
Supplementary methods: Statistical analysis

Contents

1 Comparing swabs 1

1.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Statistical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Comparing the resuspension buffers 9

2.1 Experimental context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 Comparing swabs

1.1 Experimental design

1.1.1 Swab efficacy

In this experiment, virus was diluted 10-fold in plain DMEM from 5 x 105 pfu/ml down to 5 x 10-4 pfu/ml. For
each dilution a swab (as identified Materials and Methods) was dipped in the virus dilution and transferred
to a different vial containing 0.5 ml of plain DMEM. A sample (140 µl) of this resuspension was used to
isolate RNA using the QIAmp Viral RNA mini kit, as per manufacturer’s instructions. An RT-qPCR assay
was then run as described in the Materials and Methods. This was repeated twice, two individuals performed
the entire process independently.

1.1.2 Swab sampling volume

In this experiment, we aimed to measure the average volume collected by the different swabs being evaluated.
A tube was filled with 1 ml of plain DMEM and weighed. A swab was used to collect DMEM the same way
as it was done above. The tube was weighed again and the difference in weight was used to estimate the
volume of DMEM collected by the swab. Comparing the weights of the empty tube with that of the tube +
1 ml of DMEM allowed an estimation of the density to calculate the volume sampled from the difference in
weights. This was done with 5 different units for each kind of swab.

1.2 Statistical model

Over a wide-enough range of concentrations, biological assays often produce sigmoidal responses. Simple
plots of the data revealed that this was the case here.

In our experiment, the swabs are expected to essentially perform a dilution of the original sample. The
swabs themselves are not expected to, for example, release reverse-transcription or PCR inhibitors into the
resuspension medium. In that context, the parameters of the sigmoidal curve that depend on the assay are
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expected to be the same across the swabs tested. One difficulty with the data set is that the bottom plateau
is never reached; however, there are constraints on the possible values for this parameter (e.g. it cannot be
negative; it cannot be too close to 0 [e.g. 1 or 2] or the system will not call a Cq; it must be low enough to
allow all the existing data to happen).

1.2.1 Fitting the swab comparison data in GraphPad Prism 8

Initially, we attempted to fit the 4-parameter curve using GraphPad Prism 8. Since the Cq values decrease
with increasing virus concentration, we fitted a “log(inhibitor) vs response - variable slope” model. GraphPad
Prism defines this model as:

Response = Bottom + (Top− Bottom)
1 + 10((log10 IC50−X)∗HillSlope)

Where the HillSlope is restrained to be negative, to ensure that the response decreases with increasing
concentration.

As stated above, the swab experiment can be thought of as a dilution of the original virus solutions. In that
context, the values of Bottom, Top, and HillSlope were constrained to be equal across all conditions. This
leaves the midpoint (IC50 above) as the only parameter that changes across conditions.

Running the regressions with those constraints leads to an estimate of the Bottom parameter that is negative.
Since such a result would be impossible, we attempted to add a constraint setting a minimum value for the
Bottom parameter. Constraints were compared setting minimum values from 2 to 9 Cqs. This confirmed
that the midpoint estimate is very sensitive to the location of the Bottom, as would be expected from the
equation. In those attempts, the calculations would always hit the constraint, preventing calculation of the
uncertainty of the midpoint.

1.2.2 Modelling the swab comparison data using a bayesian model

Bayesian models allow the estimation of the most likely values of parameters by combining 4 different inputs:
1) the equation(s) relating the parameters and the experimental variables (both fixed [e.g. virus concentration]
and measured [Cq]); 2) the likelihood, representing the distribution of errors between expected and measured
values of measured variables; 3) the data; and 4) the information encoded in the prior distributions of
the parameters. Bayesian models are not frequently used for most applications due to two main factors:
they can be computationally intensive (which made them all but impossible to use until modern powerful
desktop computers became widespread) and the use of prior distributions, which can possibly be used to
force prespecified outcomes (unconsciously or consciously). However, such models allow us to average over
unknown quantities much more easily than traditional (least-squares-fitted) models.

The model of the Cq vs virus concentration (ln-transformed) was specified as:

Response = Bottom + Span
1 + e((X−ln EC50)∗HillSlope)

Note that the subtraction was reversed, this allows us to make all parameters strictly positive, and that we
use the Span rather than the (Top - Bottom) formulation. The full specification of the model is as follows:

Cq ∼ Normal(µi, σ)

µi = Bottom + Span
1 + e((X−ln EC50i) ∗ HillSlope)

σ ∼ Normal(0, 2)T [0,∞]

Span ∼ Normal(35, 10)
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ln(HillSlope) ∼ Normal(0, 2)

ln EC50i ∼ FlatNormal (−10, 16, 1, 1)

Bottom ∼ FlatNormal(2, 9.5, 0.5, 0.5)

The index i iterates over the different conditions, the index relating the Cq to its concentration X within
each condition was omitted from the notation. The priors for the midpoints (ln EC50[i]) and the Bottom
are specially designed to provide a flat region and “softly” exclude values outside of those regions (the prior
probability outside the flat regions are not 0, therefore not impossible). The prior for the ln EC50[i] (it is the
same for all conditions) looks like this:

Figure 1: Prior distribution of the ln(EC50) on the ln(PFU/ml) scale. The red vertical lines represent the
highest and lowest concentrations of virus tested.

It allows any value inside the range of the data. Essentially assuming that we would not run the model if
the midpoint was not inside the tested range of concentrations.

The prior for the Bottom looks like this:

The bounds for the prior on the Bottom were chosen so that it is unlikely to be at the very early cycles,
as those are always used to calculate the background signal that is subtracted from the fluorescence data.
It also allows a small chance that the Bottom plateau is technically above the lowest Cq, since we expect
measurement noise and the curve is meant to predict the average of the data.

We can use the same sampling algorithm we will use for the complete model to get an idea of what the prior
looks like compared with the data:
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Figure 2: Prior distribution of the Bottom on the Cq scale. The red vertical line represents the lowest Cq
measured.
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We can use these graphs to confirm that the prior is not concentrating the curves near the data, but it does
seem to allow curves that should fit the data.

The full summary of the parameters is in the table and graph below.

Parameter Mean Median L_95 L_50 U_50 U_95
Bottom 5.764416 5.7813467 1.9566409 3.2918123 7.0423776 9.509660
lnEC50s1 3.077579 3.0801254 -9.5609272 0.2752041 13.1562141 15.480870
lnEC50s2 2.887631 2.8092241 -9.6385612 -8.3773899 4.4632847 15.529656
lnEC50s3 2.950776 2.9457050 -9.3831427 -7.3381930 5.5467621 15.699695
lnEC50s4 3.024900 3.0186032 -9.5614149 -0.5231116 12.2879487 15.595898
lnEC50s5 3.025150 3.0786316 -9.5760752 -1.3920843 11.5009883 15.558278
lnEC50s6 2.990950 2.9682224 -9.5391906 -7.1579909 5.7037748 15.524478
lnEC50s7 2.919221 2.8661083 -9.5513825 -7.3249664 5.4841994 15.600170
log10Slope -0.000794 0.0038821 -1.6780381 -0.5225493 0.6442449 1.725365
Sigma 1.599579 1.3570270 0.0001519 0.0004805 1.3572703 3.926282
Span 34.883566 34.8644996 14.9798574 28.6431827 42.0631798 54.025081
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1.2.3 Modelling the swab volumes

Since the volume collected by each swab was measured on different experimental units than the ones used
for virus sampling, we will use the average volume. Also, the curve parameters that we estimate provide
estimates of the average Cq, so it makes sense to estimate the average recovery efficiency at the average swab
transfer volume. Note that any volume can technically be put through the calculations.

In order to have a more robust (i.e. less sensitive to extreme values) estimate of the mean, we will model the
volumes as Student t-distributed measurements with estimated degrees of freedom. The full model, for each
measurement m for swab i is described below:

Volumei,m ∼ Student t (η, µi, σi)

η ∼ exponential (1/10)T [1,∞]

µi ∼ Normal (150, 75)T [0,∞]

σi ∼ Normal (0, 40)T [0,∞]

By using the Student t distribution we can allow the data to generate more outliers than when assuming that
the volumes are normally distributed. In the case where the data is fairly normal, the degrees of freedom
should be large. The priors on the means and standard deviations are left intentionally vague to cover swabs
with low and high volumes. Both are truncated to be positive as standard deviations and volumes cannot
be negative. The prior on the degrees of freedom implies that the data is likely to be not very normal, but
is relatively weak (the exponential prior does not normalize as strongly as the normal prior; especially if the
data suggest that large values are more likely).
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Here is the summary for the prior on the swab volumes (all the means and SDs are the same, so only one of
each is shown here):

Parameter Mean Median L_95 L_50 U_50 U_95
df_vol 11.03770 8.020096 1.0010037 1.0010037 8.020338 30.75749
Mean 154.83997 152.905590 15.0903595 98.7454038 196.522974 283.81156
SD 15.93321 13.419494 0.0019508 0.0034784 13.422635 39.20245

df_vol Mean SD
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1.2.4 Fitting the models

Both the curve fitting and the modeling of the swab volumes are combined in a single model. This creates
a joint posterior, making it easier to carry the uncertainties through all downstream calculations. It also
increases the uncertainty of individual parameter estimates based the total number of parameters in the
model (this is a consequence of the calculations, not an adjustable aspect of the model).

The model is sampled from using Stan version 2.19.3. The Stan code for the model is:

functions{
//The prior for the Bottom and ln(EC50)
real Flat_Normal_lpdf(real y, real mu1, real mu2, real sigma1, real sigma2){

real first_term;
real second_term;

first_term = Phi_approx((y - mu1) / sigma1);
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second_term = Phi_approx((y - mu2) / sigma2);

return(log(first_term - second_term) - log(mu2 - mu1));
}

}
data {

//Data for the swab comparison
int<lower=0> N;
vector[N] Cq;
int<lower = 1> N_swabs_curve;
int<lower = 1, upper = N_swabs_curve> swab_curve[N];
vector[N] ln_conc;

//Data for the volume
int N_vols;
int N_swabs;
int<lower = 1, upper = N_swabs> swab[N_vols];
vector[N_vols] volumes;

//A simple switch, if fit = 0, then we sample the prior, if fit = 1, then we sample the posterior
int<lower = 0, upper = 1> fit;

}
parameters {

real Span;
real Bottom;
real ln_Slope;
vector[N_swabs_curve] lnEC50;
real<lower = 0> sigma;

vector<lower = 0>[N_swabs] mean_vol;
vector<lower = 0>[N_swabs] sd_vol;
real<lower = 1> df_vol;

}

model {
Span ~ normal(35, 10);
Bottom ~ Flat_Normal(2, 9.5, 0.5, 0.5);
ln_Slope ~ normal(0, 2);
for (i in 1:N_swabs_curve)

lnEC50[i] ~ Flat_Normal(-10, 16, 1, 1);
sigma ~ normal(0, 2);

df_vol ~ exponential(1.0 / 10.0);
sd_vol ~ normal(0, 20);
mean_vol ~ normal(150, 75);

if(fit){
real Slope = exp(ln_Slope);
vector[N] Cq_hat = Bottom + exp(log(Span) - log1p(exp(Slope * (ln_conc - lnEC50[swab_curve]))));

Cq ~ normal(Cq_hat, sigma);
volumes ~ student_t(df_vol, mean_vol[swab], sd_vol[swab]);

}
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}

The parameter of interest is the ability of the swab to recover, in the resuspension, as much of the virus
that was present in the volume of sample it transferred. If a swab is considered as a way to collect a mostly
liquid sample from a surface and dilute it into a resuspension medium we can calculate, from the shift in
the EC50 between the original and diluted solutions, the efficiency with which the virus was released in the
resuspension medium. This is likely to be a simplified model of swabbing, neglecting the roles of molecular
interactions between the virus and the swab.

We do this by using the estimated average swab volume to calculate the expected dilution factor that should
be produced by the swab. Next, we calculate the expected EC50 using the expected dilution factor and the
EC50 of the original solution. The ratio of the expected EC50 to the estimated EC50 (which should be larger,
as recovery should not be perfect) provides an estimate of the recovery from the swab.

Code for the calculations and graphing is provided in supplementary materials.

2 Comparing the resuspension buffers

2.1 Experimental context

The MedPro Cotton Tipped swab was used to sample a virus solution at different concentrations and was
resuspended in various media (PBS, normal saline, 100% ethanol, Virus Transport Medium (VTM), and
DMEM). The transferred samples were used to isolate RNA at various time points (0, 1, 2, and 3 days post
resuspension) and the Cq was measured.

2.2 Model

Here we simply model the change in Cq over time as a linear trend. The long-term change in RNA is likely
non-linear, but the experimental design did not extend far enough to make the non-linearity apparent. The
change should also be monotonic, so a straight line should still provide some information about the overall
rate of change over time.

Since at least one medium has samples where virus could not be detected by RT-qPCR, it is important
to have an estimate of the probability of detecting virus at all. To this end, the linear model is built into
a hurdle model, which estimates the probability, for every dose for every medium, of detecting virus (this
probability is called θ).

For medium m and sample i we have:

p(Cqm,i
| θ, µm, σ) =

{
(1− θ) if Undetected
θ ∗Normal (µm, σ) T [−∞, 45] Otherwise

θ ∼ Beta(1, 1)

µm = Interceptm + Slopem ∗Dayi

Interceptm ∼ Normal (25, 10)

Slopem ∼ Normal (0, 1)

σ ∼ Normal (0, 1) T [0,∞]

The swab sampling volumes are also included, using the same model as before. The prior on the probability
of detection is left uninformative, the Beta(1, 1) assigns an equal probability to all values between 0 and 1,
inclusively. This prior is also slightly normalizing, so that even if all samples are detected, the posterior mean
and median will not be at 1 (although the posterior mode might). The prior on the intercepts softly restricts
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the it to a reasonable range (the Cq at time 0 should be measureable). The prior on the slope was chosen
both for normalizing properties and from our experience with viral suspensions. Viral suspensions do not
generally loose many Cqs over a day. This is not necessarily true when such suspensions are prepared from
patient samples (such as oro-pharyngeal swabs), which will contain many contaminating agents, including
bacteria, proteases, and nucleases.
The full code for the model (implemented in Stan) is below:

data{
int N;
int N_media;
int<lower = 1, upper = N_media> media[N];
vector[N] dpi;
vector[N] Ct;

int N_vols;
int N_swabs;
int<lower = 1, upper = N_swabs> swab[N_vols];
vector[N_vols] volumes;

int<lower = 0, upper = 1> fit;
}
parameters{

vector[N_media] intercepts;
vector[N_media] slopes;
real<lower = 0> sigma;
vector<lower = 0, upper = 1>[N_media] thetas;

vector<lower = 0>[N_swabs] mean_vol;
vector<lower = 0>[N_swabs] sd_vol;
real<lower = 1> df_vol;

}
model{

vector[N] means = intercepts[media] + slopes[media] .* dpi;

intercepts ~ normal(25, 10);
slopes ~ normal(0, 1);

sigma ~ normal(0, 1);

df_vol ~ exponential(1.0 / 10.0);
sd_vol ~ normal(0, 20);
mean_vol ~ normal(150, 75);

thetas ~ beta(1, 1);

if(fit){
for (i in 1:N){

if(Ct[i] >= 45){
0 ~ bernoulli(thetas[media[i]]);

} else {
1 ~ bernoulli(thetas[media[i]]);
Ct[i] ~ normal(means[i], sigma) T[, 45];

}
}
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volumes ~ student_t(df_vol, mean_vol[swab], sd_vol[swab]);
}

}

The priors produce the following “fit”:

P(Detection) = 0.5P(Detection) = 0.5

P(Detection) = 0.5P(Detection) = 0.5P(Detection) = 0.5
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P(Detection) = 0.5P(Detection) = 0.5

P(Detection) = 0.5P(Detection) = 0.5

P(Detection) = 0.5P(Detection) = 0.5P(Detection) = 0.5
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As with the EC50s in the previous section, the intercepts can be used to evaluate the early efficiency with
which the various media can release viruses from the MedPro Cotton swab. The calculation is similar to
that above, where the volume transferred by the MedPro Cotton swab is used to estimate an expected Cq
and the difference between the expected Cq and the estimated intercept provides an estimate of the recovery
efficiency.

The code for fitting the model and performing graphing/calculations is in Supplementary Materials.
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