Reviewers' comments:

Reviewer #2 (Remarks to the Author):

The authors need to be applauded for substantially improving the manuscript by adding an array of
new analyses that were necessary to demarcate poorly described mesenchymal cell types and to
provide a more detailed inter-organ analysis (particularly regarding fibroblasts). They have now
successfully defined a panel of marker genes that can be used to infer mesenchymal cell identity in
single cell datasets. The authors further report fibroblasts to be extremely heterogenous with the
matrisome being the driving factor, but also show inter-organ similarities (heart valves and skeletal
muscle). Interestingly, fibroblasts seem to be zonated in multiple tissues, which is in line with
previous findings in other cell types (epithelial cells, hepatocytes, endothelial cells). Pericytes, in
contrast, seem to be more homogenous and do not show major inter-organ hetereogeneity. The
manuscript includes several high-quality images validating in silico findings. The manuscript is
considered highly suitable for the broad readership of the journal. In further advancing their work,
the authors are encouraged to consider the following minore comments:

1. The authors report mural cells to be more homogenous than fibroblasts. Although this finding
seems very interesting at first, it cannot be excluded that this may rather be explained by artefacts
introduced by employing low-depth scRNA-Seq. As clustering approaches take the variable gene
expression across all genes into account, the degree to which cellular heterogeneity can be assessed
depends on total genes and gene counts identified on a per cell basis. If the median nGene/cell is
lower for mural cells than for fibroblasts, the pool of variable genes that can be used for clustering is
restricted, which could lead to underappreciation of heterogeneity. This phenomenon can be
observed with other low RNA containing cells (e.g. endothelial cells, for which a pronounced core
transcriptome seems to mask variable gene expression), where clustering approaches fail to capture
heterogeneity effectively (especially if gene expression changes gradually/is zonated). One way to
circumvent this problem could be iterative and random downsampling of genes taken into account
for clustering to equal numbers for mural cells and fibroblasts.

2. Fig. 3f: The authors show that gene expression is zonated for perisymal cells. It is not clear,
however, alongside which axis and in which direction (as done in Fig. S7b))

3. Fig. 4 displays fibroblast heterogeneity in the heart and cross-references a Wifl expressing
subpopulation (that shows strong similarity with valve interstitial cell types that have previously
been published) with transcriptionally similar cells from the skeletal muscle (perimysial cells). While
this clearly illustrates the power of multi-organ high-resolution atlases, it is a little strangethat the
other subpopulations are not at all characterised or even mentioned in the text.



4. The authors elegantly show that fibroblast gene expression is zonated in a similar manner as for
epithelial cells in the colonic mucosa. While this is a very interesting finding, it also makes room for
new questions, e.g. is the zonation complementary or additive between cell types?, which cell type is
instructive for establishing zonation?, what are the key molecules for establishing zonation? In-
depth analyses might be beyond the scope for the manuscript, but the authors could still
hypothesize and discuss a bit more how they envision the zonation to be established.

5. The authors obtained only a very low number of pericytes from skeletal muscle or bladder and
argue that this might be due to inefficient tissue dissociation. This explanation, as it stands, does not
seem credible. As SMART-Seq2 is a plate-based scRNA-Seq platform and the authors used FACS
sorting to enrich and purify cells, this would mean that the authors were only able to sort 10 cells
from the whole organ. Is that correct or did the authors sort a larger number of cells and library
generation was only successful for 10 cells? In the latter case, could the authors comment on what
they think is the issue generating libraries from muscle/bladder pericytes as compared to other
organs (RNA content, sensitivity)?

6. The authors show in a very elegant approach that the matrisome is what drives fibroblast
heterogeneity. As total transcription factors expression did not seem to contribute much to the
observed heterogeneity, the authors could use a reverse approach by running motif enrichment
analyses for the differentially expressed matrix modulators in order to identify key transcription
factors that drive heterogeneity (it is clear that the signature of a handful of differentially expressed
transcription factors will be “diluted” within the bulk set). Furthermore, it would add to the
understanding of pericyte heterogeneity if a similar analysis was performed.

7. Fig. 8: The authors integrate their current work with a previously published dataset on lung and
brain fibroblasts/pericytes. Clustering revealed that lung and brain pericytes cluster into separate
subpopulations, whereas the organs analyzed in this work rather fall into one cluster. Is this due to
batch-effects or does it mirror fundamental differences in biology and function?

8. The authors used 24 individual mice. Fig S1c is supposed to clarify which cells in the cluster were
derived from which mouse. Nevertheless, it is impossible to distinguish 24 distinct colors in the
UMAP. The authors should include a table depicting how many cells came from which mouse per
cluster.

9. It is at times difficult to follow which pagoda cluster annotations were used in the Figures (e.g Fig.
S2a, which | assume derives from Fig. 1).



Reviewer #4 (Remarks to the Author):

The authors have addressed my concerns and this work represents a useful resource for the field.

Reviewer #5 (Remarks to the Author):

In general the response to reviewers were positive on many key problems in the original version,
probably most importantly dealing with sample size. This certainly provides added rigor to an
already very detailed and technically superb manuscript. Thus, the paper is improved.

However, a residual question by two reviewers were not answered. Essentially, with vast number of
manuscripts with scRNAseq data, many focused on fibroblasts and mural cells already, how does this
manuscript stand apart from the others? Two of the reviewers suggested functional studies or
differences in disease states. Fibroblasts are key cell types in many disease states, and as such, their
activation is probably their most important criteria. The authors did not add any data to this major
critique and instead replied their data set will be important for fibroblast studies in general and
differentiating from mural cells. This is true, but without functional data, or the potential changes in
a disease state, the work remains descriptive.

Another lingering component that adds to the descriptive “feel” of the manuscript is there is no
single marker to identify fibroblasts across organ systems. This is not the fault of the authors for the
data, but it is likely something could have been done to analyze this further; e.g., in a particular
disease states, does a common marker for fibroblasts appear? Adding more organs to the analysis
didn’t necessarily strengthen the initial results, it just added another level of complexity to their
story (for better or for worse).



Single-cell analysis uncovers inter- and intra-organ fibroblast heterogeneity and provides
criteria for fibroblast identification and discrimination from vascular mural cells.
Muhl et al,

Point-by-point reply:

Reviewer #2 (Remarks to the Author):

The authors need to be applauded for substantially improving the manuscript by adding an array
of new analyses that were necessary to demarcate poorly described mesenchymal cell types and
to provide a more detailed inter-organ analysis (particularly regarding fibroblasts).

We thank the reviewer for appreciating our work to improve the study.

They have now successfully defined a panel of marker genes that can be used to infer
mesenchymal cell identity in single cell datasets. The authors further report fibroblasts to be
extremely heterogenous with the matrisome being the driving factor, but also show inter-organ
similarities (heart valves and skeletal muscle). Interestingly, fibroblasts seem to be zonated in
multiple tissues, which is in line with previous findings in other cell types (epithelial cells,
hepatocytes, endothelial cells). Pericytes, in contrast, seem to be more homogenous and do not
show major inter-organ hetereogeneity. The manuscript includes several high-quality images
validating in silico findings. The manuscript is considered highly suitable for the broad readership
of the journal.

We again thank the reviewer for the overall positive comments.

In further advancing their work, the authors are encouraged to consider the following minore
comments:

1. The authors report mural cells to be more homogenous than fibroblasts. Although this finding
seems very interesting at first, it cannot be excluded that this may rather be explained by
artefacts introduced by employing low-depth scRNA-Seq. As clustering approaches take the
variable gene expression across all genes into account, the degree to which cellular
heterogeneity can be assessed depends on total genes and gene counts identified on a per cell
basis. If the median nGene/cell is lower for mural cells than for fibroblasts, the pool of variable
genes that can be used for clustering is restricted, which could lead to underappreciation of
heterogeneity. This phenomenon can be observed with other low RNA containing cells (e.g.
endothelial cells, for which a pronounced core transcriptome seems to mask variable gene
expression), where clustering approaches fail to capture heterogeneity effectively (especially if
gene expression changes gradually/is zonated). One way to circumvent

this problem could be iterative and random downsampling of genes taken into account for
clustering to equal numbers for mural cells and fibroblasts.

The reviewer raises an important point, which we agree is central to our study. The
clustering method used in this study (the pagoda2 pipeline) is indeed based on the most
variable genes detected by the algorithm (usually =3000 genes). To minimize the
introduction of artifacts caused by limited or differential sampling of mRNA from the
different cell types, we already previously applied stringent quality filtering criteria (library
size > 50000 counts, > 1500 expressed genes, < 10% ERCC, < 10% mitochondrial gene
expression) for cell-inclusion, which are now better explained in the manuscript (page 30,
line 928-933). In the included cells, the median number of expressed genes per cell are
3970 for mural cells and 4730 for fibroblasts, which is proportional to the total
(cumulative) number of genes expressed (14078 in mural cells (clusters 6,11,14,16) and
17908 in fibroblasts (all other clusters)). Hence, we detect more genes/cell in fibroblasts
likely because they express more genes. While this already suggests that fibroblasts are



more heterogeneous than mural cells, the question remains if the relative homogeneity of
the mural cells in the UMAP landscape is due to masking through the presence in the
same landscape of the more variable fibroblasts. However, this does not seem to be the
case because:

1. Separate analysis of mural cells (see Figure 7 and Supplementary Figure 9) shows a
similar (limited) dispersion of the organ-specific cell populations as when the mural
cells are clustered together with the fibroblasts (see Figure 2a, b); thus, the presence
of fibroblasts in the clustering and UMAP display does not appear to mask
heterogeneity among the mural cells.

2. Clustering based on the limited gene sets representing different GO entities (see
Figure 2c and Supplementary Figure 3c-e) shows less mural cell UMAP dispersal
compared to fibroblasts irrespective of chosen GO-gene set. Again, fibroblasts
expressed a higher (cumulative) number of genes than mural cells also here, e.g.
780 vs. 619 for ECM+matrisome, 1104 vs. 900 for cell-cell signaling, 1899 vs. 1635
for cell surface receptor signaling.

3. We nevertheless re-assessed dispersal following data down-sampling. There are
several ways to do this. For simplicity, we removed all fibroblasts with more than
4000 expressed genes and re-calculated the UMAP dispersion for the remaining set
of cells (see the Figure 1 and Legends in the appended Data for reviewer). This is a
“conservative” way to down-sample, as it actually leads to a lower average number of
genes per cell for the included fibroblasts than for the mural cells. In spite of this, the
result showed a similar UMAP dispersion as the complete dataset including lung and
brain (Figure 8), with organ origin as the main driver of dispersion of fibroblasts,
whereas mural cells continue to cluster more homogenously.

2. Fig. 3f: The authors show that gene expression is zonated for perisymal cells. It is not clear,
however, alongside which axis and in which direction (as done in Fig. S7b))

We thank the reviewer for asking this question, alerting us to be more cautious in our use
of the term zonation, which as the reviewer notes infers gene expression changes along
an anatomical axis or direction. Because we have not yet defined any spatial point of
reference (e.g. muscle surface, vessel/nerve bundle or other) or anatomical axis (e.g. A-
P, D-V etc..), to which the perimysial heterogeneity can be related, we now call it
molecular diversity instead of zonation. We briefly mention (see page 7, line 196-200)
that this is an interesting question for future work, and have changed the terminology also
in Figure 3 and Supplementary data 7.

3. Fig. 4 displays fibroblast heterogeneity in the heart and cross-references a Wif1 expressing
subpopulation (that shows strong similarity with valve interstitial cell types that have previously
been published) with transcriptionally similar cells from the skeletal muscle (perimysial cells).
While this clearly illustrates the power of multi-organ high-resolution atlases, it is a little
strangethat the other subpopulations are not at all characterised or even mentioned in the text.

We thank the reviewer for pointing this out. The remaining fibroblast populations in the
heart exhibited only limited dispersion in our UMAP analysis (Suppl. Figure 2a), which is
in line with other published work (Farbehi et al., eLife 2019), but we realize that this
notion did not come across very well. We have therefore rewritten this part in the revised
version (the end of the Results - Heart section, page 8, line 242-244.

4. The authors elegantly show that fibroblast gene expression is zonated in a similar manner as
for epithelial cells in the colonic mucosa. While this is a very interesting finding, it also makes
room for new questions, e.g. is the zonation complementary or additive between cell types?,
which cell type is instructive for establishing zonation?, what are the key molecules for
establishing zonation? In-depth analyses might be beyond the scope for the manuscript, but the



authors could still hypothesize and discuss a bit more how they envision the zonation to be
established.

We agree with the reviewer that the zonation of fibroblasts in the intestinal mucosa is
intriguing. We followed the suggestion of the reviewer and have extended the discussion
of these data with respect to the interplay and reciprocal signaling of intestinal (colonic)
epithelial cells and fibroblasts, in the Discussion section (page 16, line 497-506).

5. The authors obtained only a very low number of pericytes from skeletal muscle or bladder and
argue that this might be due to inefficient tissue dissociation. This explanation, as it stands, does
not seem credible. As SMART-Seq_2 is a plate-based scRNA-Seq platform and the authors used
FACS sorting to enrich and purify cells, this would mean that the authors were only able to sort 10
cells from the whole organ. Is that correct or did the authors sort a larger number of cells and
library generation was only successful for 10 cells? In the latter case, could the authors comment
on what they think is the issue generating libraries from muscle/bladder pericytes as compared to
other organs (RNA content, sensitivity)?

We appreciate this comment, which made us realize that we had not done a very good
job in explaining that the transgenic reporter lines used to sort mural cells also captures
fibroblasts, which are far more abundant. Thus, out of a large number of sorted cells
(from e.g. the PdgfrbGFP mice) only 10 eventually turned out to be skeletal muscle and
bladder pericytes. In other words, we sorted many cells from the skeletal muscle and
bladder that exhibited similar features (FACS) as pericytes from the heart, however, their
transcriptome eventually revealed that these cells were fibroblasts. We have rewritten the
description to better explain this (page 11, line 334-336, 346-348).

Why do we capture so few pericytes from skeletal muscle, when by morphology we can
readily find them in the tissue? We know from our previous experience and from others’
published data (where pericytes are notoriously endothelium-contaminated) that it is hard
to separate endothelial cells from pericytes during tissue disintegration. Therefore, we
used anti-CD31 antibody to eliminate endothelial-mural doubles. In all our FACS runs, we
could observe contaminated (e.g. PdgfrbGFP+ and CD31+) cells (as seen in
Supplementary Figure 1a) to a varying extent. Note that these are not necessarily
complete cell doublets, which would be possible to distinguish by size or DNA content,
but mostly cell fragment contamination, as judged by the variation in amount (as little as
5% of endothelial transcriptome can be readily detected). To assure that we analyzed
pure pericytes, we excluded all such double-positive cells by FACS and during the initial
QC of the transcriptome data. This is now also more clearly described in the revised
version (page 29, line 892-893, page 30, line 939-941). In conclusion, we therefore do
not believe that the low number of pericytes from the skeletal muscle and bladder is due
to difficulties in library preparation (low quality RNA), but rather the inherent difficulty in
obtaining pure (free from endothelial fragment contamination) pericytes, especially from
the skeletal muscle.

In the case of the bladder, as also discussed in the manuscript, we found that the bladder
mucosa capillaries differ in their morphology compared to the other capillary beds. We
also found that mural cells of the bladder mucosal capillaries exhibited a higher level of
Acta2 positivity. Therefore, it is not unlikely that bladder mural cells numbers are
dominated by smooth muscle-like cells, simply because typical capillaries (i.e. =5 ym
diameter microvessels) and typical pericytes are rare. We have included a brief
mentioning of this in the revised version (page 11, line 346-348 and page 15, line 449-
451).

6. The authors show in a very elegant approach that the matrisome is what drives fibroblast



heterogeneity. As total transcription factors expression did not seem to contribute much to the
observed heterogeneity, the authors could use a reverse approach by running motif enrichment
analyses for the differentially expressed matrix modulators in order to identify key transcription
factors that drive heterogeneity (it is clear that the signature of a handful of differentially
expressed transcription factors will be “diluted” within the bulk set). Furthermore, it would add to
the understanding of pericyte heterogeneity if a similar analysis was performed.

This is an interesting point, which we admit had escaped our attention. We have now
performed this analysis. As input gene list, we selected those genes of the
ECM+matrisome gene-set that were also amongst the differentially expressed genes
shown in Supplementary Figure 3b. This list of 155 genes was analyzed using the R-
package RcisTarget, and the result is summarized in Table for reviewer and Data for
reviewer Figure 2. As can be seen in the Data for reviewer Figure 2, the respective
transcription factors to the identified motifs do not exhibit a pronounced cluster, or tissue-
specific expression pattern. Overall, the expression of transcription factors can be
considered as low, and more in-depth analysis would be required to draw reliable
conclusions. Therefore, we interpret these new results as preliminary, and feel that the
needed in-depth analysis to pinpoint potential transcription factors controlling
ECM+matrisome gene-set expression lies beyond the scope for this manuscript.

7. Fig. 8: The authors integrate their current work with a previously published dataset on lung and
brain fibroblasts/pericytes. Clustering revealed that lung and brain pericytes cluster into separate
subpopulations, whereas the organs analyzed in this work rather fall into one cluster. Is this due
to batch-effects or does it mirror fundamental differences in biology and function?

We are confident that the differences seen in the UMAP landscape of the integrated data
(Figure 8) are not caused by batch-effects. First, the dispersion of the brain pericytes is
similar to that observed for heart pericytes (relative to the main SMC cluster), and those
two pericyte populations do exhibit substantial molecular differences (Figure 8d), i.e.
qualitative differences in the expression of individual genes, exemplified by the ATP13a5
transporter which is highly and specifically expressed by brain pericytes (see also
Vanlandewijck et al, Nature 2018); these differences cannot be caused by batch effects.

8. The authors used 24 individual mice. Fig S1c is supposed to clarify which cells in the cluster
were derived from which mouse. Nevertheless, it is impossible to distinguish 24 distinct colors in
the UMAP. The authors should include a table depicting how many cells came from which mouse
per cluster.

We appreciate this comment, and agree that the use of 24 distinct colors was not optimal.
Thus, we include a table depicting the absolute numbers of cells from each biological
sample per cluster of the overall analysis (new Supplementary Table 5).

9. It is at times difficult to follow which pagoda cluster annotations were used in the Figures (e.g
Fig. S2a, which | assume derives from Fig. 1).

We thank the reviewer for this remark, and have rephrased the Figure legends, in order
to improve clarity around the cluster annotation in pagodaZ2.

Reviewer #4 (Remarks to the Author):

The authors have addressed my concerns and this work represents a useful resource for the
field.

We thank the reviewer for the positive remarks.



Reviewer #5 (Remarks to the Author):

In general the response to reviewers were positive on many key problems in the original version,
probably most importantly dealing with sample size. This certainly provides added rigor to an
already very detailed and technically superb manuscript. Thus, the paper is improved.

We thank the reviewer for the positive comments.

However, a residual question by two reviewers were not answered. Essentially, with vast number
of manuscripts with scRNAseq data, many focused on fibroblasts and mural cells already, how
does this manuscript stand apart from the others? Two of the reviewers suggested functional
studies or differences in disease states. Fibroblasts are key cell types in many disease states,
and as such, their activation is probably their most important criteria. The authors did not add any
data to this major critique and instead replied their data set will be important for fibroblast studies
in general and differentiating from mural cells. This is true, but without functional data, or the
potential changes in a disease state, the work remains descriptive.

Another lingering component that adds to the descriptive “feel” of the manuscript is there is no
single marker to identify fibroblasts across organ systems. This is not the fault of the authors for
the data, but it is likely something could have been done to analyze this further; e.g., in a
particular disease states, does a common marker for fibroblasts appear? Adding more organs to
the analysis didn’t necessarily strengthen the initial results, it just added another level of
complexity to their story (for better or for worse).

We thank the reviewer for the careful evaluation and appreciation of our work. We do
agree that functional analysis is of paramount interest to expand the analysis of
fibroblasts and mural cells into various disease states. However, to fully address these
aspects would be a rather time-consuming exercise, and we follow the Editor’'s advice
that this is therefore better suited for future studies.

We agree that our study is descriptive, and would like to stress that this was indeed the
scope from the onset of the study, as such a comprehensive cross-organ analysis was
lacking in the literature. We wanted to achieve the best possible description of the
differentiated stage during adult homeostasis, to produce a platform based on which we
and others may now initiate studies focused on specific pathological situations, such as
fibrosis.

We believe the fact that there is no single marker uniquely identifying fibroblasts or mural
cells is one of the very important findings in this study. With the help of our gene-sets for
classification of fibroblasts and mural cells, we and others have a better chance to more
objectively classify and annotate important cell populations in future studies.

In conclusion, we thank the reviewers for fair and insightful comments, which have made
it possible for us to produce a stronger version of the manuscript.



Data for reviewer Figure 1
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a, Histogram of expressed genes per cell of all
cells in the dataset (left), split into fibroblasts (clus-
ters 1-5, 7-10, 12, 13, 15, grey) and mural cells
(clusters 6, 11, 14, 16, brown), or the down-sam-
pled dataset (right) where all fibroblasts with more
than 4000 expressed genes (> 4000) were taken
out. The median value of expressed genes is
given in the histogram of the complete dataset.

b, UMAP dispersion plot for the analysed
down-sampled dataset, colour coded for the organ
of origin. Mural cells, core smooth muscle cells
(core SMC), pericytes as well as cardio-pulmonary
SMC and interstitial SMC are indicated. Overall,
the dispersion of mural cells is similar as observed
for the analysis of the complete dataset (see
Figure 2a, b for reference). The distribution of the
remaining fibroblasts also recapitulated the results
observed for the complete dataset; clustering in an
organ-specific manner.

¢, UMAP dispersion plots showing the expression
level of single genes used for annotation of the cell
clouds in the UMAP plot shown in b.



Data for reviewer Figure 2
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a, Heat map of selected transcription factors
identified by motif analysis of 155 differentially
expressed genes from extracellular matrix +
matrisome gene set (compare to Figure 2c),
see for input gene list and
output results from RcisTarget R-package
analysis. The two ftranscription factors
(Mbtps2, Arid3a) with the highest NES (Nor-
malized Enrichment Score) are indicated by
black arrows and additional transcription
factors (with multiple annotations) are high-
lighted with grey arrows.

b, Bar plots of the complete dataset showing
the gene expression profiles of selected and
indicated (a) transcription factors.
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