
Reviewers' comments: 

 

Reviewer #2 (Remarks to the Author): 

 

The authors need to be applauded for substantially improving the manuscript by adding an array of 

new analyses that were necessary to demarcate poorly described mesenchymal cell types and to 

provide a more detailed inter-organ analysis (particularly regarding fibroblasts). They have now 

successfully defined a panel of marker genes that can be used to infer mesenchymal cell identity in 

single cell datasets. The authors further report fibroblasts to be extremely heterogenous with the 

matrisome being the driving factor, but also show inter-organ similarities (heart valves and skeletal 

muscle). Interestingly, fibroblasts seem to be zonated in multiple tissues, which is in line with 

previous findings in other cell types (epithelial cells, hepatocytes, endothelial cells). Pericytes, in 

contrast, seem to be more homogenous and do not show major inter-organ hetereogeneity. The 

manuscript includes several high-quality images validating in silico findings. The manuscript is 

considered highly suitable for the broad readership of the journal. In further advancing their work, 

the authors are encouraged to consider the following minore comments: 

 

1. The authors report mural cells to be more homogenous than fibroblasts. Although this finding 

seems very interesting at first, it cannot be excluded that this may rather be explained by artefacts 

introduced by employing low-depth scRNA-Seq. As clustering approaches take the variable gene 

expression across all genes into account, the degree to which cellular heterogeneity can be assessed 

depends on total genes and gene counts identified on a per cell basis. If the median nGene/cell is 

lower for mural cells than for fibroblasts, the pool of variable genes that can be used for clustering is 

restricted, which could lead to underappreciation of heterogeneity. This phenomenon can be 

observed with other low RNA containing cells (e.g. endothelial cells, for which a pronounced core 

transcriptome seems to mask variable gene expression), where clustering approaches fail to capture 

heterogeneity effectively (especially if gene expression changes gradually/is zonated). One way to 

circumvent this problem could be iterative and random downsampling of genes taken into account 

for clustering to equal numbers for mural cells and fibroblasts. 

 

2. Fig. 3f: The authors show that gene expression is zonated for perisymal cells. It is not clear, 

however, alongside which axis and in which direction (as done in Fig. S7b)) 

 

3. Fig. 4 displays fibroblast heterogeneity in the heart and cross-references a Wif1 expressing 

subpopulation (that shows strong similarity with valve interstitial cell types that have previously 

been published) with transcriptionally similar cells from the skeletal muscle (perimysial cells). While 

this clearly illustrates the power of multi-organ high-resolution atlases, it is a little strangethat the 

other subpopulations are not at all characterised or even mentioned in the text. 



 

4. The authors elegantly show that fibroblast gene expression is zonated in a similar manner as for 

epithelial cells in the colonic mucosa. While this is a very interesting finding, it also makes room for 

new questions, e.g. is the zonation complementary or additive between cell types?, which cell type is 

instructive for establishing zonation?, what are the key molecules for establishing zonation? In-

depth analyses might be beyond the scope for the manuscript, but the authors could still 

hypothesize and discuss a bit more how they envision the zonation to be established. 

 

5. The authors obtained only a very low number of pericytes from skeletal muscle or bladder and 

argue that this might be due to inefficient tissue dissociation. This explanation, as it stands, does not 

seem credible. As SMART-Seq2 is a plate-based scRNA-Seq platform and the authors used FACS 

sorting to enrich and purify cells, this would mean that the authors were only able to sort 10 cells 

from the whole organ. Is that correct or did the authors sort a larger number of cells and library 

generation was only successful for 10 cells? In the latter case, could the authors comment on what 

they think is the issue generating libraries from muscle/bladder pericytes as compared to other 

organs (RNA content, sensitivity)? 

 

6. The authors show in a very elegant approach that the matrisome is what drives fibroblast 

heterogeneity. As total transcription factors expression did not seem to contribute much to the 

observed heterogeneity, the authors could use a reverse approach by running motif enrichment 

analyses for the differentially expressed matrix modulators in order to identify key transcription 

factors that drive heterogeneity (it is clear that the signature of a handful of differentially expressed 

transcription factors will be “diluted” within the bulk set). Furthermore, it would add to the 

understanding of pericyte heterogeneity if a similar analysis was performed. 

 

7. Fig. 8: The authors integrate their current work with a previously published dataset on lung and 

brain fibroblasts/pericytes. Clustering revealed that lung and brain pericytes cluster into separate 

subpopulations, whereas the organs analyzed in this work rather fall into one cluster. Is this due to 

batch-effects or does it mirror fundamental differences in biology and function? 

 

8. The authors used 24 individual mice. Fig S1c is supposed to clarify which cells in the cluster were 

derived from which mouse. Nevertheless, it is impossible to distinguish 24 distinct colors in the 

UMAP. The authors should include a table depicting how many cells came from which mouse per 

cluster. 

 

9. It is at times difficult to follow which pagoda cluster annotations were used in the Figures (e.g Fig. 

S2a, which I assume derives from Fig. 1). 



 

 

Reviewer #4 (Remarks to the Author): 

 

The authors have addressed my concerns and this work represents a useful resource for the field. 

 

 

Reviewer #5 (Remarks to the Author): 

 

In general the response to reviewers were positive on many key problems in the original version, 

probably most importantly dealing with sample size. This certainly provides added rigor to an 

already very detailed and technically superb manuscript. Thus, the paper is improved. 

 

However, a residual question by two reviewers were not answered. Essentially, with vast number of 

manuscripts with scRNAseq data, many focused on fibroblasts and mural cells already, how does this 

manuscript stand apart from the others? Two of the reviewers suggested functional studies or 

differences in disease states. Fibroblasts are key cell types in many disease states, and as such, their 

activation is probably their most important criteria. The authors did not add any data to this major 

critique and instead replied their data set will be important for fibroblast studies in general and 

differentiating from mural cells. This is true, but without functional data, or the potential changes in 

a disease state, the work remains descriptive. 

 

Another lingering component that adds to the descriptive “feel” of the manuscript is there is no 

single marker to identify fibroblasts across organ systems. This is not the fault of the authors for the 

data, but it is likely something could have been done to analyze this further; e.g., in a particular 

disease states, does a common marker for fibroblasts appear? Adding more organs to the analysis 

didn’t necessarily strengthen the initial results, it just added another level of complexity to their 

story (for better or for worse). 



Single-cell analysis uncovers inter- and intra-organ fibroblast heterogeneity and provides 
criteria for fibroblast identification and discrimination from vascular mural cells. 
Muhl et al, 

Point-by-point reply: 

Reviewer #2 (Remarks to the Author): 

The authors need to be applauded for substantially improving the manuscript by adding an array 
of new analyses that were necessary to demarcate poorly described mesenchymal cell types and 
to provide a more detailed inter-organ analysis (particularly regarding fibroblasts).  

We thank the reviewer for appreciating our work to improve the study. 

They have now successfully defined a panel of marker genes that can be used to infer 
mesenchymal cell identity in single cell datasets. The authors further report fibroblasts to be 
extremely heterogenous with the matrisome being the driving factor, but also show inter-organ 
similarities (heart valves and skeletal muscle). Interestingly, fibroblasts seem to be zonated in 
multiple tissues, which is in line with previous findings in other cell types (epithelial cells, 
hepatocytes, endothelial cells). Pericytes, in contrast, seem to be more homogenous and do not 
show major inter-organ hetereogeneity. The manuscript includes several high-quality images 
validating in silico findings. The manuscript is considered highly suitable for the broad readership 
of the journal. 

We again thank the reviewer for the overall positive comments. 

In further advancing their work, the authors are encouraged to consider the following minore 
comments: 

1. The authors report mural cells to be more homogenous than fibroblasts. Although this finding
seems very interesting at first, it cannot be excluded that this may rather be explained by
artefacts introduced by employing low-depth scRNA-Seq. As clustering approaches take the
variable gene expression across all genes into account, the degree to which cellular
heterogeneity can be assessed depends on total genes and gene counts identified on a per cell
basis. If the median nGene/cell is lower for mural cells than for fibroblasts, the pool of variable
genes that can be used for clustering is restricted, which could lead to underappreciation of
heterogeneity. This phenomenon can be observed with other low RNA containing cells (e.g.
endothelial cells, for which a pronounced core transcriptome seems to mask variable gene
expression), where clustering approaches fail to capture heterogeneity effectively (especially if
gene expression changes gradually/is zonated). One way to circumvent
this problem could be iterative and random downsampling of genes taken into account for
clustering to equal numbers for mural cells and fibroblasts.

The reviewer raises an important point, which we agree is central to our study. The 
clustering method used in this study (the pagoda2 pipeline) is indeed based on the most 
variable genes detected by the algorithm (usually ≈3000 genes). To minimize the 
introduction of artifacts caused by limited or differential sampling of mRNA from the 
different cell types, we already previously applied stringent quality filtering criteria (library 
size > 50000 counts, > 1500 expressed genes, < 10% ERCC, < 10% mitochondrial gene 
expression) for cell-inclusion, which are now better explained in the manuscript (page 30, 
line 928-933). In the included cells, the median number of expressed genes per cell are 
3970 for mural cells and 4730 for fibroblasts, which is proportional to the total 
(cumulative) number of genes expressed (14078 in mural cells (clusters 6,11,14,16) and 
17908 in fibroblasts (all other clusters)).  Hence, we detect more genes/cell in fibroblasts 
likely because they express more genes. While this already suggests that fibroblasts are 



more heterogeneous than mural cells, the question remains if the relative homogeneity of 
the mural cells in the UMAP landscape is due to masking through the presence in the 
same landscape of the more variable fibroblasts. However, this does not seem to be the 
case because: 
 
1. Separate analysis of mural cells (see Figure 7 and Supplementary Figure 9) shows a 

similar (limited) dispersion of the organ-specific cell populations as when the mural 
cells are clustered together with the fibroblasts (see Figure 2a, b); thus, the presence 
of fibroblasts in the clustering and UMAP display does not appear to mask 
heterogeneity among the mural cells.  

2. Clustering based on the limited gene sets representing different GO entities (see 
Figure 2c and Supplementary Figure 3c-e) shows less mural cell UMAP dispersal 
compared to fibroblasts irrespective of chosen GO-gene set. Again, fibroblasts 
expressed a higher (cumulative) number of genes than mural cells also here, e.g. 
780 vs. 619 for ECM+matrisome, 1104 vs. 900 for cell-cell signaling, 1899 vs. 1635 
for cell surface receptor signaling.   

3. We nevertheless re-assessed dispersal following data down-sampling. There are 
several ways to do this. For simplicity, we removed all fibroblasts with more than 
4000 expressed genes and re-calculated the UMAP dispersion for the remaining set 
of cells (see the Figure 1 and Legends in the appended Data for reviewer). This is a 
“conservative” way to down-sample, as it actually leads to a lower average number of 
genes per cell for the included fibroblasts than for the mural cells. In spite of this, the 
result showed a similar UMAP dispersion as the complete dataset including lung and 
brain (Figure 8), with organ origin as the main driver of dispersion of fibroblasts, 
whereas mural cells continue to cluster more homogenously.  

 
 
2. Fig. 3f: The authors show that gene expression is zonated for perisymal cells. It is not clear, 
however, alongside which axis and in which direction (as done in Fig. S7b)) 
 

We thank the reviewer for asking this question, alerting us to be more cautious in our use 
of the term zonation, which as the reviewer notes infers gene expression changes along 
an anatomical axis or direction. Because we have not yet defined any spatial point of 
reference (e.g. muscle surface, vessel/nerve bundle or other) or anatomical axis (e.g. A-
P, D-V etc..), to which the perimysial heterogeneity can be related, we now call it 
molecular diversity instead of zonation. We briefly mention (see page 7, line 196-200) 
that this is an interesting question for future work, and have changed the terminology also 
in Figure 3 and Supplementary data 7. 

 
3. Fig. 4 displays fibroblast heterogeneity in the heart and cross-references a Wif1 expressing 
subpopulation (that shows strong similarity with valve interstitial cell types that have previously 
been published) with transcriptionally similar cells from the skeletal muscle (perimysial cells). 
While this clearly illustrates the power of multi-organ high-resolution atlases, it is a little 
strangethat the other subpopulations are not at all characterised or even mentioned in the text. 
 

We thank the reviewer for pointing this out. The remaining fibroblast populations in the 
heart exhibited only limited dispersion in our UMAP analysis (Suppl. Figure 2a), which is 
in line with other published work (Farbehi et al., eLife 2019), but we realize that this 
notion did not come across very well. We have therefore rewritten this part in the revised 
version (the end of the Results - Heart section, page 8, line 242-244.  
 

4. The authors elegantly show that fibroblast gene expression is zonated in a similar manner as 
for epithelial cells in the colonic mucosa. While this is a very interesting finding, it also makes 
room for new questions, e.g. is the zonation complementary or additive between cell types?, 
which cell type is instructive for establishing zonation?, what are the key molecules for 
establishing zonation? In-depth analyses might be beyond the scope for the manuscript, but the 



authors could still hypothesize and discuss a bit more how they envision the zonation to be 
established. 
 

We agree with the reviewer that the zonation of fibroblasts in the intestinal mucosa is 
intriguing. We followed the suggestion of the reviewer and have extended the discussion 
of these data with respect to the interplay and reciprocal signaling of intestinal (colonic) 
epithelial cells and fibroblasts, in the Discussion section (page 16, line 497-506).  

 
5. The authors obtained only a very low number of pericytes from skeletal muscle or bladder and 
argue that this might be due to inefficient tissue dissociation. This explanation, as it stands, does 
not seem credible. As SMART-Seq2 is a plate-based scRNA-Seq platform and the authors used 
FACS sorting to enrich and purify cells, this would mean that the authors were only able to sort 10 
cells from the whole organ. Is that correct or did the authors sort a larger number of cells and 
library generation was only successful for 10 cells? In the latter case, could the authors comment 
on what they think is the issue generating libraries from muscle/bladder pericytes as compared to 
other organs (RNA content, sensitivity)?  
 

We appreciate this comment, which made us realize that we had not done a very good 
job in explaining that the transgenic reporter lines used to sort mural cells also captures 
fibroblasts, which are far more abundant. Thus, out of a large number of sorted cells 
(from e.g. the PdgfrbGFP mice) only 10 eventually turned out to be skeletal muscle and 
bladder pericytes. In other words, we sorted many cells from the skeletal muscle and 
bladder that exhibited similar features (FACS) as pericytes from the heart, however, their 
transcriptome eventually revealed that these cells were fibroblasts. We have rewritten the 
description to better explain this (page 11, line 334-336, 346-348). 
 
Why do we capture so few pericytes from skeletal muscle, when by morphology we can 
readily find them in the tissue? We know from our previous experience and from others’ 
published data (where pericytes are notoriously endothelium-contaminated) that it is hard 
to separate endothelial cells from pericytes during tissue disintegration. Therefore, we 
used anti-CD31 antibody to eliminate endothelial-mural doubles. In all our FACS runs, we 
could observe contaminated (e.g. PdgfrbGFP+ and CD31+) cells (as seen in 
Supplementary Figure 1a) to a varying extent. Note that these are not necessarily 
complete cell doublets, which would be possible to distinguish by size or DNA content, 
but mostly cell fragment contamination, as judged by the variation in amount (as little as 
5% of endothelial transcriptome can be readily detected). To assure that we analyzed 
pure pericytes, we excluded all such double-positive cells by FACS and during the initial 
QC of the transcriptome data. This is now also more clearly described in the revised 
version (page 29, line 892-893, page 30, line 939-941). In conclusion, we therefore do 
not believe that the low number of pericytes from the skeletal muscle and bladder is due 
to difficulties in library preparation (low quality RNA), but rather the inherent difficulty in 
obtaining pure (free from endothelial fragment contamination) pericytes, especially from 
the skeletal muscle.  
 
In the case of the bladder, as also discussed in the manuscript, we found that the bladder 
mucosa capillaries differ in their morphology compared to the other capillary beds. We 
also found that mural cells of the bladder mucosal capillaries exhibited a higher level of 
Acta2 positivity. Therefore, it is not unlikely that bladder mural cells numbers are 
dominated by smooth muscle-like cells, simply because typical capillaries (i.e. ≈5 µm 
diameter microvessels) and typical pericytes are rare. We have included a brief 
mentioning of this in the revised version (page 11, line 346-348 and page 15, line 449-
451).  
 

 
 
6. The authors show in a very elegant approach that the matrisome is what drives fibroblast 



heterogeneity. As total transcription factors expression did not seem to contribute much to the 
observed heterogeneity, the authors could use a reverse approach by running motif enrichment 
analyses for the differentially expressed matrix modulators in order to identify key transcription 
factors that drive heterogeneity (it is clear that the signature of a handful of differentially 
expressed transcription factors will be “diluted” within the bulk set). Furthermore, it would add to 
the understanding of pericyte heterogeneity if a similar analysis was performed.  
 

This is an interesting point, which we admit had escaped our attention. We have now 
performed this analysis. As input gene list, we selected those genes of the 
ECM+matrisome gene-set that were also amongst the differentially expressed genes 
shown in Supplementary Figure 3b. This list of 155 genes was analyzed using the R-
package RcisTarget, and the result is summarized in Table for reviewer and Data for 
reviewer Figure 2. As can be seen in the Data for reviewer Figure 2, the respective 
transcription factors to the identified motifs do not exhibit a pronounced cluster, or tissue-
specific expression pattern. Overall, the expression of transcription factors can be 
considered as low, and more in-depth analysis would be required to draw reliable 
conclusions. Therefore, we interpret these new results as preliminary, and feel that the 
needed in-depth analysis to pinpoint potential transcription factors controlling 
ECM+matrisome gene-set expression lies beyond the scope for this manuscript. 

 
7. Fig. 8: The authors integrate their current work with a previously published dataset on lung and 
brain fibroblasts/pericytes. Clustering revealed that lung and brain pericytes cluster into separate 
subpopulations, whereas the organs analyzed in this work rather fall into one cluster. Is this due 
to batch-effects or does it mirror fundamental differences in biology and function?  
 

We are confident that the differences seen in the UMAP landscape of the integrated data 
(Figure 8) are not caused by batch-effects. First, the dispersion of the brain pericytes is 
similar to that observed for heart pericytes (relative to the main SMC cluster), and those 
two pericyte populations do exhibit substantial molecular differences (Figure 8d), i.e. 
qualitative differences in the expression of individual genes, exemplified by the ATP13a5 
transporter which is highly and specifically expressed by brain pericytes (see also 
Vanlandewijck et al, Nature 2018); these differences cannot be caused by batch effects.  
 

 
8. The authors used 24 individual mice. Fig S1c is supposed to clarify which cells in the cluster 
were derived from which mouse. Nevertheless, it is impossible to distinguish 24 distinct colors in 
the UMAP. The authors should include a table depicting how many cells came from which mouse 
per cluster. 
 

We appreciate this comment, and agree that the use of 24 distinct colors was not optimal. 
Thus, we include a table depicting the absolute numbers of cells from each biological 
sample per cluster of the overall analysis (new Supplementary Table 5).  

 
9. It is at times difficult to follow which pagoda cluster annotations were used in the Figures (e.g 
Fig. S2a, which I assume derives from Fig. 1). 
 

We thank the reviewer for this remark, and have rephrased the Figure legends, in order 
to improve clarity around the cluster annotation in pagoda2.  

 
Reviewer #4 (Remarks to the Author): 
 
The authors have addressed my concerns and this work represents a useful resource for the 
field. 
 

We thank the reviewer for the positive remarks.  
 



 
 Reviewer #5 (Remarks to the Author): 
 
In general the response to reviewers were positive on many key problems in the original version, 
probably most importantly dealing with sample size. This certainly provides added rigor to an 
already very detailed and technically superb manuscript. Thus, the paper is improved. 
 

We thank the reviewer for the positive comments. 
 
However, a residual question by two reviewers were not answered. Essentially, with vast number 
of manuscripts with scRNAseq data, many focused on fibroblasts and mural cells already, how 
does this manuscript stand apart from the others? Two of the reviewers suggested functional 
studies or differences in disease states. Fibroblasts are key cell types in many disease states, 
and as such, their activation is probably their most important criteria. The authors did not add any 
data to this major critique and instead replied their data set will be important for fibroblast studies 
in general and differentiating from mural cells. This is true, but without functional data, or the 
potential changes in a disease state, the work remains descriptive. 
 
Another lingering component that adds to the descriptive “feel” of the manuscript is there is no 
single marker to identify fibroblasts across organ systems. This is not the fault of the authors for 
the data, but it is likely something could have been done to analyze this further; e.g., in a 
particular disease states, does a common marker for fibroblasts appear? Adding more organs to 
the analysis didn’t necessarily strengthen the initial results, it just added another level of 
complexity to their story (for better or for worse). 
 

We thank the reviewer for the careful evaluation and appreciation of our work. We do 
agree that functional analysis is of paramount interest to expand the analysis of 
fibroblasts and mural cells into various disease states. However, to fully address these 
aspects would be a rather time-consuming exercise, and we follow the Editor’s advice 
that this is therefore better suited for future studies. 
 
We agree that our study is descriptive, and would like to stress that this was indeed the 
scope from the onset of the study, as such a comprehensive cross-organ analysis was 
lacking in the literature. We wanted to achieve the best possible description of the 
differentiated stage during adult homeostasis, to produce a platform based on which we 
and others may now initiate studies focused on specific pathological situations, such as 
fibrosis. 
 
We believe the fact that there is no single marker uniquely identifying fibroblasts or mural 
cells is one of the very important findings in this study. With the help of our gene-sets for 
classification of fibroblasts and mural cells, we and others have a better chance to more 
objectively classify and annotate important cell populations in future studies.  
 
In conclusion, we thank the reviewers for fair and insightful comments, which have made 
it possible for us to produce a stronger version of the manuscript.  

 
 







geneSet motif NES AUC TF_highConf TF_lowConf nEnrGenes rankAtMax enrichedGenes

input gene list hdpi__MBTPS2 5,72 0,145 Mbtps2 (inferredBy_Orthology). 58 1856
Adamts5, Angptl7, Bmp2, Bmp4, Bmp5, Bmp7, Bmper, C1qtnf3, C1qtnf7, Chrdl1, Cilp, Col12a1, Col8a1, Cpxm2, Crlf1, Cxcl14, Dsp, Efemp1, Egflam, Fbn1, 

Fgf10, Fgf7, Fmod, Fn1, Fst, Gpc3, Gpc4, Gpc6, Grem1, Igfbp5, Lmcd1, Ncam1, Nid2, Npnt, Nrg1, P4ha2, Pcsk5, Pdgfc, Postn, Ptn, Scube2, Serpine2, 
Sfrp1, Sfrp2, Slit3, Smoc2, Sost, Srpx2, Tgfbi, Thbs1, Thsd4, Tnc, Tnfsf13b, Tnxb, Vcan, Vit, Wnt2, Wnt5a

input gene list tfdimers__MD00436 4,2 0,12 Arid3a; Runx3 (inferredBy_Orthology). 35 1181 Abi3bp, Bmp7, C1qtnf7, Cdh13, Cilp, Clu, Col12a1, Col14a1, Col8a1, Col8a2, Cspg4, Cxcl14, Dsp, Egflam, Ereg, Fbn1, Gpc3, Gpc4, Hhip, Igfbp5, Igsf10, 
Kera, Lox, Ltbp2, Ncam1, Nid2, Nrg1, Pcsk6, Plxdc2, Ptn, Sema3b, Serpinf1, Slit3, Thsd4, Wnt5a

input gene list transfac_public__M00532 4,05 0,118 Zbtb18 (directAnnotation). 31 996 Angptl1, Angptl7, Cilp, Col11a1, Col11a2, Col14a1, Col16a1, Col8a1, Crlf1, Egflam, F3, Fbln7, Fgf10, Fgf7, Fmod, Grem1, Itih5, Jup, Kera, Lmcd1, Pcsk5, 
Prg4, Ptn, S100a4, Scube1, Smoc2, Srpx2, Tgfbi, Thsd4, Vit, Wnt2

input gene list neph__UW.Motif.0165 4,03 0,117 23 617 Cdh13, Cilp, Col14a1, Colec11, Crlf1, Emid1, Fbln7, Fmod, Gpc4, Igfbp5, Jup, Lmcd1, Ltbp2, Matn2, Npnt, Pdgfa, Ptn, Sema3f, Serpine2, Sfrp1, Spon1, 
Thsd4, Wnt5a

input gene list hdpi__SPATS2 3,92 0,115 Spats2 (inferredBy_Orthology). 69 2743

Adam23, Adamts5, Angptl1, Bmp2, Bmp4, Bmp5, Bmp7, Bmper, C1qtnf3, C1qtnf7, Cdh13, Chrdl1, Col11a1, Col12a1, Col14a1, Col8a1, Cpxm2, Crlf1, Ctsc, 
Cxcl14, Dpt, Dsp, Edil3, Efemp1, Egflam, Fbn1, Fgf10, Fgf7, Fgfr2, Fmod, Fn1, Fndc1, Gpc3, Gpc4, Grem1, Hhip, Igfbp5, Jup, Kera, Lmcd1, Lox, Lpl, Ncam1, 

Nid2, Npnt, Nrg1, Pcsk5, Pdgfc, Plxdc2, Postn, Ptn, Sema3c, Serpine2, Sfrp1, Sfrp2, Sfrp4, Smoc2, Sost, Spon1, Srpx, Srpx2, Tgfbi, Thbs1, Thsd4, Tnc, 
Vcan, Vit, Wnt2, Wnt5a

input gene list hdpi__HP1BP3 3,91 0,115 Hp1bp3 (inferredBy_Orthology). 66 3179
Adamts5, Agt, Angptl7, Bmp2, Bmp4, Bmp7, C1qtnf3, C1qtnf7, Chrdl1, Col11a1, Col12a1, Col14a1, Col8a1, Cpxm2, Cxcl14, Dsp, Efemp1, Egflam, Ereg, F3, 
Fbln7, Fbn1, Fgf10, Fmod, Fn1, Fst, Gdf10, Gpc3, Gpc4, Gpc6, Grem1, Igfbp3, Igfbp5, Igsf10, Jup, Lmcd1, Ltbp2, Ncam1, Nid2, Npnt, Nrg1, P4ha2, Pcsk5, 
Pdgfa, Pdgfc, Plxdc2, Postn, Ptn, Scube2, Sema3f, Sfrp1, Sfrp2, Sfrp4, Slit3, Smoc2, Spon1, Srpx, Srpx2, Tgfbi, Thbs1, Thsd4, Tnc, Tnxb, Vcan, Vit, Wnt5a

input gene list swissregulon__hs__ZNF238.p2 3,89 0,115 Zbtb18 (inferredBy_Orthology). 37 1399 Angptl1, Angptl7, Bmp5, Cilp, Col11a2, Col12a1, Col14a1, Col16a1, Col8a1, Crlf1, Dpt, Egflam, F3, Fbln7, Fgf10, Fgf7, Fstl3, Grem1, Hspg2, Itih5, Jup, Kera, 
Lmcd1, Nid2, Pcsk5, Prg4, Ptn, S100a4, Scube1, Smoc2, Spon1, Srpx2, Tgfbi, Thbs1, Thsd4, Vit, Wnt2

input gene list hocomoco__TWST1_MOUSE.H11MO.0.B 3,76 0,113 Twist1 (directAnnotation). Ep300 (inferredBy_MotifSimilarity_n_Orthology). 25 757 Adamts5, Bmp7, Cilp, Col14a1, Col16a1, Col5a3, Cspg4, Efemp1, Fbn1, Fgf10, Frzb, Kera, Ltbp2, Nid2, Plxdc1, Ptn, S100a4, Sema3c, Sema3f, Serpinf1, 
Sfrp2, Smoc2, Tgfbi, Thsd4, Wnt5a

input gene list hocomoco__TWST1_HUMAN.H11MO.0.A 3,74 0,112 Twist1 (inferredBy_Orthology). Ep300 (inferredBy_MotifSimilarity_n_Orthology). 69 3387

Adam33, Adamts5, Angptl7, Bmp7, Ccl11, Cilp, Col11a1, Col12a1, Col14a1, Col16a1, Col5a3, Col8a2, Crlf1, Cspg4, Ctsc, Cxcl1, Cxcl12, Cxcl14, Efemp1, 
Egflam, Emilin2, Fbn1, Fgf10, Fgf7, Fndc1, Frzb, Gdf10, Gpc3, Gpc6, Grem1, Hhip, Hpse, Igfbp5, Igsf10, Jup, Kera, Lmcd1, Lpl, Ltbp2, Matn2, Ncam1, Nid2, 

P4ha2, Pcsk5, Pdgfc, Plxdc1, Plxdc2, Prg4, Ptn, S100a4, Scube1, Sdc3, Sema3c, Sema3f, Serpinf1, Serpini1, Sfrp2, Slit3, Smoc2, Srpx, Tgfbi, Thbs1, Thsd4, 
Tnfsf13b, Vcan, Vit, Wif1, Wnt2, Wnt5a

input gene list transfac_pro__M08897 3,74 0,112 Smad1; Smad2; Smad3; Smad4; Smad5; Smad6; Smad9 (directAnnotation). 14 273 Angptl7, Cilp2, Col8a2, Cspg4, Fmod, Fndc1, Jup, Ltbp2, P4ha2, Pcsk6, Scube1, Sema3f, Tgm2, Tinagl1

input gene list cisbp__M5904 3,7 0,112 Tead1 (inferredBy_Orthology). Tead2, Tead3, Tead4 (inferredBy_MotifSimilarity_n_Orthology). 26 830 Adam33, Adamtsl4, Apoe, Col12a1, Col5a3, Col8a2, Crlf1, Dsp, Efemp1, Emid1, Fbn1, Fgf7, Gpc3, Grem1, Hhip, Hspg2, Igfbp5, Jup, Lama5, Lmcd1, Lox, 
P4ha2, Ptn, Slit3, Smoc2, Thsd4

input gene list taipale__TEAD4_DBD_NRCATTCCWN 3,64 0,111 Tead4 (inferredBy_Orthology). Tead1, Tead2, Tead3 (inferredBy_MotifSimilarity_n_Orthology). 20 564 Adam33, Adamtsl4, Apoe, Cdh13, Col12a1, Col8a2, Crlf1, Fgf7, Gpc6, Grem1, Hhip, Hspg2, Igfbp5, Jup, Lama5, Lmcd1, P4ha2, Ptn, Sfrp1, Smoc2

input gene list taipale__TEAD1_full_NRMATWCCWN_repr 3,58 0,11 Tead1 (inferredBy_Orthology). Tead2, Tead3, Tead4 (inferredBy_MotifSimilarity_n_Orthology). 25 813 Adam33, Adamtsl4, Apoe, Col12a1, Col5a3, Col8a2, Crlf1, Dsp, Efemp1, Fgf7, Gpc3, Gpc6, Grem1, Hhip, Hspg2, Igfbp5, Jup, Lama5, Lmcd1, Lox, P4ha2, 
Ptn, Slit3, Smoc2, Thsd4

input gene list hdpi__TSN 3,57 0,11 Tsn (inferredBy_Orthology). 25 798 Adamts5, Bmp5, C1qtnf7, Chrdl1, Col12a1, Col14a1, Col8a1, Fbn1, Fn1, Fst, Gpc3, Gpc6, Igfbp3, Igfbp5, Kera, Lox, Nrg1, Pcsk5, Pdgfc, Ptn, Sema3c, Sfrp2, 
Slit3, Srpx2, Vcan

input gene list hdpi__ABCF2 3,55 0,109 Abcf2 (inferredBy_Orthology). 61 2671
Adam23, Adamts5, Angptl1, Angptl7, Bmp2, Bmp4, Bmp5, Bmper, C1qtnf3, C1qtnf7, Cdh13, Chrdl1, Cilp, Col11a1, Col12a1, Col14a1, Col8a1, Cpxm2, Crlf1, 
Ctsc, Cxcl14, Dpt, Dsp, Efemp1, Egflam, Fbn1, Fgf10, Fgf7, Fgfr2, Fmod, Fn1, Fndc1, Fst, Gpc3, Gpc4, Gpc6, Grem1, Hhip, Jup, Lmcd1, Ncam1, Nid2, Nrg1, 

Pcsk5, Pdgfc, Plxdc2, Postn, Ptn, Sema3c, Sfrp1, Sfrp2, Sfrp4, Smoc2, Srpx, Srpx2, Tgfbi, Thsd4, Vcan, Vit, Wnt2, Wnt5a

input gene list cisbp__M1523 3,51 0,108 Nfatc1, Nfatc2, Nfatc3, Nfatc4 (inferredBy_MotifSimilarity_n_Orthology). 30 984 Adamts5, Adamtsl3, Agt, C1qtnf7, Cilp2, Col14a1, Col8a1, Col8a2, Crlf1, Egflam, Fbn1, Fmod, Fn1, Frzb, Grem1, Lmcd1, Ncam1, Nrg1, Pcsk5, Ptn, Scube2, 
Sema3c, Sfrp2, Slit3, Srpx2, Thsd4, Tnxb, Vcan, Wnt2, Wnt5a

input gene list cisbp__M5908 3,5 0,108 Tead4 (inferredBy_Orthology). Tead1, Tead2, Tead3 (inferredBy_MotifSimilarity_n_Orthology). 19 582 Adam33, Adamtsl4, Apoe, Cdh13, Col12a1, Col8a2, Crlf1, Fgf7, Gpc6, Grem1, Hhip, Hspg2, Igfbp5, Jup, Lama5, Lmcd1, P4ha2, Sfrp1, Smoc2

input gene list jaspar__MA0624.1 3,48 0,108 Nfatc1, Nfatc2, Nfatc3, Nfatc4 (inferredBy_MotifSimilarity_n_Orthology). 33 1195 Adamts5, Adamtsl3, Agt, Bmp2, C1qtnf7, Cilp2, Col14a1, Col8a1, Col8a2, Crlf1, Egflam, Fbn1, Fmod, Fn1, Frzb, Grem1, Igfbp5, Lmcd1, Ncam1, Nrg1, Pcsk5, 
Ptn, Scube2, Sema3c, Sfrp2, Slit3, Srpx2, Thsd4, Tnxb, Vcan, Vit, Wnt2, Wnt5a

input gene list transfac_pro__M01267 3,42 0,107 Fosl1 (directAnnotation). 
Fos, Fosb, Fosl2, Jun, Junb, Jund (inferredBy_MotifSimilarity). Batf, 
Bmyc, Ep300, Mef2a, Myc, Stat3 
(inferredBy_MotifSimilarity_n_Orthology). 

37 1404 Cdh13, Clu, Col12a1, Col16a1, Col5a3, Col8a1, Cspg4, Cxcl1, Efemp1, Ereg, F3, Fbn1, Fgf10, Fgf7, Fmod, Gpc4, Hspg2, Htra3, Igfbp3, Jup, Lama5, Lmcd1, 
Lox, Ltbp2, Matn2, Nid2, Pcolce2, Pcsk6, Pdgfa, Ptn, Scube2, Sema3b, Serpine2, Tgfbi, Tgm2, Vit, Wnt2

input gene list transfac_pro__M04870 3,38 0,106 Hdac2 (inferredBy_Orthology). 22 683 Bmp4, Clu, Col12a1, Col8a1, Col8a2, Fgf7, Fmod, Jup, Lpl, Pcsk5, Pdgfc, Postn, Ptn, Sema3b, Sema3f, Serpine2, Smoc2, Spon1, Tgfbi, Thsd4, Vcan, Wnt2

input gene list tfdimers__MD00274 3,37 0,106 Mycn (inferredBy_Orthology). 26 829 Adamts5, Bmp5, Bmp7, C1qtnf7, Cilp, Col5a3, Emilin2, Fgf10, Fgl2, Fndc1, Frzb, Grem1, Hhip, Igfbp5, Jup, Lox, Nid2, P4ha2, Pdgfa, Pdgfc, Ptn, Sfrp2, 
Smoc2, Srpx, Tgfbi, Thsd4

input gene list taipale__ZNF238_DBD_NNTCCAGATGTKN_repr 3,37 0,106 Zbtb18 (inferredBy_Orthology). 38 1561 Adam33, Angptl7, Bmp2, Bmp5, Cilp, Col11a1, Col11a2, Col14a1, Col16a1, Col8a2, Crlf1, Dpt, F3, Fbln7, Fgf10, Fgf7, Fmod, Fn1, Fstl3, Grem1, Hhip, Itih5, 
Jup, Kera, Lmcd1, Nid2, Pcsk5, Prg4, Ptn, S100a4, Scube1, Spon1, Srpx2, Tgfbi, Thbs1, Thsd4, Vit, Wnt2

input gene list homer__GGYCATAAAW_caudal 3,37 0,106
Cdx1, Cdx2, Hoxa10, Hoxa11, Hoxa9, Hoxc11, Hoxc12, Hoxd10, 
Hoxd11 (inferredBy_MotifSimilarity). Cdx4, Evx2, Hoxc10, Hoxc9 
(inferredBy_MotifSimilarity_n_Orthology). 

18 450 Bmp5, Col14a1, Crlf1, Cxcl12, Cxcl14, Gpc6, Jup, Ncam1, Nid2, Nrg1, Pcsk6, Pdgfc, Scube2, Slit3, Tgfbi, Thsd4, Tnc, Wnt5a

input gene list flyfactorsurvey__CG10904_SANGER_5_FBgn00349453,35 0,106 36 1469 Abi3bp, Bmp2, Bmp5, C1qtnf7, Cilp, Clu, Col11a1, Col12a1, Col14a1, Col5a3, Col8a1, Fbn1, Fgf10, Fgf7, Fmod, Frzb, Fst, Gdf10, Gpc3, Gpc6, Grem1, 
Igfbp3, Igfbp5, Jup, Lama2, Ncam1, Ptn, Scube1, Sema3c, Slit3, Srpx2, Thsd4, Tnc, Vcan, Wif1, Wnt5a

input gene list cisbp__M1520 3,34 0,106 Nfatc1, Nfatc2, Nfatc3, Nfatc4 (inferredBy_MotifSimilarity_n_Orthology). 31 1069 Adamts5, Adamtsl3, Agt, Bmp2, C1qtnf7, Cilp2, Col14a1, Col8a1, Crlf1, Egflam, Fbn1, Fmod, Fn1, Frzb, Grem1, Igfbp5, Lmcd1, Ncam1, Nrg1, Pcsk5, Ptn, 
Scube2, Sema3c, Sfrp2, Slit3, Srpx2, Thsd4, Tnxb, Vcan, Wnt2, Wnt5a

input gene list homer__ATTTAATGGG_EGL-5 3,34 0,106 25 734 Bmp5, Bmp7, Bmper, Ereg, Fgfr2, Fn1, Fndc1, Fst, Gpc4, Gpc6, Nrg1, Pdgfc, Plxdc2, Postn, Ptn, Scube2, Sema3c, Serpine2, Slit3, Spon1, Thsd4, Tnxb, 
Vcan, Vit, Wnt5a

input gene list predrem__nrMotif1838 3,29 0,105 18 455 Adamts5, Col12a1, Efemp1, Fbn1, Fgf10, Fgf7, Gpc6, Jup, Lpl, Ncam1, Pcsk5, Pdgfa, Scube1, Sema3f, Spp1, Tnxb, Vcan, Wnt2

input gene list cisbp__M5968 3,25 0,104 Zbtb18 (inferredBy_Orthology). 29 1042 Adam33, Angptl7, Bmp5, Cilp, Col16a1, Col8a2, Crlf1, Dpt, F3, Fbln7, Fgf10, Fgf7, Fn1, Fstl3, Grem1, Itih5, Kera, Lmcd1, Nid2, Pcsk5, Prg4, Ptn, S100a4, 
Scube1, Srpx2, Tgfbi, Thbs1, Vit, Wnt2

input gene list predrem__nrMotif1375 3,24 0,104 30 1115 Abi3bp, Adamtsl4, Bmp4, Bmp7, C1qtnf7, Chrdl1, Col16a1, Dsp, Fgf10, Frzb, Gdf10, Gpc6, Grem1, Hhip, Jup, Lama2, Lox, Matn2, Ncam1, Nid2, Nrg1, Ptn, 
Scube2, Serpini1, Sfrp1, Tgm2, Thsd4, Tnxb, Vcan, Wnt2

input gene list cisbp__M6230 3,24 0,104 Fosl2 (inferredBy_Orthology). 
Atf3, Bach2, Batf, Fos, Fosb, Fosl1, Jdp2, Jun, Junb, Jund 
(inferredBy_MotifSimilarity). Bmyc, Ep300, Myc, Nfe2, Rcor1, Smarcc1, 
Stat3, Tcf12, Tcf7l2 (inferredBy_MotifSimilarity_n_Orthology). 

14 273 Clu, Col12a1, Col5a3, Cspg4, Egflam, Ereg, F3, Fgf7, Lama5, Lmcd1, Ltbp2, Pcsk6, Pdgfa, Sema3b

input gene list hdpi__FLJ37078 3,23 0,104 Srrm3 (inferredBy_Orthology). 20 597 Adamts5, Bmp2, Bmp5, Chrdl1, Col14a1, Efemp1, Fgf10, Fgf7, Fn1, Fst, Gdf10, Gpc3, Gpc4, Postn, Sema3c, Serpine2, Sfrp2, Spon1, Vit, Wnt2

input gene list dbcorrdb__EZH2__ENCSR000AQE_1__m4 3,23 0,104 Ezh2 (inferredBy_Orthology). 34 1270 Adamtsl4, Agt, Bmp5, Bmp7, Cdh13, Clu, Col12a1, Col16a1, Col5a3, Cpxm2, Dsp, Egflam, Emid1, Fbn1, Fgfr2, Fmod, Frzb, Fst, Gpc4, Igfbp5, Jup, Lmcd1, 
Matn2, Ncam1, Npnt, Nrg1, P4ha2, Ptn, Scube2, Serpine2, Tgfbi, Tnfsf13b, Vcan, Vit

input gene list predrem__nrMotif1807 3,23 0,104 49 2141
Adamts5, Adamtsl4, Bmper, Cdh13, Chad, Cilp, Clu, Col11a2, Col12a1, Col14a1, Col8a1, Col8a2, Crlf1, Efemp1, Fbn1, Fgf10, Fgf7, Fmod, Fndc1, Frzb, Fst, 
Gdf10, Grem1, Hhip, Hspg2, Igfbp5, Jup, Lmcd1, Lpl, Ltbp2, Matn2, Ncam1, Nid2, Npnt, Nrg1, Ptn, Scube2, Sema3c, Sema3f, Serpine2, Serpinf1, Serpini1, 

Sfrp1, Smoc2, Sost, Spon1, Tgfbi, Thsd4, Vit
input gene list predrem__nrMotif876 3,2 0,103 18 482 Angptl7, Col14a1, Col5a3, Col8a1, Col8a2, Cxcl14, Ereg, Fgf10, Fmod, Fst, Grem1, Hhip, Hspg2, Jup, Serpine2, Tgfbi, Tnfsf13b, Wnt5a

input gene list taipale__ZNF238_full_NNTCCAGATGTKN 3,19 0,103 Zbtb18 (inferredBy_Orthology). 31 1064 Adam33, Angptl7, Bmp5, Cilp, Col11a2, Col14a1, Col16a1, Crlf1, Dpt, Egflam, F3, Fgf10, Fgf7, Fmod, Fn1, Fstl3, Grem1, Itih5, Kera, Lmcd1, Nid2, Pcsk5, 
Ptn, S100a4, Scube1, Srpx2, Tgfbi, Thsd4, Vcan, Vit, Wnt2

input gene list dbcorrdb__TEAD4__ENCSR000BRY_1__m2 3,19 0,103 Tead4 (inferredBy_Orthology). Tead1 (inferredBy_MotifSimilarity_n_Orthology). 29 1067 Adamtsl4, Angptl1, Bcam, Cilp, Clu, Col11a2, Col12a1, Col14a1, Col16a1, Col5a3, Col8a2, Crlf1, Fmod, Grem1, Hspg2, Jup, Lama5, Lmcd1, Nid2, Pdgfa, 
Ptn, Sdc3, Sema3c, Sema3f, Sfrp1, Slit3, Smoc2, Tgfbi, Vit

input gene list cisbp__M4802 3,18 0,103 31 1111 Abi3bp, Bmp2, Bmp5, C1qtnf7, Clu, Col14a1, Col5a3, Col8a1, Fbn1, Fgf10, Fgf7, Fmod, Fst, Gdf10, Gpc3, Gpc6, Grem1, Igfbp3, Igfbp5, Itih5, Lama2, 
Ncam1, Ptn, Sema3c, Slit3, Srpx2, Thsd4, Vcan, Wif1, Wnt2, Wnt5a

input gene list predrem__nrMotif1326 3,18 0,103 23 727 Angptl7, Chrdl1, Clu, Cspg4, Emid1, Fbn1, Fmod, Gdf10, Gpc4, Grem1, Jup, Lmcd1, Lpl, Ncam1, P4ha2, Scube2, Sema3f, Serpine2, Sfrp1, Spon1, Tgm2, 
Vcan, Vit

input gene list cisbp__M1518 3,17 0,103 Nfatc2 (inferredBy_Orthology). Ilf2, Nfatc1, Nfatc3, Nfatc4 (inferredBy_MotifSimilarity_n_Orthology). 32 1108 Adamts5, Adamtsl3, Agt, Bmp2, C1qtnf7, Cilp2, Col14a1, Col8a1, Col8a2, Egflam, Ereg, Fmod, Fn1, Frzb, Fst, Gpc6, Igfbp5, Lmcd1, Ncam1, Nrg1, Pcsk5, 
Plxdc2, Ptn, Sema3c, Sfrp2, Slit3, Srpx2, Tgfbi, Thsd4, Vcan, Vit, Wnt5a

input gene list predrem__nrMotif2308 3,17 0,103 11 176 C1qtnf7, Col12a1, Col5a3, Col8a1, Fmod, Gpc4, Ncam1, Pcsk6, Sfrp1, Slit3, Tgfbi
input gene list transfac_pro__M01889 3,17 0,103 Smad4 (directAnnotation). 12 246 Angptl7, Cdh13, Cilp2, Col8a2, Cspg4, Fmod, Grem1, Jup, Ltbp2, Sema3f, Tgm2, Tinagl1

input gene list fantom__motif88_CCCTCTTT 3,15 0,103 85 4950

Abi3bp, Adamts5, Adamtsl4, Angptl7, Bmp2, Bmp4, Bmp5, Cdh13, Chad, Cilp, Clu, Col11a1, Col11a2, Col12a1, Col14a1, Col8a1, Col8a2, Crlf1, Ctsc, Cxcl1, 
Cxcl12, Cxcl14, Dpt, Dsp, Edil3, Efemp1, Egflam, Emid1, Emilin2, Fbn1, Fgf10, Fgf7, Fmod, Fn1, Fndc1, Frzb, Fst, Gpc3, Gpc4, Grem1, Hhip, Hspb1, Hspg2, 
Htra1, Igfbp3, Igfbp5, Jup, Kera, Lama2, Lama5, Lmcd1, Lox, Lpl, Ltbp2, Matn2, Ncam1, Nid2, Npnt, Nrg1, Pdgfa, Pdgfc, Plxdc1, Plxdc2, Postn, Ptn, Scube1, 

Scube2, Sema3b, Sema3f, Sfrp1, Sfrp2, Sfrp4, Slit3, Smoc2, Spon1, Srpx, Srpx2, Tgm2, Thbs1, Thsd4, Tnxb, Vcan, Vit, Wif1, Wnt5a

input gene list hdpi__NFIX 3,15 0,103 Nfix (inferredBy_Orthology). 76 3900

Abi3bp, Adamts5, Agt, Angptl7, Anxa3, Bmp2, Bmp4, Bmp5, Bmp7, Bmper, C1qtnf3, C1qtnf7, Cdh13, Chrdl1, Cilp, Col11a1, Col12a1, Col16a1, Col8a1, 
Cpxm2, Crlf1, Cxcl12, Cxcl14, Dsp, Edil3, Efemp1, Egflam, Emid1, Ereg, F3, Fbln7, Fbn1, Fgf10, Fgf7, Fn1, Fst, Gdf10, Gpc3, Gpc4, Gpc6, Grem1, Hpse, 

Igfbp3, Igfbp5, Lama2, Lmcd1, Lox, Lpl, Ncam1, Nid2, Npnt, Nrg1, P4ha2, Pcsk5, Pdgfc, Plxdc2, Postn, Ptn, Scube1, Scube2, Sema3b, Sema3c, Sfrp1, Sfrp2, 
Slit3, Smoc2, Sost, Spp1, Srpx, Srpx2, Tgfbi, Thsd4, Tnfsf13b, Vcan, Vit, Wnt2

input gene list transfac_pro__M08828 3,15 0,102 Nfatc3 (inferredBy_MotifSimilarity_n_Orthology). 20 524 Bmp2, Bmp5, Bmper, Cdh13, Col8a1, Col8a2, Crlf1, Efemp1, Fbn1, Fn1, Hpse, Ncam1, Nid2, Pcsk6, Pdgfc, Plxdc1, Serpinf1, Tgfbi, Tnfsf13b, Wnt5a

input gene list predrem__nrMotif98 3,14 0,102 59 2475
Abi3bp, Adam33, Adamdec1, Adamts5, Adamtsl4, Agt, Angptl7, Bmp2, Cilp, Clu, Col11a2, Col14a1, Col16a1, Col8a1, Col8a2, Crlf1, Cxcl14, Dpt, Efemp1, 
Egflam, Emid1, F3, Fbln7, Fbn1, Fgf10, Fgf7, Fndc1, Frzb, Fstl3, Gpc4, Grem1, Hhip, Hspg2, Igfbp5, Jup, Kera, Lmcd1, Ncam1, Nid2, Pcsk5, Pcsk6, Prg4, 

Ptn, S100a4, Scube1, Scube2, Sdc3, Sema3c, Smoc2, Spon1, Spp1, Srpx, Srpx2, Tgfbi, Thsd4, Tnxb, Vcan, Vit, Wnt2

input gene list factorbook__TEAD1 3,13 0,102 Tead1 (inferredBy_Orthology). Tead2 (inferredBy_MotifSimilarity). Tead3, Tead4 
(inferredBy_MotifSimilarity_n_Orthology). 33 1270 Adam33, Bcam, Bmp5, Cilp, Clu, Col11a1, Col14a1, Col5a3, Col8a1, Col8a2, Crlf1, Cxcl1, Emid1, Fbn1, Fgf7, Gpc6, Grem1, Hhip, Hspg2, Jup, Lama5, 

Lmcd1, Ltbp2, Prg4, Ptn, Sema3b, Sema3c, Sema3f, Sfrp1, Sost, Thbs1, Thsd4, Vcan

input gene list taipale__Hoxd9_DBD_CCCATAAAN 3,12 0,102 Hoxd9 (directAnnotation). Hoxa11, Hoxc10 (inferredBy_MotifSimilarity). Hoxc11 
(inferredBy_MotifSimilarity_n_Orthology). 41 1620 Angptl7, Bmp2, Bmp4, C1qtnf7, Chad, Cilp, Col12a1, Cxcl12, Ereg, Fgf10, Fgfr2, Fn1, Frzb, Gpc4, Gpc6, Grem1, Igfbp3, Igfbp5, Igsf10, Jup, Lmcd1, Lox, Lpl, 

Ncam1, Nid2, Nrg1, Pdgfc, Ptn, Scube1, Scube2, Sema3c, Serpine2, Slit3, Smoc2, Tgfbi, Thbs4, Thsd4, Tnxb, Vcan, Vit, Wnt5a

input gene list predrem__nrMotif484 3,12 0,102 27 995 Adamtsl4, Bcam, Clu, Col16a1, Col8a1, Comp, Crlf1, Emid1, Fbn1, Fmod, Gdf10, Gpc4, Grem1, Hspg2, Igfbp5, Jup, Npnt, Pcsk6, Sema3f, Serpina3n, 
Serpine2, Sfrp2, Slit3, Tgfbi, Thbs1, Tnxb, Wnt5a

input gene list transfac_pro__M06132 3,09 0,102 27 1015 Bmp4, Bmp5, Cilp, Clu, Col14a1, Col16a1, Col8a2, Cxcl12, Efemp1, Emid1, Fbn1, Fmod, Grem1, Hspb1, Jup, Lama2, Lox, Nid2, Pcsk6, Ptn, Scube2, Sdc3, 
Sema3b, Sfrp2, Thsd4, Tnxb, Vit

input gene list predrem__nrMotif61 3,09 0,102 26 850 Adamtsl3, Adamtsl4, Clu, Col16a1, Col8a1, Col8a2, Egflam, Fbn1, Fgf10, Fgf7, Fndc1, Fst, Grem1, Ncam1, Pdgfc, Scube1, Sdc3, Sema3f, Serpinf1, Sfrp1, 
Smoc2, Spon1, Tgm2, Tinagl1, Vcan, Vit

input gene list factorbook__AP1 3,06 0,101 Batf; Fos; Fosl1; Fosl2; Jun; Junb; Jund (inferredBy_Orthology). 
Atf3, Bach2, Fosb, Jdp2 (inferredBy_MotifSimilarity). Bmyc, Ep300, 
Gata2, Mef2c, Myc, Rcor1, Smarca4, Smarcc1, Stat3, Tcf7l2 
(inferredBy_MotifSimilarity_n_Orthology). 

16 407 Cilp, Clu, Col12a1, Col16a1, Col8a1, Cspg4, Ereg, Fgf7, Jup, Lama5, Lmcd1, Ltbp2, Pcsk6, Ptn, Sema3b, Tgfbi

input gene list cisbp__M1522 3,06 0,101 Nfatc1, Nfatc2, Nfatc3, Nfatc4 (inferredBy_MotifSimilarity_n_Orthology). 48 1785
Adamts5, Adamtsl3, Agt, Bmp2, C1qtnf7, Cilp2, Col12a1, Col14a1, Col8a1, Col8a2, Crlf1, Dsp, Efemp1, Egflam, Ereg, Fbn1, Fmod, Fn1, Frzb, Fst, Gpc6, 
Grem1, Hspg2, Htra1, Igfbp5, Lmcd1, Ncam1, Nrg1, Pcsk5, Pdgfa, Pdgfc, Plxdc2, Ptn, Scube2, Sema3c, Serpine2, Sfrp1, Sfrp2, Slit3, Sost, Srpx2, Tgfbi, 

Thsd4, Tnxb, Vcan, Vit, Wnt2, Wnt5a

input gene list hocomoco__TEAD4_HUMAN.H11MO.0.A 3,06 0,101 Tead4 (inferredBy_Orthology). Tead2 (inferredBy_MotifSimilarity). Ep300, Tead1 
(inferredBy_MotifSimilarity_n_Orthology). 26 917 Adam33, Anxa3, Bcam, Col14a1, Col5a3, Col8a1, Col8a2, Crlf1, Egflam, Fgf7, Gpc3, Grem1, Hhip, Hpse, Hspg2, Jup, Lama5, Lmcd1, Ncam1, P4ha2, Ptn, 

Sdc3, Sema3c, Slit3, Thsd4, Vit

input gene list cisbp__M6034 3,05 0,101 Hoxd9 (directAnnotation). Hoxa11, Hoxc10 (inferredBy_MotifSimilarity). Hoxc11 
(inferredBy_MotifSimilarity_n_Orthology). 49 2061

Angptl7, Bmp2, Bmp4, Bmp5, C1qtnf7, Chad, Chrdl1, Cilp, Col11a1, Col12a1, Col8a1, Cxcl12, Ereg, Fgf10, Fgfr2, Fmod, Fn1, Frzb, Fst, Gpc4, Gpc6, Grem1, 
Hspb1, Igfbp3, Igfbp5, Igsf10, Jup, Lmcd1, Lox, Lpl, Ncam1, Nid2, Nrg1, Pdgfc, Ptn, Scube1, Scube2, Sema3c, Serpine2, Slit3, Smoc2, Spon1, Tgfbi, Thbs4, 

Thsd4, Tnxb, Vcan, Vit, Wnt5a

input gene list hdpi__SMCR7L 3,05 0,101 Mief1 (inferredBy_Orthology). Snapc4 (inferredBy_MotifSimilarity_n_Orthology). 25 850 Abi3bp, Adamts5, Bmp2, Bmp5, Bmp7, C1qtnf7, Chrdl1, Efemp1, Egflam, Fgf10, Fgf7, Fn1, Gpc3, Grem1, Igfbp3, Igfbp5, Lpl, Pdgfc, Postn, Ptn, Sema3c, 
Smoc2, Thsd4, Vit, Wnt2

input gene list hdpi__AVEN 3,03 0,101 Aven (inferredBy_Orthology). 83 4242

Abi3bp, Adamts5, Adamtsl3, Agt, Angptl7, Anxa3, Bmp2, Bmp4, Bmp7, Bmper, C1qtnf3, C1qtnf7, Cdh13, Chrdl1, Cilp, Clu, Col12a1, Col14a1, Col16a1, 
Col8a1, Col8a2, Cpxm2, Crlf1, Cxcl12, Cxcl14, Efemp1, Egflam, Emid1, Ereg, Fbln1, Fbln7, Fbn1, Fgf10, Fgfr2, Fmod, Fn1, Fst, Gdf10, Gpc3, Gpc4, Grem1, 

Hpse, Hspg2, Igfbp3, Igfbp5, Igsf10, Itih5, Jup, Lama2, Lmcd1, Ltbp2, Matn2, Ncam1, Nid2, P4ha2, Pcsk5, Pdgfa, Plxdc2, Postn, Ptn, Scube2, Sdc3, Sema3b, 
Sema3f, Serpine2, Sfrp1, Sfrp2, Sfrp4, Slit3, Smoc2, Sost, Spon1, Spp1, Srpx, Srpx2, Tgfbi, Thbs1, Thsd4, Tnc, Tnxb, Vcan, Vit, Wnt5a

input gene list dbcorrdb__CBX3__ENCSR000BRT_1__m2 3,02 0,1 Cbx3 (inferredBy_Orthology). 27 1032 Adamtsl4, Chad, Clu, Col8a1, Col8a2, Crlf1, Edil3, Emid1, Fmod, Gpc3, Gpc6, Grem1, Hspg2, Igfbp5, Lama2, Ncam1, Nid2, Nrg1, Postn, Ptn, Serpinf1, Srpx, 
Srpx2, Tgfbi, Vcan, Vit, Wnt2

input gene list

Adam23, Fn1, Igfbp5, Serpine2, Col6a3, Fmod, Prg4, Angptl1, Myoc, Dpt, Itih5, Plxdc2, Hmcn2, Frzb, Grem1, Thbs1, Fbn1, Fgf7, Fbln7, Adam33, Bmp2, 
Tgm2, Bmp7, Lama5, Postn, Igsf10, Serpini1, Pdgfc, Sfrp2, Thbs3, S100a4, Adamtsl4, Col11a1, F3, Npnt, Tnc, Col8a2, Col16a1, Tinagl1, Sdc3, Hspg2, 
Angptl7, Vwa1, Sema3c, Fgl2, Spon2, Htra3, C1qtnf7, Cxcl1, Ereg, Anxa3, Hpse, Spp1, Hspb1, Pdgfa, Wnt2, Ptn, Lmcd1, Cxcl12, Ssc5d, Apoe, Bcam, 

Clec11a, Pcsk6, Adamtsl3, Ctsc, Scube2, Spon1, Fgfr2, Htra1, Cpxm2, Tnfsf13b, Sfrp1, Nrg1, Lpl, Cilp2, Comp, Crlf1, Hhip, Cdh13, Agt, Col5a3, Bmper, 
Ncam1, Cspg4, Thsd4, Cilp, Bmp5, Col12a1, Pcolce2, Col6a4, Sema3b, Sema3f, Clec3b, Lama2, Fstl3, Kera, Wif1, Emid1, Igfbp3, Efemp1, Slit3, P4ha2, 

Serpinf1, Vtn, Ccl11, Chad, Plxdc1, Jup, Sost, Colec11, Ltbp2, Serpina3n, Nid1, Sfrp4, Dsp, Cxcl14, Tgfbi, Edil3, Vcan, Thbs4, Fst, Fgf10, Nid2, Plau, Wnt5a, 
Itih4, Gdf10, Bmp4, Clu, Adamdec1, Gpc6, Egflam, C1qtnf3, Matn2, Nov, Col14a1, Scube1, Fbln1, Abi3bp, Col8a1, Adamts5, Fndc1, Smoc2, Col11a2, Tnxb, 

Emilin2, Vit, Lox, Pcsk5, Srpx, Gpc4, Gpc3, Srpx2, Chrdl1
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