03
Tope shark	Galeorhinus galeus	6	1.33E-03
Starry smooth-hound	Mustellus asterias	4	8.89E-04
Smooth-hound Mustellus mustelus		2	4.44E-04
Spotted ray Raja montagui		2	4.44E-04

Supplementary table S1: Mesocosm species list

^aSpecies targeted by eDNA analysis.

Supplementary table S2: Sampling scheme for total deployment

Sampling scheme for all collected water samples. Sample type: N refers to normal sampling, i.e. in situ analysis followed by collection of Archival-M sample. C refers to an in situ core negative analysis followed by Archival-M sampling. N + E refer to normal sampling combined with an Archival-E sample. Comments: a, Decrease in sampling power for the external pump. b, Malfunction of external pump. c, Replacement of external pump. d, These are volumes recorded by the ESP, but the actual samples are likely similar or smaller than recorded for the *in situ* analysis (see section on technical challenges during deployment).

			In sit	<i>u</i> analysis sar	npling	Archival-M sampling		Arc				
Sampla day	Dave deployed	Sample type	Volume			Volume			Volume			Commonts
Sample day	Days deployed	Sample type	filtered	Start time	End time	filtered	Start time	End time	filtered	Start time	End time	Comments
			(mL)			(mL)			(mL)			
26-01-18	1	Ν	1500	08:22	09:16	1500	10:11	11:06		-		
27-01-18	2	Ν	1500	08:10	08:59	1500	09:55	10:51				
28-01-18	3	С	0			1500	09:02	09:57				
30-01-18	4	С	0			1500	09:03	09:56				
31-01-18	5	Ν	1500	08:10	09:03	1500	09:58	10:54				
01-02-18	6	Ν	1500	08:10	09:02	1500	09:57	10:52				
02-02-18	7	Ν	1500	08:10	08:59	1500	09:55	10:50				
03-02-18	8	Ν	1500	08:10	09:00	1500	09:57	10:56				
04-02-18	9	Ν	1500	08:10	09:03	1500	09:59	11:01				
09-02-18	14	С	0			1500	09:03	10:03				
10-02-18	15	Ν	1500	08:10	08:59	1500	09:55	10:52				
11-02-18	16	Ν	1500	08:10	09:01	1500	09:57	10:52				
12-02-18	17	Ν	1500	08:10	09:05	1500	10:02	11:02				
13-02-18	18	Ν	1500	08:10	09:08	1500	10:04	11:04				
14-02-18	19	Ν	1500	08:10	09:11	1500	10:07	11:11				
15-02-18	20	Ν	1500	08:10	09:14	1500	10:10	11:18				
16-02-18	21	Ν	1500	08:10	09:08	1500	10:04	11:03				
17-02-18	22	Ν	1500	08:10	09:08	1500	10:04	11:04				
27-02-18	32	С	0			1500	09:03	10:06				
28-02-18	33	Ν	1500	08:10	09:11	1500	10:07	11:44				a,c
08-03-18	41	Ν	674	08:10	08:44	1500 ^d	09:41	10:08				а
09-03-18	42	N + E	6	08:10	08:11	1500 ^d	09:08	09:36	5	20:05	20:06	b
11-03-18	44	N + E	1500	08:10	09:07	1500	10:04	11:02	1500	20:05	21:04	a,c
12-03-18	45	N + E	1500	08:10	09:09	1500	10:06	11:09	1500	20:05	21:07	
13-03-18	46	N + E	1500	08:10	09:12	1500	10:09	11:09	1500	20:05	21:07	
14-03-18	47	N + E	1500	08:10	09:08	1500	10:05	11:39	1500	20:05	21:04	
15-03-18	48	N + E	1500	08:10	09:14	1500	10:10	11:10	1500	20:05	21:07	
16-03-18	49	N + E	1500	08:10	09:10	1500	10:07	11:06	1500	20:05	21:03	
17-03-18	50	С	0			1500	09:03	10:05				
18-03-18	51	N	255	08:11	08:21	1425	09:18	10:51				

Atlantic mackerel

European flounder

Supplementary figure S1: Time series eDNA results for Atlantic mackerel (a &b),

European plaice (c & d), European flounder (e & f) and European eel (g & h).

Results of qPCR analysis for all samples during the deployment in (a, c, e & g) copies/reaction with negative controls, and (b, d, f & h) copies/ml without negative controls. O indicates that an assay was "out of prime" (no reaction). B represents a breakdown of the pump during deployment. C refers to "core negative" control of the entire *in situ* qPCR analysis. (--) is the LOQ for the laboratory based qPCR analysis and $(\cdot -)$ is the LOQ for the *in situ* analysis. (*) are blank reactions (of three) for each sample.

Supplementary figure S2: Analysis of intake water

Analysis of triplicate water samples (1 L) from intake pipe to mesocosm (day 20). (*) show blank reactions (of three) pr. sample. The stippled line (--) indicates the LOQ. Intake water is daily diluted to 1:10 in the mesocosm (see Methods).

Assay	Feed size (mm)	Potential copies at feeding (cop./mL) ^a	Potential copies at 7h after feeding (cop./mL) ^b		Potential copic feeding (c	Cop./mg feed	
		` • '	High decay rate ^d	Low decay rate ^e	High decay rated ^d	Low decay rate ^e	
Mackerel	2	134±14	66±7	91±9	18±2	45±5	6.1E+04
Mackerel	6	67±2	33±1	46±2	9±0	22±1	2.1E+06
Flounder	2	40±8	20±4	27±5	5±1	13±3	1.8E+04
Flounder	6	6 ^f	0	0	0	0	2.9E+03
Plaice	2	25±15	12±7	17±10	3±2	8±5	1.1E+04
Plaice	6	$0.19{\pm}0.14^{g}$	0	0	0	0	5.9E+03

Supplementary table S3: Analysis of exogenous DNA in fish feed

^aPotential copies at time of feeding (copies/mL)

^bPotential copies at 7 h after feeding (copies/mL)

^cPotential copies at 20 h after feeding (copies/mL)

^dHigh decay rate ($\beta = 0.101$)

^eLow decay rate ($\beta = 0.055$)

^fOnly one reaction amplified

^g2 of 3 reactions amplified

Model based estimation of potential exogenous DNA concentration in water from fish feed: a) immediately after feeding, b) 7 hours after feeding, corresponding to time between feeding and Archival-E water sampling, and c) 20 hours after feeding, corresponding to time between feeding and start of sampling of the in situ analysis and Archival-E samples. All qPCR analyses for European eel were negative. The model based estimations use the highly conservative assumption that all pellets were dissolved without any consumption and that the DNA is subsequently dispersed homogeneously in the tank.

Supplementary table S4: qPCR chemistries and standard curve parameters

qPCR chemistries and standard curve parameters. Primers and probes are adopted from previous eDNA study on marine fish in the Baltic Seas by Knudsen et al. (2019). The primers specific for mackerel are based on the primers used by Knudsen et al., (2019), but have been modified for more optimal specificity. The probes are equipped with FAM-dye in the 5'-end and Iowa Black F quencher (IBFQ) in the 3'-end, and ZEN quenchers inserted in the middle. The modification of the probe quencher types have been conducted to optimize delta fluorescence. The concentration (nmol) per individual reaction is the optimal concentration inferred for the assay in the final qPCR tube. The number of copies of the target-eDNA fragment reported is in copies per mL filtered seawater. The abbreviations used in the columns are 'LOQ' limit of quantification, 'Eff.' efficiency, 'MFB' microfluidics block. The reference 'Ref' column denotes from which study the primers were adopted.

			StepC	InePlus	MFB qPO Pre-dep	FB qPCR moduleMFB qPCR modulePre-deploymentPost-deployment		MFB qPCR module Post-deployment		CR moduleMFB qPCR moduleeploymentPre- and post-deployment		qPCR module post-deployment	
Species targeted	Sequences (5'-3')	Conc. (nmol) pr. individual reaction	Eff % (Slope) (Int.)	LOQ (cp/rxn) (cp/mL)	Eff % (Slope) (Int.)	LOQ (cp/rxn) (cp/mL)	Eff % (Slope) (Int.)	LOQ (cp/rxn) (cp/mL)	Eff % (Slope) (Int.)	LOQ (cp/rxn) (cp/mL)	Ref		
Atlantic mackerel			100.51	20.00	91.95	600.00	87.45	600.00	89.70	600.00	M 1'C 1C		
Forward primer	TCCCTGCTTGGTCTCTGTTTAG	400	-3.31	2.66	-3.53	28.50	-3.66	28.50	-3.60	28.50	Modified from		
Reverse primer	GGCGACTGAGTTGAATGCTG	400	42.03		44.22		44.65			44.44	2010		
Probe	FAM-TTCCCAAAT/ZEN/CCTCACAGGACTATTC-IBFQ	200									2019		
Gblock amplicon	TGAAACTTCGGTTCCCTGCTTGGTCTCTGTTTAGCTTCCCA	AATCCTCA	CAGGAC	CTATTCCT GG	TGCAATC A	CACTACA	CGCCCGAC	CGTCGAATC	CAGCATTC	AACTCAGTCGCCC	CATATTTGCCG		
European flounder			97.20	20.00	99.34	600.00	76.02	6000.00	87.68	600.00-6000.00	¥7 1 1		
Forward primer	TAGGCTTTGCAGTTCTCCTT	1200	-3.39	2.66	-3.34	28.50	-4.07	285.00	-3.71	28.5-285	Knudsen <i>et al.</i>		
Reverse primer	GCAGGCGTAAAGTTGTCCG	200	41.31		41.73		48.42			45.08	2019		
Probe	FAM-CACTGGCTT/ZEN/CGCTCGCCCTATTTTC-IBFQ	300											
Gblock amplicon	CACATACAAAGACCTCTTAGGCTTTGCAGTTCTCCTTACT	GCACTGGC	TTCGCTC	CGCCCTAT CA	TTTCCCC .C	CAATCTCT	TAGGAGA	.CCCGGACA	ACTTTACC	GCCTGCAAACCCA	ACTCGTCACGC		
European plaice			105.52	20.00	102.20	600.00	88.74	6000.00	95.47	600.00-6000.00			
Forward primer	TAGGCTTCGCAGTCCTCCTC	1200	-3.20	2.66	-3.27	28.50	-3.62	285.00	-3.45	28.5-285	Knudsen <i>at al</i>		
Reverse primer	TTGCAGGCGTGAAGTTGTCT	200	40.00		41.19		42.91			42.05	2019		
Probe	FAM-CTAAAAGAT/ZEN/TTGGGGGAAAATAGGGCGAGT- IBFQ	400									2017		
Gblock amplicon	ACATACAAAGACCTCTTAGGCTTCGCAGTCCTCCTCACTC	GCACTGGCT	TCACTC	GCCCTAT CG	TTTCCCC. CC	AAATCTTT	TAGGAGA	CCCAGACA	ACTTCACG	CCTGCAAACCCG	CTCGTCACGC		
European eel			103.17	20.00	94.52	600.00	96.49	6000.00	95.50	600.00-6000.00			
Forward primer	ATCTAGCAACGGACCCCTTA	1200	-3.25	2.66	-3.46	28.50	-3.41	285.00	-3.43	28.5-285	Knudsen et al.		
Reverse primer	TTGGTTGGTTCTAGCCGCA	1200	42.05		42.92		42.96			42.94	2019		
Probe	FAM-ACACCACTA/ZEN/CTAGTTTTATCTTGCT-IBFQ	300											
Gblock amplicon	ACAAATACTTATCTAGCAACGGACCCCTTATCAACACCAC	CTACTAGTT	TTATCT	TGCTGAC	TTCTACC	ATTAATAA	TTTTAGCO	GAGCCAAA	ACCACATG	CGGCTAGAACCA	ACCAACCGCC		

Supplementary table S5: in vitro specificity testing

Species targeted assay	Atlantic mackerel	European eel	European flounder	European plaice
Positive control	Atlantic mackerel (Scromber Scrombus)	European eel (Anguilla Anguilla)	European flounder (Platichthys flesus)	European plaice (Pleuronectes platessa)
Non-target species	Atlantic bonito (Sarda Sarda)	European plaice (<i>Pleuronectes</i> <i>platessa</i>)	Common dab (Limanda limanda)	Common dab (Limanda limanda)
Non-target species		European flounder (Platichthys flesus)	American plaice (<i>Hippoglossoides</i> <i>platessoides</i>)	American plaice (<i>Hippoglossoides</i> <i>platessoides</i>)
Non-target species		Atlantic mackerel (Scromber Scrombus	European plaice (Pleuronectes platessa)	European flounder (Platichthys flesus

For details about the analysis, see Methods section.

Supplementary information on experimental procedures and results

Technical challenges during deployment

During deployment the 12V pump delivering water to the ESP, was replaced because declining pressure was observed. An identical pump was installed for replacement and tested on day 40. However, for unknown reasons the pump efficiency decreased instantly after installation, causing decreasing filtration volume, dropping from 1500 mL to 674 mL on day 41 and to <10 mL on day 42 for the *in situ* analysis. The exact intake volume for the archived samples could not be determined, but was less or equal to the *in situ* analysis, as the filtration of the archival samples was conducted afterward. Due to this, samples taken on day 41 and 42 were excluded from analysis (fig. S1). The "old" pump was put back into operation on day 44 and worked successfully throughout the remainder of the study period.

Laboratory decontamination procedures

Throughout the study we used extensive decontamination procedures, separate laboratories for pre- and post-PCR procedures, and employed rigorous controls to monitor contamination including DNA extraction blanks and triplicate PCR blanks for each qPCR run. For the archival samples, plaice and flounder contamination was observed in the laboratory based extraction negative for archival samples taken on day 1, 2, 3, 4, 5, 6, 14, 15, 16 and 17. Specifically, only 1 of 3 reactions amplified in the PCR blank (Plaice = 36.05 Cycle threshold (Ct) and flounder =38.23 Ct). In both instances, the Ct values were higher (DNA concentration lower) than for any of the Ct values obtained for qPCRs of actual archival samples (max Ct 34.86 and 37.30 for plaice and flounder, respectively). Hence, the contamination observed likely has little to no effect on our results. All other laboratory controls conducted showed no contamination.

In situ analysis reagent assessment

Pre-deployment *in situ* qPCR analysis efficiency was similar to tests performed in the laboratory on the StepOnePlus platform. Post-deployment, flounder and plaice assays decreased in efficiency and for flounder, plaice and eel assay sensitivities were lower, while the mackerel assay was unaffected (Table S4). This difference is likely due to the "onboard" ESP storage at room temperature compared to standard laboratory freezer storage, which can lead to partial destabilization of the assay, thus lowering functionality and sensitivity^{1,3}. Assays targeting plaice, flounder and eel were stored onboard the ESP for ~8 months and mackerel for ~5 months prior to deployment. For future deployments, long-term stability tests of reagents are critical as well as minimizing onboard storage before deployment.

In situ internal positive control

In situ analysis of IPC showed an average Ct value of 30.6 ± 0.38 (95% confidence interval, N=6) when amplified with DNase free water. IPC reactions with DNA extracted from the Oceanarium tank water samples were categorized as inhibited when the Ct value was one above the average Ct for the IPC amplified with DNase free water. While the vast majority of samples did not show signs of inhibition, slight inhibition was observed on day 9 (Ct = 33.10) and 47 (Ct = 32.24). Among all samples from the Oceanarium tank average Ct value was 30.7 ± 0.35 (95% confidence interval, n=25).

References

- 1. Preston, C. M. *et al.* Underwater application of quantitative PCR on an ocean mooring. *PLoS One* **6**, e22522 (2011).
- 2. Knudsen, S. W. *et al.* Species-specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea. *J. Exp. Mar. Biol. Ecol.* **510**, 31–45 (2019).
- 3. Yamahara, K. M. *et al.* Simultaneous monitoring of faecal indicators and harmful algae using an insitu autonomous sensor. *Lett. Appl. Microbiol.* **61**, 130–138 (2015).