Supplementary Material

Fig. S1. NE cells express p35/25 and respond to Cdk5 inhibition. (A) High contrast image of immunoblot of Cdk5 pathway components shown in Fig. 1A. (B) Scanning electron microscopy of hPHEO1 cells treated with 0.02% DMSO (Control) or 2 μ M Indo A (4/5i) for 4 h. Scale bars = 10 μ m.

Fig. S2. Cdk5 inhibition blocks growth of NE cancer cells. (A-G) Cells were treated with increasing concentrations of Indo A (4/5i; n=6-9) and Indo B (4i; n=6-9) and monitored for effects on cell growth. (H) IC₅₀ values for each cell line and inhibitor were calculated by 4-parameter logistic regression. (I-L) NE cell

lines were treated with control or the Cdk inhibitor indicated; Roscovitine (Ros; n=4-8), Dinacyclib (Dina; n=6-8), CP681301 (CP; n=4-8), or CVT313 (CVT; n=8-12). All error bars represent SEM.

Α.

Fig. S3. Phosphorylation state-specific antibody validation. (A) Dot blots of nitrocellulose spotted with increasing pmol of PDE4 peptide, phospho-PDE4 (pPDE4) peptide, peptide of interest, or phospho-peptide of interest and probed with affinity purified anti-sera. (B) Immunoblot analysis of NSE-p25OE tumor lysate, treated with (+) and without (-) lambda protein phosphatase, probed with affinity purified anti-sera. Nonspecific bands (ns), specific bands denoted by arrowheads where applicable.

Carter et. al., Proceedings of the National Academy of Sciences

Fig. S4. Phosphoproteins are dependent on Cdk5 activity. Immunoblot analysis of phosphoproteins in TT cells (A) and SK cells (B) treated with 0.3% DMSO (Control), 2 μ M Indo A (4/5i), or 2 μ M Indo B (4i) for 4 h. For A, pFLNB and pLARP are normalized to actin (#); all others are normalized to each specific protein. All error bars represent SEM.

Fig. S5. Inhibition of Cdk5 activity suppresses growth of pancreatic NE tumors. Quantitation of tumor growth over time from caliper measurements of BON xenograft pancreatic NE tumor model mice treated with vehicle or 20 mg/kg BW Indo A. (n=8-9). Error bars represent SEM..

Fig. S6. Inhibition of Cdk5 activity suppresses growth of biomarker-positive NE tumors. (A) Immunoblot analysis of proteins and phosphoproteins in tumors from PDX model mice. (B-C) Quantitation of tumor growth over time from biomarker-negative Merkel 2 (B; n=5-6) and biomarker-positive LCNEC (C; n=8) PDX model mice treated with vehicle or 20 mg/kg BW Indo A (20 mg/kg). All error bars represent SEM.

Fig. S7. Encapsulation of Indo A does not affect biophysical properties of LKs. (A) Entrapment efficiency of Indo A into LKs as determined by intrinsic Indo A fluorescence. (B-C) Dynamic light scattering analysis of LKs, Cy5.5 labeled LKs (+ Cy5.5), and Indo A loaded LKs (+ 4/5i) to determine size (B) and polydispersity (C). All error bars represent SEM.

# in Fig. 3D	Group	Percent of Total	Percent of Upregulated
1	Autophapy	8.6	6.9
2	Development and differentiation	20.5	21.5
3	Kinase (non-protein)	15.9	18.3
4	Other	7.7	5.9
5	Tumor Suppressor	3.4	2.4
6	Translation	3.3	3.5
7	Lipid binding	6.5	3.8
*8	Apoptosis	6.5	12.1
*9	Protease	2.9	5.9
10	Ub conjugation	2.8	0.7
11	Phosphatase	5.4	4.5
12	Intracellular structures	5.3	3.1
13	Protein Kinase signaling	1.9	1.0
14	Receptor/channel/surface protein	1.8	0.3
*15	Adhesion/ECM	1.5	2.8
16	Cell Cycle regulator	1.3	1.7
*17	DNA binding	0.9	1.7
18	Adaptor Scaffold	0.9	0.0
*19	Miscellaneous Enzyme	0.7	1.4
20	G-protein or regulator	0.6	0.7
*21	RNA processing	0.6	1.0
22	Transcriptional regulator	0.5	0.3
23	Unknown	0.4	0.0
*24	Cytoskeletal	0.1	0.3

Table S1: Protein groups of peptides identified in LC-MS/MS of MTC mouse tumors.

* - enriched in upregulated (levels in growing/arrested tumors \geq 2) vs. total population of peptides.

#	SIP Target	Percent Growth ± SEM								
		Fibro	SK	PHEO	BON					
1	Control 1 (HBSS)	100 ± 2.4	100 ± 2.7	100 ± 1.2	100 ± 0.7					
*2	LIG1	122 ± 5.0	4 ± 0.6	4 ± 1.5	15 ± 1.2					
*3	POLE	116 ± 4.7	3 ± 0.4	38 ± 11.8	28 ± 1.3					
4	LIN9a	166 ± 10.5	68 ± 16.2	43 ± 6.2	79 ± 1.7					
5	POLA1	80 ± 4.5	62 ± 15.6	18 ± 6.0	64 ± 2.2					
*6	RBL1	137 ± 7.9	78 ± 10.6	14 ± 3.6	83 ± 1.2					
7	INADL	124 ± 5.5	84 ± 16.5	57 ± 4.3	64 ± 1.3					
8	NCL	121 ± 5.4	100 ± 6.2	72 ± 6.7	96 ± 2.1					
9	STMN1	123 ± 5.1	106 ± 8.4	84 ± 5.3	98 ± 2.0					
10	WHSC2	119 ± 5.2	67 ± 16.6	58 ± 6.8	89 ± 1.6					
11	SCAPER	117 ± 5.7	97 ± 11.8	56 ± 6.4	94 ± 2.1					
12	SCC112	188 ± 4.4	49 ± 17.6	30 ± 4.7	33 ± 1.4					
*13	H1.5	119 ± 6.9	56 ± 17.5	41 ± 9.9	82 ± 1.5					
14	APRIN	121 ± 5.3	109 ± 6.0	79 ± 4.0	95 ± 2.7					
15	NUMA1	138 ± 11.0	71 ± 9.6	56 ± 5.7	93 ± 1.7					
*16	LARP6	122 ± 5.6	10 ± 3.2	15 ± 5.4	33 ± 1.0					
17	MYBBP61A	120 ± 6.5	93 ± 7.7	77 ± 6.2	97 ± 2.6					
18	WHSC1	114 ± 5.3	107 ± 9.7	83 ± 4.4	98 ± 1.4					
19	MGC4707	124 ± 5.7	93 ± 4.2	77 ± 4.5	98 ± 1.3					
20	ALDH2	109 ± 2.7	36 ± 10.6	68 ± 7.3	65 ± 1.1					
21	LIG1b	107 ± 2.7	109 ± 3.7	84 ± 5.1	90 ± 1.9					
*22	MTA2	140 ± 3.1	5 ± 0.9	1 ± 0.4	14 ± 1.3					
23	GTF3C1	107 ± 1.4	89 ± 19.0	40 ± 8.2	70 ± 2.7					
24	SPT5	107 ± 4.9	120 ± 4.3	79 ± 5.5	89 ± 2.9					
*25	FLNB	122 ± 7.0	0 ± 0.2	6 ± 1.8	5 ± 0.7					
26	IQCE	116 ± 1.8	6 ± 1.9	38 ± 10.3	36 ± 1.2					
*27	ASXL2	112 ± 1.2	4 ± 0.4	9 ± 3.3	20 ± 1.0					
*28	SUV39H1	111 ± 1.5	3 ± 0.3	3 ± 1.1	23 ± 1.1					
29	SNXL3	112 ± 3.7	118 ± 3.0	87 ± 5.1	93 ± 2.3					
*30	KNL2	158 ± 5.5	7 ± 5.0	1 ± 0.5	8 ± 1.0					
31	CASZ1	101 ± 2.9	114 ± 6.2	92 ± 3	95 ± 1.6					
32	SH3BP4	106 ± 2	91 ± 12	52 ± 8	83 ± 2.1					
33	HPCAL	107 ± 2.5	109 ± 2.8	80 ± 5.5	88 ± 2.5					
34	ACSL4	105 ± 2.1	89 ± 5.4	64 ± 6.8	83 ± 2.3					
35	elF3ep	59 ± 5	0 ± 0.4	0 ± 0.3	3 ± 1					
36	EPLIN	96 ± 1.9	95 ± 10.5	39 ± 7.4	81 ± 2.6					
*37	MTA1	147 ± 5.5	52 ± 15.1	10 ± 2.7	47 ± 2.1					
38	Rb1a	147 ± 7.4	41 ± 12.4	36 ± 3.5	43 ± 1.6					
39	USP24	123 ± 6.3	101 ± 13.4	78 ± 4.9	89 ± 1.7					
*40	FBXL17	151 ± 2.1	1 ± 1	0 ± 0.1	0 ± 0.1					

Table S2:	Growth inhibition	by individual	SIPs represented	in Figure 3E.

#	SIP Target	Percent Growth ± SEM								
		Fibro	SK	PHEO	BON					
*41	SLBP	124 ± 4.8	2 ± 0.2	16 ± 5.1	12 ± 1.4					
*42	RIZ	125 ± 5.3	0 ± 0.2	0 ± 0.1	0 ± 0.1					
43	RbBP6	115 ± 3.4	133 ± 10.3	88 ± 1.8	97 ± 1.7					
44	USP14	114 ± 4.4	126 ± 12.4	78 ± 6	94 ± 1.7					
45	elF3eta	41 ± 2	3 ± 1.4	9 ± 2.4	25 ± 1.2					
46	Rb1b	116 ± 3.7	57 ± 17.3	34 ± 8.9	54 ± 3.3					
47	GPATCH8	117 ± 4.8	129 ± 9.1	79 ± 3.3	98 ± 2.2					
48	ELAVL1	110 ± 3.7	113 ± 23.3	67 ± 7.6	70 ± 3.8					
49	LIN9b	119 ± 5.4	142 ± 11.8	78 ± 6.6	97 ± 1.9					
50	ABI1	111 ± 3.8	91 ± 19	52 ± 12	82 ± 1.7					
*51	FAM53C	112 ± 4.7	34 ± 11.3	57 ± 12	61 ± 1.5					
52	Control 2 (PEN tag)	112 ± 2.9	138 ± 14.3	76 ± 5.9	94 ± 1.6					

 Table S2 continued:
 Growth inhibition by individual SIPs represented in Figure 3E.

* selected as a hit

Table S3:	Pathway	Enrichment	Analysis o	on 15	selected	hits.

Abbreviation	Ingenuity Canonical Pathways	-log(p-value)	Molecules	Color	
AHRS	Aryl Hydrocarbon Receptor Signaling	1.08	RBL1	Gray	
ATMS	ATM Signaling	1.23	SUV39H1	rosybrown	
BCS	Bladder Cancer Signaling	1.23	SUV39H1	indianred	
BERP	BER pathway	4.61	POLE,LIG1	firebrick	
CCCR	Cell Cycle Control of Chromosomal Replication	3.3	POLE,LIG1	darkred	
CCR	Cyclins and Cell Cycle Regulation	1.31	SUV39H1	orangered	
CES	Caveolar-mediated Endocytosis Signaling	1.36	FLNB	darkorange	
CMLS	Chronic Myeloid Leukemia Signaling	2.63	SUV39H1,RBL1	orange	
DDSBRHR	DNA Double-Strand Break Repair by Homologous Recombination	2.05	LIG1	olive	
DMTRS	DNA Methylation and Transcriptional Repression Signaling	3.68	MTA2,MTA1	olivedrab	
EMSE	Estrogen-mediated S-phase Entry	1.78	RBL1	gold	
GS	Glioma Signaling	2.56	SUV39H1,RBL1	yellow	
GSCCR	Cell Cycle: G1/S Checkpoint Regulation	3.13	SUV39H1,RBL1	seagreen	
ILKP	ILK Signaling	0.928	FLNB	springgreen	
MMC	Molecular Mechanisms of Cancer	1.61	SUV39H1,RBL1	turquoise	
NERP	NER Pathway	2.75	POLE,LIG1	mediumturquoise	
NSCLCS	Non-Small Cell Lung Cancer Signaling	1.26	SUV39H1	teal	
OCS	Ovarian Cancer Signaling	1.03	SUV39H1	deepskyblue	
PAS	Pancreatic Adenocarcinoma Signaling	1.12	SUV39H1	steelblue	
PCS	Prostate Cancer Signaling	1.18	SUV39H1	dodgerblue	
PKS	Protein Kinase A Signaling	0.666	FLNB	slateblue	
RBDDR	Role of BRCA1 in DNA Damage Response	1.3	RBL1	mediumslateblue	
SCLCS	Small Cell Lung Cancer Signaling	1.27	SUV39H1	darkorchid	
SSP	Sirtuin Signaling Pathway	0.799	SUV39H1	fuchsia	
VEVEP	Virus Entry via Endocytic Pathways	1.15	FLNB	deeppink	

Group	LCNEC	Merkel 1	Merkel 2	NSCLC	SCLC 1	SCLC 2	SCLC 3	SCLC 4	SCLC 5	SCLC 6	Breast	CRC	Ovarian	PDAC
p25	2	0	0	3	0	0	0	0	0	0	0	0	0	0
p35	3	0	0	1	1	2	0	2	0	1	0	0	1	0
Cdk5	1	1	1	0	1	1	2	3	1	0	2	0	0	1
Cdk5 pathway	6	1	1	4	2	3	2	5	1	1	2	0	1	1
ChA	1	0	2	0	0	0	0	2	0	0	0	0	3	3
NSE	1	0	2	1	3	2	1	2	1	3	0	0	0	1
NE markers	2	0	4	1	3	2	1	4	1	3	0	0	3	4
pH1.5	2	0	0	2	3	3	1	1	2	3	0	0	3	0
pFAM	1	0	0	1	3	0	0	0	1	0	0	0	0	0
pRBL1	3	0	0	1	0	0	0	1	1	0	0	0	3	2
pSUV	2	0	1	2	2	1	2	3	3	1	0	0	2	1
Biomarkers	8	0	1	6	8	4	3	5	7	4	0	0	8	3

Table S4: Index Scores for characteristics of PDX models of cancer.

PDX Models

Models initially classified as NE are shown in white. Models initially classified as non-NE are shown in grey.