Supporting Information

Machine learning classification can reduce false positives in structure-based virtual screening

Yusuf O. Adeshina^{1,2}, Eric J. Deeds^{2,3}, and John Karanicolas^{1*}

¹Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111

²Center for Computational Biology, ³Department of Molecular Biosciences,

University of Kansas, Lawrence, KS 66045

*To whom correspondence should be addressed.

E-mail: john.karanicolas@fccc.edu

Supplemental Figures

Rosetta energies (6)	ChemAxon (4)	BINANA (13)		
fa_atr	fsp3	lpha-helix side chain flexibility		
fa_rep	Polar surface area	β -strand side chain flexibility		
fa_sol	Van der Waals surface area	Other side chain flexibility		
fa_elec	pienergy	lpha-helix back-bone flexibility		
hbond_bb_sc		β-strand back-bone flexibility		
hbond_sc		other back-bone flexibility		
	68 TOTAL	Electrostatics		
Rosetta Struct, Quantities		Number of hydrogen bonds		
interface Energy	FEAIORES	Hydrophobic contacts		
total BSA		Pi-pi interaction		
interface HB		T-stacking		
total nackstats		Pi-cation		
		Salt-bridge		
total pasa exposed SASA	SZYBKI (1)	PE Score (26)		
interface hydrophobic ca	Ligand conformational	Multiple distance dependent		
interface_nyurophobic_sa	entropy change upon	atom counts		
Internace_polar_sasa	binding			

Figure S1: Features incorporated into vScreenML. These features derive from six sources: Rosetta energy terms, Rosetta structural quantifiers, RF-Score's rfscore_v1 features, BINANA's analysis of intermolecular contacts, ChemAxon's excale features, OpenEye's SZYBKI conformational entropy term.

Figure S2: Retraining rfscore_v1 using D-COID. (A) Overlaid histograms for scores obtained when scoring active complexes (*blue*) and decoy complexes (*red*) from D-COID using the original rfscore_v1. Performance measures are presented as the average of 10 experiments, each of which uses different partitions for 10-fold cross-validation. Uncertainty is presented as 95% confidence intervals.
(B) Overlaid histograms after re-training rfscore_v1. (C) Comparison of the original and re-weighted versions of rfscore_v1 applied to the DEKOIS benchmark. (D) Comparison of the original and re-weighted rfscore_v1 versus vScreenML on the DEKOIS benchmark. (F) Comparison of re-weighted rfscore_v1 versus vScreenML on the PPI benchmark. (F) Comparison of re-weighted rfscore_v1 versus vScreenML on the PPI benchmark. (F) Comparison of re-weighted rfscore_v1 signed-Rank test.

Figure S3: Heatmap showing similarity between the 23 compounds tested as candidate AChE inhibitors. All compounds are included in this heatmap, labels include only odd numbers for clarity. Similarity is measured via 2D fingerprints. As highlighted by this analysis, several subsets of these compounds are similar to one another: AC1/AC23 group together, AC3/AC18 group together, AC4/AC12/AC14 group together, AC7/AC9/AC16 group together, AC10/AC16/AC17/AC20 group together, and AC13/AC15 group together. On the other hand, some of these compounds are completely unrelated to any others in this set (e.g., AC5, AC21, AC22). The similarity shown here is also confirmed by visual inspection of the compounds themselves (**Table S6**).

Results of Job: search_db0bb886-036f-46b6-a2c2-cdf653a20a86 🛓

Datasets

Query	Target Key	Target Name	Description	P-Value	MaxTC
	ACES_MOUSE	Ache	Acetylcholinesterase	3.478e- 179	0.98
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ACES_RAT	Ache	Acetylcholinesterase	3.133e- 104	0.98
	ACES_HUMAN	ACHE	Acetylcholinesterase	2.967e-98	0.98
	SGMR1_MOUSE	Sigmar1	Sigma non-opioid intracellular receptor 1	7.568e-85	0.45
	ACES_ELEEL	ache	Acetylcholinesterase	3.016e-80	0.98
	CHLE_HORSE	BCHE	Cholinesterase	7.442e-75	0.98
compound_1	DRD2_MOUSE	Drdl2	D(2) dopamine receptor	8.981e-75	0.44
	DRD4_HUMAN	DRD4	D(4) dopamine receptor	7.836e-70	0.51
	SGMR1_HUMAN	SIGMAR1	Sigma non-opioid intracellular receptor 1	1.014e-61	0.98



Figure S4: Positive control for target identification methods. We confirmed that all three methods would successfully identify AChE as the target of a known AChE inhibitor (donepezil, CHEMBL1678). (A) Similarity Ensemble Approach (SEA). (B) SwissTargetPrediction. (C) PharmMapper. We note that AChE was only ranked #112 among the PharmMapper hits because the 3D conformations it built for donepezil were not sufficiently well-matched to the active conformation to produce a better ranking.

Acetylcholinesterase

5

2.903

0.5806

+ 112 2COP

## **Supplemental Tables**

Performance measure	Optimized	Non-optimized
Accuracy	$0.90 \pm 0.0022$	$0.89 \pm 0.0026$
Precision	$0.89 \pm 0.0076$	$0.85 \pm 0.0079$
Recall	$0.71 \pm 0.0070$	$0.66 \pm 0.0081$
AUC	$0.84 \pm 0.0034$	$0.81 \pm 0.0042$
F1-Score	$0.79 \pm 0.0049$	$0.74 \pm 0.0064$
MCC	$0.74 \pm 0.0062$	$0.68 \pm 0.0078$

**Table S1: Effect of hyperparameter tuning on vScreenML.** The performance is shown for the optimized and non-optimized vScreenML models (both use XGBoost, with the complete feature set. Performance measures are presented as the average of 100 trained models, each of which derived from 10-fold cross-validation (see *Methods*). Uncertainty is presented as 95% confidence intervals. In all cases, performance measures were calculated for a subset of the data that was held out from the training step.

Parameter	Pre-optimization	Optimized value
	(default value)	
Learning rate	0.3	0.01
Min_child_weight	1	1
Max_depth	6	7
Gamma	0	0.1
Subsample	1	0.5
Colsample_bytree	1	0.4
Lambda	1	Default
Alpha	0	Default
Scale_pos_weight	1	1
N_estimators	100	1945

**Table S2: Results of hyperparameter tuning.** The parameters resulting from optimization for vScreenML are shown.

Learning scheme	Accuracy	Precision	Recall	AUC	MCC
XGBoost	$0.89 \pm 0.0019$	$0.85 \pm 0.0059$	$0.66 \pm 0.0052$	$0.81 \pm 0.0027$	$0.68 \pm 0.0054$
Gradient Boosting	$0.89 \pm 0.0024$	$0.85 \pm 0.0073$	$0.66 \pm 0.0062$	$0.81 \pm 0.0034$	$0.68 \pm 0.0069$
Random Forest	$0.86 \pm 0.0022$	$0.84 \pm 0.0069$	$0.56 \pm 0.0071$	$0.76 \pm 0.0037$	$0.61 \pm 0.0070$
Extra Trees	$0.86 \pm 0.0021$	$0.84 \pm 0.0061$	$0.55 \pm 0.0074$	$0.76 \pm 0.0037$	$0.61 \pm 0.0068$
Linear Discriminant Analysis	$0.86 \pm 0.0030$	$0.78 \pm 0.0089$	$0.62 \pm 0.0077$	$0.78 \pm 0.0042$	$0.61 \pm 0.0087$
Quadratic Discriminant Analysis	$0.35 \pm 0.0042$	$0.28 \pm 0.0014$	$0.98 \pm 0.0029$	$0.56 \pm 0.0030$	$0.17 \pm 0.0064$
Gaussian Naïve Bayes	$0.50 \pm 0.0097$	$0.32 \pm 0.0038$	$0.90 \pm 0.0053$	$0.63 \pm 0.0061$	$0.25 \pm 0.0097$
K-nearest Neighbor (kNN)	$0.74 \pm 0.0018$	$0.45 \pm 0.0065$	$0.24 \pm 0.0053$	$0.57 \pm 0.0025$	$0.18 \pm 0.0060$
DUMB	0.75	0.00	0.00	-	0.00

**Table S3: Performance from alternate learning schemes.** Using the complete vScreenML feature set, alternate learning schemes were evaluated. Performance measures are presented as the average of 100 trained models, each of which derived from 10-fold cross-validation (see *Methods*). Uncertainty is presented as 95% confidence intervals. In all cases, performance measures were calculated for a subset of the data that was held out from the training step.

Features	Accuracy	Precision	Recall	AUC	MCC
Rosetta (reweighted)	$0.85 \pm 0.0019$	$0.76 \pm 0.0060$	$0.58 \pm 0.0093$	$0.76 \pm 0.0040$	$0.57 \pm 0.0061$
RF (reweighted)	$0.78 \pm 0.0021$	0.65 ± 0.0103	$0.31 \pm 0.0065$	$0.63 \pm 0.0032$	$0.34 \pm 0.0076$
BINANA (reweighted)	0.83 ± 0.0010	$0.74 \pm 0.0064$	0.50 ±0.0046	$0.72 \pm 0.0015$	$0.51 \pm 0.0027$
LigPro+Szybki+RF+BINANA	$0.86 \pm 0.0011$	$0.80 \pm 0.0033$	$0.56 \pm 0.0063$	$0.76 \pm 0.0027$	$0.59 \pm 0.0035$
Rosetta+NC	$0.86 \pm 0.0025$	$0.80 \pm 0.0066$	0.61 ±0.0109	0.78 ±0.0050	$0.61 \pm 0.0078$
Rosetta+NC+LigPro	$0.86 \pm 0.0021$	$0.80 \pm 0.0067$	$0.61 \pm 0.0090$	$0.78 \pm 0.0040$	$0.61 \pm 0.0064$
Rosetta+NC+LigPro+Szybki	$0.86 \pm 0.0021$	$0.79 \pm 0.0068$	$0.61 \pm 0.0086$	$0.78 \pm 0.0039$	$0.61 \pm 0.0064$
Rosetta+NC+LigPro+Szybki+RF	$0.88 \pm 0.0027$	$0.83 \pm 0.0081$	$0.66 \pm 0.0087$	$0.81 \pm 0.0044$	$0.67 \pm 0.0081$
Rosetta+NC+LigPro+Szybki+BINANA	$0.88 \pm 0.0030$	$0.85 \pm 0.0064$	0.62 ± 0.0123	$0.79 \pm 0.0059$	$0.65 \pm 0.0092$
Rosetta+NC+LigPro+Szybki+RF+BINANA (non-optimized vScreenML)	0.89 ± 0.0026	0.85 ±0.0079	$0.66 \pm 0.0081$	$0.81 \pm 0.0042$	$0.68 \pm 0.0078$

**Table S4: Performance with restricted feature sets.** Examination of models in which all features from a given origin are added/removed en masse; all models are trained using XGBoost. Performance measures are presented as the average of 100 trained models, each of which derived from 10-fold cross-validation (see *Methods*). Uncertainty is presented as 95% confidence intervals. In all cases, performance measures were calculated for a subset of the data that was held out from the training step.

DEKOIS testcase: PDB (protein name)	Closest protein in D-COID	Sequence identity (%)	EF1% from vScreenML
3hng (VEGFR1)	4ag8 (VEGFR2)	76.7	10.3
1hov (MMP-2)	1xuc (MMP-13)	66.5	2.5
3ny9 (β2 adrenergic receptor)	2y00 (β1 adrenergic receptor)	65.3	0
3kk6 (COX-1)	3ln0 (COX-2)	64.6	10.8
1nhz (glucocorticoid receptor)	2zk5 (PPARG)	62.5	5.4
1xp0 (PDE5A)	2jc6 (CAMK1D)	52.4	8.1
1z11 (CYP2A6)	5w0c (CYP2C9)	50.1	0
3tfq (corticosteroid 11β-dehydrogenase 1)	2bpm (CDK2 kinase)	50.0	8.6
2008 (angiopoietin-1 receptor)	5am6 (FGFR1)	47.1	5.1
1b8o (purine nucleoside phosphorylase)	304v (MTH/SAM nucleosidase)	43.5	7.5
2w31 (Bcl-2)	5myg (peregrin bromodomain)	42.9	5.5
1hw8 (HMG-CoA reductase)	1jla (HIV-1 RT)	42.4	24.6
2afx (human glutaminyl cyclase)	4f9v (fly glutaminyl cyclase)	42.1	0
3ewj (TNF-alpha convertase)	1xuc (MMP-13)	39.5	2.7
3v8s (ROCK1 kinase)	4nus (Rsk2 kinase)	39.2	18.0
3eml (adenosine receptor A2a)	5a8e (β1 adrenergic receptor)	39.2	7.7
2z94 (SARS-CoV protease)	5ccs (cyclophilin D)	37.9	0
1uze (angiotensin-converting enzyme ACE)	4ag8 (VEGFR2)	34.3	21.4
3klm (estradiol 17β-dehydrogenase 1)	4bo0 (ACP reductase)	29.6	5.4
2wcg (glucosylceramidase)	5c8z (zearalenone hydrolase)	27.9	2.6
1w4r (thymidine kinase)	3zv9 (enterovirus 3C protease)	25.4	0
1r4l (angiotensin-converting enzyme ACE2)	4wnp (ULK1 kinase)	23.3	8.1
1 uou (thymidine phosphorylase)	3wmc (β-GlcNAcase)	21.7	0

**Table S5: Similarity of proteins in DEKOIS benchmark to training set.** The complete DEKOIS set comprises 81 proteins. Some were present in our D-COID training set as well, and were therefore excluded when we carried out the benchmark experiment. For each of 23 protein targets included in our benchmark, we present the closest protein present in our D-COID training set (on the basis of sequence identity). The EF1% values listed here correspond to those presented in **Figure 3a** (zeros correspond to cases in which none of the active compounds were ranked in the top 1%). The fact that vScreenML does not exhibit superior performance when a closer protein homolog is available suggests that its performance does not rely on identifying a related protein homolog in the training set.

Compound	Structure	SMILES string
AC1		COC=1C=CC=C2NC=C(CCNC(C)C=3C=CC(=CC3)N4C=NC=N4)C12
AC2		CN1N=C(C=C1NC(=0)C=2C=NC=C(C2)C=3C=CC(C1)=CC3)C(C)(C)C
AC3		CC=1C=CC=C(C1)C=2C=NC=C(C2)C(=0)NC3=NC(=CS3)C4CCNCC4
AC4		FC=1C=CC(NC=2C=CC(NC(=0)C=3C=NC(C1)=CN3)=C4C=NC=CC24)=CC1
AC5		CC1=NC=2C(=CC=CC2N1)C3=NOC(=N3)C=4C=NC=C(N4)N5CCCC5
AC6		ClC1=C(NC=2C=CC(Cl)=CC12)C(=0)NC3=NC(=CS3)C4CCNCC4
AC7		CC=1C=CC=C(C1)C=2C=NC=C(C2)C(=0)NC=3C=CC=4N=CNC4C3
AC8		CC1=CC(=NN1C=2C=C(C)C=C(C)C2)C(=0)N3C[C@H]([C@@H](C3)C=4C=CC(C1)= CC4)C(=0)0
AC9		CC=1C=CC=C(C1)C=2C=NC=C(C2)C(=0)NC=3C=CC(=CC3)C4=CNC=N4
AC10		CN(C)C=1C=CC(=CC1)C=2C=NC=C(C2)C(=0)NC=3C=NC=4CCC(N)CC4C3

AC11	0=C(NCC1CCCC=2C=CC=NC12)N3CCC4=C(C3)N=NN4C=5C=CC=CC5
AC12	NC (=0) C1=CNC (=C1) C (=0) NC=2C=CC (NC=3C=CC(F)=CC3)=C4C=CN=CC24
AC13	0=C(CC1=N0C=2C=CC12)N3CCC4=C(C3)N=CN4CCC=5C=CC5
AC14	NC (=0) C1=CC (=NN1C=2C=CC2) C (=0) NC=3C=CC (NC=4C=CC (F)=CC4)=C5C=CN =CC35
AC15	COC=1C=CC=20N=C(CC(=0)N3CCC4=C(C3)N=CN4CCC=5C=CC5)C2C1
AC16	CN(C)C=1C=CC(=CC1)C=2C=NC=C(C2)C(=0)NC=3C=CC(F)=C(C)C3
AC17	ClC=1C=CC(=CC1)C=2C=NC=C(C2)C(=0)NC=3C=NC=4CCCCC4C3
AC18	CC=1C=CC(=CC1)C=2C=NC=C(C2)C(=0)NC3=NC(=NN3C)C4CCNCC4
AC19	CN (C) C=1C=CC (=CC1) C=2C=NC=C(C2)C3=NN=C(O3)C4=C(C)N=C5C=CC=CN45

AC20	CN(C)C=1C=CC(=CC1)C=2C=NC=C(C2)C(=0)NC=3C=NC=4CCCCC4C3
AC21	CC1=NC=2C(=CC=CC2N1)C3=NOC(=N3)C=4C=NC=C(N4)N5CCCC5
AC22	CC (N1CCCC(NC(=0)C2=CC=3CCCCC3NC2=0)C1=0)C=4C=CC(F)=CC4
AC23	COC=1C=CC=C2NC=C(CCNC(C)C=3C=CC(=CC3)N4CCNC4=0)C12

**Table S6: Compounds tested as candidate AChE inhibitors.** Chemical structures and SMILES strings are presented for each of the 23 compounds selected by vScreenML as a candidate AChE inhibitor.

Compound	rfscore_v1	rfscore_v2	rfscore_v3	nnscore	PLEClinear	PLECnn	PLECrf	rfscore_VS
AC1	18711	14707	16971	10184	484	3590	8779	12311
AC10	13709	8242	9480	17452	8671	2186	724	9336
AC11	8815	5095	6460	1371	10659	10432	5159	7553
AC14	3081	248	1871	540	2663	3188	5583	6253
AC17	15601	12686	15651	14166	10370	4883	4967	10158
AC19	11425	8951	8250	15378	5732	480	8448	9842
AC21	5699	12409	7174	6435	4992	3012	168	10310
AC22	1595	948	137	1401	12695	11360	6603	4391
AC23	15335	11442	15529	7018	1044	3520	7056	5809
AC6	4938	1049	4610	14151	16169	15061	3204	17445
AC8	6085	3317	1331	5377	6781	4983	3518	1877
AC9	18334	8948	16295	4917	5288	980	14428	14319
Average rank:	10277	7337	8647	8199	7129	5306	5720	9134

**Table S7: Ranking of first-round compounds selected by vScreenML by other methods.** Using each of the scoring functions methods evaluated in this study, we ranked the 20,000 docked models from the first round of AChE screening (corresponding data is not shown for the second round of screening, because at that point already vScreenML had been used to focus the search). Because we did not explicitly test the compounds selected by these other methods, we cannot say whether these other compounds are true AChE inhibitors that were missed by vScreenML. However, because none of these methods assign favorable (low) ranking to the same compounds selected by vScreenML (the compounds presented in this table), we can conclude that the particular compounds selected by vScreenML would not have been selected by these other methods.

Compound	Structure	Closest analog in D-COID
AC1		$ \begin{array}{c}                                     $
AC2		$\frac{1 + 1}{1 + 1} = \frac{1 + 1}{1 + 1}$
AC3		ddjx (0KQ) Beta-secretase 1
AC4	CI V N V NH	HO N N N N N N N N N N N N N N N N N N N
AC5		и сон 2xj2 (985) Pim-1 kinase









**Table S8: Similarity of compounds selected by vScreenML to D-COID set.** For each compound selected by vScreenML as a candidate AChE inhibitor, we show the closest compound from D-COID (used in training vScreenML). In each case, the PDB and ligand ID are shown, along with the protein to which this ligand was bound in the solved structure. None of these compounds come from complexes with proteins related to AChE, ruling out any concern that vScreenML might have recognized some subtle features of the binding sites from proteins related to AChE.

Compound	SEA predictions	SwissTarget predictions
AC1	Peptidyl-prolyl cis-trans isomerase B	Serotonin receptor
	Kinesin-like protein KIF20A	Tyrosine-protein kinase (JAK1 and JAK2)
	5-hydroxytryptamine receptor 1B	CaM kinase II
	5-hydroxytryptamine receptor 1D	Calcium sensing receptor
	Apelin receptor	Glutamate [NMDA] receptor
	Sodium channel protein type 10 subunit alpha	Phosphodiesterase 5A
	Sodium channel protein type 2 subunit alpha	Histone deacetylase 6
AC2	Stromal interaction molecule 1	Serotonin 2a (5-HT2a) receptor
	Luciferin 4-monooxygenase	P2X purinoceptor 7
	Mitogen-activated protein kinase kinase kinase 5	Acetyl-CoA carboxylase 2
	Thrombopoietin receptor	Melanin-concentrating hormone receptor 1
	GMP synthase [glutamine-hydrolyzing]	Rho-associated protein kinase 2
AC3	Sodium channel protein type 10 subunit alpha	Cyclin-dependent kinase 4
	Atypical chemokine receptor 3	Serine/threonine-protein kinase Aurora-A
	Mas-related G-protein coupled receptor member X1	Monoamine oxidase B
	Beta-secretase 2	Focal adhesion kinase 1
	Metabotropic glutamate receptor 4	Tyrosine-protein kinase SRC
AC4	Beta-secretase 1	Quinone reductase 2
	Arachidonate 15-lipoxygenase	Adenosine A1 receptor
	Metabotropic glutamate receptor 4	Adenosine A2a receptor
	Serine/threonine-protein kinase pim-2	DGAT1 protein
	Serine/threonine-protein kinase pim-3	Cholecystokinin B receptor
AC5	Calcium-activated potassium channel subunit alpha-	Adenosine A1 receptor
	1	Adenosine A3 receptor
	Serine/threonine-protein kinase pim-1	Neurokinin 3 receptor
	Glycogen phosphorylase, liver form	Phosphodiesterase 5A
	Trace amine-associated receptor 1	Cyclin-dependent kinase 7
AC6	NAD-dependent protein deacetylase HST2	Protein kinase C theta
	Thrombopoietin receptor	Urotensin II receptor
	Glycogen phosphorylase, muscle form	Melanin-concentrating hormone receptor 1
AC7	Potassium channel subfamily K member 9	Melanin-concentrating hormone receptor 1
	NAD-dependent protein deacetylase sirtuin-3,	Sodium channel protein type X alpha subunit
	mitochondrial	Microtubule-associated protein tau
	NAD-dependent protein deacetylase sirtuin-2	Alpha-synuclein
	Sodium channel protein type 10 subunit alpha	Cyclin-dependent kinase 5/CDK5 activator 1
	Amine oxidase [flavin-containing] B	

	Melanocortin receptor 4	Lysosomal protective protein
AC8	Transporter	Thromboxane A2 receptor
	Replication protein A 70 kDa DNA-binding subunit	Prostanoid DP receptor
	Sodium-dependent dopamine transporter	Prostanoid EP4 receptor
	Sodium-dependent serotonin transporter	Prostanoid EP2 receptor
AC9	Sodium channel protein type 10 subunit alpha NAD-dependent protein deacetylase sirtuin-3, mitochondrial Potassium channel subfamily K member 9 Tyrosine-protein kinase ABL1 NAD-dependent protein deacetylase sirtuin-2	Sodium channel protein type X alpha subunit Histone deacetylase 1 Melanin-concentrating hormone receptor 1 Tyrosine-protein kinase SRC Anandamide amidohydrolase
AC10	Sodium channel protein type 10 subunit alpha Tyrosine-protein kinase ABL1 Melanin-concentrating hormone receptor 1 NAD-dependent protein deacetylase sirtuin-3, mitochondrial 5-hydroxytryptamine receptor 1D	Tyrosine-protein kinase SYK Protein kinase C mu Serine/threonine-protein kinase D2 Tyrosine-protein kinase ZAP-70 Cyclin T1
	C-X-C chemokine receptor type 4	Fatty acid synthase
	Envelope glycoprotein gp160	Vasopressin V2 receptor
AC11	P2X purinoceptor 7	Oxytocin receptor
	Nicotinamide phosphoribosyltransferase	Cathepsin K
	Serine/threonine-protein kinase TAO3	Phosphodiesterase 7A
AC12	NAD-dependent protein deacetylase sirtuin-3, mitochondrial NAD-dependent protein deacetylase sirtuin-2 Platelet-derived growth factor receptor alpha Nucleosome-remodeling factor subunit BPTF Arachidonate 15-lipoxygenase	Cyclooxygenase-2 15-hydroxyprostaglandin dehydrogenase [NAD+] Urokinase-type plasminogen activator Serine/threonine-protein kinase Chk2 Heat shock protein HSP 90-alpha
	CCR4-NOT transcription complex subunit 7	Melatonin receptor 1A
	Endothelial lipase	Epoxide hydratase
AC13	5-hydroxytryptamine receptor 5A	Proteinase activated receptor 4
	G-protein coupled receptor 183	ATP-binding cassette sub-family G member 2
	Enoyl-[acyl-carrier-protein] reductase [NADH] FabI	MAP kinase p38 alpha
AC14	High affinity nerve growth factor receptor	Neuropeptide Y receptor type 5
	Metabotropic glutamate receptor 4	Thrombin and coagulation factor X
	Signal transducer and activator of transcription 6	Tyrosine-protein kinase JAK3
	Ketohexokinase	Dihydroorotate dehydrogenase
	Metabotropic glutamate receptor 4	Thrombin

AC15 AC16	Beta-1,4-mannosyl-glycoprotein 4-beta-N- acetylglucosaminyltransferase Ryanodine receptor 2 Melatonin receptor type 1A Melatonin receptor type 1B G-protein coupled receptor 183 Sodium channel protein type 10 subunit alpha Tyrosine-protein kinase ABL1 NAD-dependent protein deacetylase sirtuin-3, mitochondrial Sodium channel protein type 10 subunit alpha 5-hydroxytryptamine receptor 1D	Melatonin receptor 1A Melatonin receptor 1B Cathepsin K Cathepsin S MAP kinase-activated protein kinase 2 Phospholipase A2 group IIA Dual specificity phosphatase Cdc25B Phospholipase D1 Adenosine A1 receptor Acyl coenzyme A:cholesterol acyltransferase 1
AC17	Sodium channel protein type 10 subunit alpha Sodium channel protein type 2 subunit alpha Ubiquitin carboxyl-terminal hydrolase BAP1 Luciferin 4-monooxygenase Melanin-concentrating hormone receptor 1	Potassium channel subfamily K member 3 Cannabinoid receptor 1 Fibroblast growth factor receptor 1 Dopamine D4 receptor Epoxide hydratase
AC18	Sodium channel protein type 10 subunit alpha Cell division protein FtsZ Sodium channel protein type 10 subunit alpha Atypical chemokine receptor 3 ATPase family AAA domain-containing protein 2	Serine/threonine-protein kinase PIM1 Inhibitor of nuclear factor kappa B kinase beta subunit Prokineticin receptor 1 WD repeat-containing protein 5 Protein kinase C delta
AC19	Pantothenate synthetase DNA repair protein RAD51 homolog 1 Apoptosis regulator BAX Luciferin 4-monooxygenase	Histone deacetylase 1 Beta-secretase 1 Hepatocyte growth factor receptor Cathepsin D Histone deacetylase 2
AC20	Sodium channel protein type 10 subunit alpha Melanin-concentrating hormone receptor 1 Cytochrome P450 11B2, mitochondrial 5-hydroxytryptamine receptor 1D Follicle-stimulating hormone receptor	TGF-beta receptor type I Protein tyrosine kinase 2 beta Sterol regulatory element-binding protein 2 Nuclear receptor ROR-gamma Cathepsin K
AC21	5-hydroxytryptamine receptor 3A Histamine N-methyltransferase Histidine-rich protein PFHRP-II 5-hydroxytryptamine receptor 2A Transforming protein RhoA	Vascular endothelial growth factor receptor 2 Proteasome Macropain subunit MB1 Prolyl endopeptidase Fibroblast activation protein alpha Proto-oncogene protein Wnt-3

AC22	3 beta-hydroxysteroid dehydrogenase/Delta 5>4- isomerase type 2 Histone lysine demethylase PHF8 Lysine-specific demethylase 2B Taste receptor type 1 member 2 Taste receptor type 1 member 3	Cannabinoid receptor 1 Cannabinoid receptor 2 Mu opioid receptor Kappa Opioid receptor Opioid growth factor receptor-like protein 1
AC23	Substance-P receptor Peptidyl-prolyl cis-trans isomerase B Kinesin-like protein KIF20A 5-hydroxytryptamine receptor 1B 5-hydroxytryptamine receptor 1D	Mu opioid receptor Advanced glycosylation end product-specific receptor Inhibitor of apoptosis protein 3 Purinergic receptor P2Y1 Serotonin 3a (5-HT3a) receptor

**Table S9: Activity predictions for candidate AChE inhibitors.** Predicted activity of the compounds selected by vScreenML, from SEA and SwissTarget. Neither recognizes these compounds as AChE inhibitors, suggesting that indeed these are new scaffolds for this target.

vScreenML compound	Closest matches amongst annotated AChE inhibitors in ChEMBL
AC1	CHEMBL1491339 CHEMBL45
HCL AC2	CHEMBL94113 CHEMBL2104675
AC3	CHEMBL 2105485 CHEMBL 2107681
AC4	CHEMBL213257 CHEMBL21333











**Table S10: Comparison of vScreenML's candidate AChE inhibitors to known AChE inhibitors.** For each compound selected by vScreenML as a candidate AChE inhibitor, we present the two closest compounds (as measured by 2D fingerprint similarity) that are annotated in ChEMBL as AChE inhibitors. The lack of similarity implies that these compounds would not have been identified as AChE inhibitors on the basis of 2D fingerprint similarity.

Compound	Identified as a top-scoring hit
AC6	1 st round
AC3	1 st round
AC10	Both rounds
AC11	1 st round
AC15	2 nd round
AC5	2 nd round
AC13	2 nd round
AC19	Both rounds
AC23	1 st round
AC9	Both rounds

**Table S11: Provenance of AChE inhibitors.** For each of the 10 AChE inhibitors that provided more than 50% inhibition at a concentration of 50  $\mu$ M, we determined at what stage this compound was prioritized for testing. Our strategy included two stages of screening: first we screened only 15 million diverse compounds from the Enamine collection, then we expanded our search by collecting analogs for each of these hits. We note that 7 of these 10 compounds were identified in the first round of screening; after re-refinement in the second round, 3 of these were still highly-ranked whereas 4 had been surpassed by analogs (or received lower scores upon re-refinement). Only 3 of these 10 compounds would have been missed if our screening had been limited to a single round of 15 million compounds.