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Supplementary Strategy Overview 6 

As described in the main text, we employed a probabilistic causal network framework to 7 
construct predictive models of AD.  The input data to construct these models were generated as 8 
part of the AMP-AD consortium, and included whole exome sequencing (WES), RNA 9 
sequencing (RNA-seq, referred to as gene-expression hereafter), and protein-expression data 10 
from the anterior prefrontal cortex (Brodmann area 10, BM10) in a large cohort of post-mortem 11 
samples from the Mount Sinai Brain Bank (MSBB, N=364, with 307 having both DNA and 12 
RNA, 217 both DNA and protein, and 217 having all three), across the complete spectrum of AD 13 
clinical and neuropathological traits (from controls to neuropathologically-proven AD, Fig. 1a) 14 
and with no other co-morbidities1. To focus the input of molecular traits for network 15 
reconstruction on traits associated with AD, we examined associations between the molecular 16 
data and AD clinical and neuropathological features to identify AD gene- and protein- 17 
expression signatures. Gene- and protein- expression traits co-regulated with these AD signatures 18 
were found by constructing gene and protein co-expression networks. From these networks we 19 
identified highly interconnected sets of co-regulated genes (modules) that were significantly 20 
enriched for the AD signatures and for pathways previously implicated in AD (Fig. 1b). To 21 
obtain a final set of genes for input into the causal network reconstructions, we combined genes 22 
in the AD signatures and genes in the co-expression network modules enriched for these 23 
signatures (referred to here as the seed set). We further expanded this seed set by incorporating 24 
prior pathway knowledge from the literature to ensure inclusion of important AD genes 25 
potentially missed due differential expression analyses lack of power (Fig. 1b).  26 

With our AD-centered input set of genes for network reconstructions defined, we mapped 27 
gene and protein quantitative trait loci (eQTLs and pQTLs, respectively) for expression traits in 28 
this set to incorporate QTLs as structure priors in the network reconstructions, given they 29 
provide a systematic perturbation source that can boost power to infer causal relationships (Fig. 30 
1c) (Supplementary Table 1). The input gene set and eQTL/pQTL data from MSBB served as 31 
input into RIMBANET to construct probabilistic causal networks of AD (Fig. 1d). An artificial 32 
intelligence algorithm to detect KD genes from these network structures was then applied to 33 
identify and prioritize causal regulators of AD networks (Fig. 1d). To validate our findings, three 34 
independent approaches were employed: 1) Replication in other brain regions and independent 35 
datasets (Fig. 1e); 2) Association of human genetic risk for AD and expression of KD genes (Fig. 36 
1f); and 3) For the top causal regulator, VGF, functional and molecular experimental validation 37 
in the 5xFAD mouse model (Fig. 1g). 38 

 39 

Supplementary Results 40 



Co-expression networks partition RNA and Protein expression traits into separate 41 
modules. The construction of co-expression networks from combining gene- and protein-42 
expression traits resulted in modules comprised nearly exclusively of one type of data (either 43 
gene or protein expression) (Supplementary Data 3). While technical components of variation 44 
specific to technologies used to score gene- and protein-expression will partly explain this 45 
pattern of co-expression, given traits of a particular type are more correlated to traits of that same 46 
type than traits of other types, the complementarity of gene- and protein-expression plays a role 47 
as well.  For example, while RNA measures generally reflect expression levels in cells local to 48 
the brain region assayed, select RNAs or RNA isoforms that are known to be transported into 49 
dendrites (e.g. BDNF long 3’ UTR mRNA) could potentially contribute to this signal as well2-4. 50 
Similarly, protein measures may reflect proteins synthesized in the local brain region that was 51 
profiled, proteins that are transported in secretory vesicles via neural pathways from cell bodies 52 
in distal regions, and proteins that are locally translated from mRNAs transported from distal 53 
regions. Thus, simultaneous sampling of RNA and protein expression in a specific brain region 54 
provides complementary data sets that not only reflect linear DNA to RNA to protein synthesis, 55 
but that also capture dynamic changes in the flux of transported proteins and RNAs into the local 56 
region.  57 
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 60 

Supplementary Fig. 1.  61 
Simplified Pipeline Overview. Simplified description of data and analyses workflows 62 
performed to identify and validate VGF as a target of AD.  63 



 64 

Supplementary Fig. 2.  65 
Other AD traits gene and protein DE. a and b Gene a and protein b differential expression: 66 
The x axis of this plot is the mean normalized count for each gene or protein, and the y axis the 67 
log(FC). In blue are the non-significantly DE genes or proteins and in red the significant ones. 68 
Each box corresponds to a trait. c and d Heatmaps of gene c and protein d differential expression 69 
gene set enrichment analysis for published differential expression signatures, AD GWAS 70 
mapped genes, and genes in topologically associated domains containing AD GWAS loci 71 
(defined as R2 >0.5 from lead SNP). The x axes of these plots represent the DE signatures in our 72 
dataset and in the y axes are the public DE signatures. Genes and proteins were included in the 73 
analysis if they had association to AD traits with FDR < 0.25. Heatmap shows the fold 74 
enrichment (yellow to red) for only the significantly (Bonferroni adjusted p-value < 0.05) 75 
enriched public AD signatures. 76 
  77 



 78 

Supplementary Fig. 3.  79 
QTL analyses and molecular validation of BN subnetworks. a Venn diagram of QTL overlap 80 
with expanded DE signatures. b Boxplots of QTL effects: GSTM3, gene that shares an eQTL 81 
and a pQTL at the same SNP position. c, d, e and f Enrichment of 742 unique perturbation (341 82 
unique genes) signatures onto networks. In each case, the color represents the network in which 83 
the analysis is performed. a and c Proportion of nodes with existing signature and significant 84 
enrichment for said signature in network neighborhood a undirected enrichment - and c 85 
downstream enrichment. The x axis is the number of steps away from the perturbed node and the 86 
y axis the proportion of nodes with significant enrichment at FDR<0.05. b and d Ratio of global 87 
KDs with significant enrichment to non-KDs with significant enrichment in network 88 
neighborhood b undirected enrichment and d downstream enrichment. The x axis is the number 89 
of steps away from the perturbed node and the y axis the ratio of proportions of KDs with 90 
significant enrichment at FDR<0.05 to proportion of non-KDs with significant enrichment at 91 
FDR<0.05. Bars reaching top of plot indicate 0 significant non-KD enrichment.  92 



 93 

Supplementary Fig. 4.  94 
Levels of APP expression and baseline synaptic function in WT and 5xFAD mice with VGF 95 
overexpression. a Increased VGF expression in the brains of VGF germline overexpression 96 
mouse line (VGFΔ/Δ). Western blot and quantitative PCR analysis showed both increased VGF 97 
protein and mRNA level, and increased pTrkB levels, in the dorsal hippocampus of VGF 98 
germline overexpression mice (VGFΔ/Δ) compared to WT (N=3 mice per group, hippocampus 99 
VGF protein: VGFΔ/Δ: 208.6±18.4%; WT: 100.0±33.7%; hippocampus Vgf mRNA: VGFΔ/Δ: 100 
146.6±8.4%; WT: 100.1±3.0%, hippocampus pTrkB protein: VGFΔ/Δ: 139.9±2.7%; WT: 101 
100.0±11.9%; Student t-test, *, p<0.05; **, p<0.01. b VGF protein levels are reduced in the 102 
dorsal hippocampus of 5xFAD mice, at 5 months and 10 months of age. Dorsal hippocampus of 103 



male 5xFAD and WT control mice was collected and analyzed by western blotting for VGF 104 
protein (migrating as a characteristic doublet of ~90kd). dHC, dorsal hippocampus. 5-month old, 105 
N=4~5 mice per group; 10-month old, N=4 mice per group. Hippocampal VGF protein levels: 5-106 
month, WT: 100.0 ± 6.8%; 5xFAD: 74.1 ± 5.1%; 10-month, WT: 100.0 ± 1.2%; 5xFAD: 77.8 ± 107 
7.1% Student t-test, *, p<0.05. c Partial rescue of pTrkB/TrkB levels in the brains of 5xFAD 108 
mice overexpressing VGF. Dorsal hippocampus of male 5xFAD and WT control mice was 109 
infected with AAV-VGF or AAV-GFP at ~2-3 months of age, and brain lysates were analyzed 110 
for phospho-TrkB (pTrkB) and total TrkB at ~7 months of age. N=4-5 male mice per group. 111 
Data were analyzed by one-way ANOVA with Newman-Keuls post hoc analysis. **: p<0.01, 112 
***: p<0.001. d Similar expression levels of transgenic APP protein in both cortex and dorsal 113 
hippocampus of 5xFAD mouse brain with VGF germline overexpression. N=4 mice per group, 114 
10 month old. e No significant difference of transgenic APP protein levels in the dorsal 115 
hippocampus of 5xFAD mouse brain with AAV-VGF overexpression. N=4 mice/per group, 10 116 
month old. f Analysis of synaptic responses in the dHc of 8-9 month old 5xFAD and WT mice 117 
treated with AAV-VGF or AAV-GFP. Input/output curve expressed as fEPSP slope (mV/ms) 118 
plotted against stimulus intensity (µA) did not show differences in baseline synaptic strength 119 
between groups. N: WT (AAV-GFP) = 12 slices from 5 mice; 5xFAD (AAV-GFP) = 13 slices 120 
from 4 mice; WT (AAV-VGF) = 13 slices from 4 mice; 5xFAD (AAV-VGF) = 13 slices from 4 121 
mice. Two-way ANOVA and Bonferroni post-hoc tests.   122 



 123 

Supplementary Fig. 5.  124 
Increased levels of PSD95 (post-synaptic density 95) in hippocampus of VGF-overexpressing 125 

5xFAD,VGF
Δ/Δ

 compared to 5xFAD.  Levels of PSD-95 (average puncta size and puncta per 1000 μm2) 126 
were quantified in CA1 area (stratum radiatum); n=3~4 10-month old male mice per group; 3 random 127 
fields per CA1 per brain, N=9-12; One-way ANOVA with Newman-Keuls posthoc analysis; **, p<0.01***, 128 
p<0.001; Green:PSD-95 ; Scale bar: 5µm.  129 



 130 

Supplementary Fig. 6. 131 

Full length western blots of Supplementary Figure 5a-5c.  Lanes shown in Figure 5a-c are highlighted by 132 
the black rectangles. 133 

 134 

Supplementary Fig. 7. 135 

Full length western blots of Supplementary Figure 5d-5e.  Lanes shown in Figure 5 are highlighted by 136 



the black rectangles. 137 

 138 

 139 

 140 

Supplementary Fig. 8.  141 
Molecular validation VGF with germline overexpression model. Density plot of the 142 
distribution of differential expression nominal p-values for genes downstream and not 143 
downstream (causally independent of the expression levels) of VGF in the gene-only network for 144 
mouse DE genes (5xFAD, WT versus 5xFAD, VGF∆/∆ brains): The x axis is the –log10(p-145 
value) and the y axis the densities. The red and blue curves are for genes downstream and not 146 
downstream of VGF in the network respectively. 147 

148 



 149 

Supplementary Fig. 9.  150 
Data quality control. a and b Imputed RNA-seq sex colored by sex clinical information: 151 
Normalized gene expression for XIST (female specific gene, y axis) and UTY (ubiquitously 152 
expressed Y-chromosome gene, male specific, x axis). a Obvious sex mislabeling is present in 153 
the dataset. b After fixing the mislabeling, ambiguous samples (removed from further analyses) 154 
are shown in green. c Canonical correlation heatmap of disease traits and covariates included in 155 
the model. The intensity of the red color indicates the strength of the correlation between traits 156 
and the canonical correlation (parentheses indicate Bonferroni adjusted permutation p-value) is 157 
indicated in each box. The x and y axes represent the traits and covariates: clinical dementia 158 
rating (CDR), post mortem interval (PMI), Braak score (bbscore), sex, race, batch, RNA 159 
integrity number (RIN), exonic mapping rate (exonic rate), mean neocortical plaque density 160 



(number of plaques/mm2, PlaqueMean), CERAD neuropath Criteria (CERJ), neuropathology 161 
category (NP.1), clinical neuropathology (PATH.Dx). d Variance-partition violin plots of the 162 
disease traits and covariates included in the model. e, f, g and h Principal component analyses of 163 
important covariates: panels of this Fig. represent the same samples (one sample per point). The 164 
x axis is PC1 and explains 92.41% of the variance in the expression data. The y axis is PC2 and 165 
explains 6.16% of the variance in the expression data. The samples are colored by different QC 166 
or clinical information associated to them. 167 
 168 

Supplementary Tables 169 

Supplementary Table 1.  Full Reference List for Approaches Shown in Introduction, 170 
Results, and Methods 171 

Section Approach Full References 

Introduction Integrative 
biology 

approaches 

Modeling of correlated traits vs causally related traits5-20; eQTL as a 
systematic perturbation source6,8,9,11,21-38. 

Methods Data Description Ribo-Zero39; CDR, Path Dx, CERAD neuropath CERJ, neuropath 
NP-1, mean neocortical plaque density, Braak score40-45; STAR 
alignement46 ;featureCounts47; GATK48; voom and lmFit functions 
from limma R49-51. 

 DE analyses limma package after the adjustment for covariates51; GOtest52; 
msigdb53; public DE sets genes11,54-61 and proteins62-68; AD GWAS69; 
GWAS in TAD set 70; locus R2 71,72. 

 RNA Seq 
Processing 

Main drivers of variance were explored using principal component 
(PC) analyses and linear mixed models (variancePartition)73 

 QTL analyses  fastQTL package74; plink275,76; European individuals only used to find 
QTLs77; non-European samples identified through PCA analyses 
using smartPCA and mapping in PC space to the 1000 Genomes 
Project consortium78,79; VCF-liftover of ROSMAP WGS from hg19 to 
hg3880; PEER surrogate (latent) variable (SVs) correction81 ; FDR 
computed following Benjamini-Hochberg procedure82. 

 Co-expression 
analyses 

coexpp R package83,84 

 Seeding gene 
list construction 

PEXA85; PPI network from CPDB86,87. 

 Bayesian Causal 
Network (BN) 

RIMBANET36-38,88; Cytoscape v3.5.189. 

 Key Driver 
Analyses 

R package KDA90,91; distances function of the igraph R package 92 

 Random Forest 
Classifiers 

data stratified by class93; SMOTE94,95; python sklearn package96,97; 
ROC curve quantification98; information gain score99; weighted z-
score method100,101. 

 Polygenic risk 
score analyses 

WGS1; Plink275,76; I-GAP AD GWAS summary statistics102; 
PRSice2103. 

 Statistical 
Analyses 

R v3.3.1104; GO annotations enrichment tested with R packages 
goseq105, topGO106  and org.Hs.eg.db107; MSigDB pathway 
enrichment tested with R packages HTSanalyzeR108, GSEABase109, 
and gage110 ; figures generated using R packages ggplot2111, 
scales112, reshape2113 (http://www.jstatsoft.org/v21/i12/.) and grid114. 
UpsetR plots generated with UpSetR R package115; heatmaps 



produced with function heatmap.2 of the R package gplots116; Venn 
diagrams were dawn using VennDiagram R package117; Circos 
(circular) plot of DE enrichments in modules plotted using NetWeaver 
R package118,119; Canonical Correlation analyses performed with the 
canCorPairs function of the variancePartition R package73 and 
canonical correlation p-values computed with the p.perm function of 
the CCP R package120 with 10,000 random sampling of the labels; 
large tables were read-in and written using the R package 
data.table121. 

 Animal models 
and stereotaxic 

surgery 

Cannula implantation in the lateral ventricle [AP=−0.1, ML=±1.0 and 
DV: −3.0 from bregma (mm)]122 

 Immunohisto-
chemical and 
biochemical 

analyses 

Immunohistochemical and biochemical characterization123-127 

 Behavioral 
testing and 

analysis 

Barnes Maze test was performed using a standard apparatus128,129 

 Field electro-
physiology 

Coronal brain slices containing the hippocampal formation were 
prepared as previously described130 

Results Causal network 
relationships 

RIMBANET6-8,11,22,23,31,33,36,38,88,131; structure priors6,8,11-20,29,31,36-38,88; 
power boosting to infer causal relationships6,8,11,29,31,36-38,88; QTL 
perturbation to enhance causal inference among molecular traits 
across a broad range of diseases and data types6-

8,11,21,23,25,28,29,31,32,34,35,37,38,88,132-139. 
 DE sets Study-specific sets of DE for significantly up- and down-regulated 

genes11,54-61 and proteins62-68 
 Bayesian 

network (BN) 
Use of BNs to capture linear and higher order correlations, nonlinear 
relationships, and infer causal links8,11,14,17,22,29,36,38,88,140,141. 

 Molecular 
Validation 

Gene expression signatures induced by perturbing KDs can be 
compared to network predicted changes8,11,22,28,29,31 

 172 
  173 



Supplementary Table 2.  174 
Classification of AD. This table defines the thresholds of each disease trait for the classification 175 
of samples in disease categories 118,142 (for ROSMAP details, see 176 
https://www.synapse.org/#!Synapse:syn3191090). A full list of samples per disease trait and 177 
category can be found in Supplementary Data 1. 178 

Dataset classifier controls AD definite 
controls 

definite AD 
(dAD) 

MSBB PlaqueMean continuous continuous < 6 >= 12 
MSBB CDR < 1 >= 1 0 >= 1 
MSBB CERJ < 2 >= 2 1 2 
MSBB Path DX controls non-controls controls dAD 
MSBB bbscore < 3 >= 3 < 3 >= 3 
MSBB NP-1 < 2 >= 2 1 2 

ROSMAP Braaksc < 3 >= 3 < 3 >= 3 
ROSMAP Ceradsc >= 4 < 4 4 1 
ROSMAP Cogdx < 4 >= 4 1 [4, 5] 

 179 
 180 
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Supplementary Table 3.  Network Proteins and their Potential Roles in Alzheimer’s 183 
Disease 184 

Protein Roles in AD and References 

ANK2 PIK3C3-ankyrin-B-dynactin pathway promotes axonal growth and multiorganelle 
transport143 

GFAP Neuronal expression of GFAP in patients with Alzheimer pathology and 
identification of novel GFAP splice forms69 

GSN Plasma gelsolin and matrix metalloproteinase 3 are potential biomarkers for 
Alzheimer disease107 

HOPX Modulates hippocampal neurogenesis144 

HSPB1 Modulates amyloid-beta protein precursor expression67 

HSPB6 Neuroprotective and increases dendritic complexity145,146 

MAOB Monoamine oxidase-B inhibition in Alzheimer's disease108 

PAD12 Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine 
deiminase in hippocampal extracts from patients with Alzheimer's disease147,148  

PLXNB1 Semaphorin 4D-plexin-B signalling complex regulates dendritic and axonal 
complexity149,150 

RPH3A Decreased rabphilin 3A immunoreactivity in Alzheimer's disease is associated 
with Abeta burden71; involved in trafficking and release of neuronal synaptic or 
dense core vesicles151,152 

SCG2 Critical for DCV biogenesis and the regulated secretion of neurotrophins, 
neuropeptides, and/or catecholamines153; required for neuronal differentiation 
and neural progenitor maturation154; reduced levels in Alzheimer’s disease 
patient temporal cortex91 

STXBP5L STXBP5L (Tomosyn) involved in trafficking and release of neuronal synaptic or 
dense core vesicles151,152 

SYT1 Synaptotagmins interact with APP and promote amyloid-beta generation155 

TAGLN3 Neuronal protein 22/25 (TAGLN3) interacts with F-actin156,157 

VGF Interacts with amyloid precursor-like protein 1 (APLP1)158; critical for DCV 
biogenesis and the regulated secretion of neurotrophins, neuropeptides, and/or 
catecholamines153; VGF levels in CSF are reduced prospectively in patients with 
mild cognitive impairment, selectively in those who develop AD159,160 and in 
AD159,161-164 159,165; VGF levels in plasma are reduced in Parkinson’s disease166, 
amyotrophic lateral sclerosis (ALS)167, and major depressive disorder (MDD)168, 
and are regulated by obesity and type 2 diabetes169. 
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Supplementary Table 4.  Network Genes and their Potential Roles in Alzheimer’s Disease 187 

Gene Regulation Roles in AD and Full References 

BDNF CRE/CREB170 Neuroprotective effects against Aβ insults170; BDNF plus increased adult 
hippocampal neurogenesis and exercise improves cognition in 5xFAD171; 
BDNF Val66Met SNP modulates neuropathology and cognitive decline in 
subjects with AD172; BDNF/TrkB signaling plays a critical role in memory 
and Alzheimer’s disease173 

CLU  Genome-wide association study identifies variants at CLU and PICALM 
associated with Alzheimer's disease174 

CRH CRE/CREB170 Neuroprotective effects against Aβ insults171 

DUSP4 CRE/CREB170 DUSP4 knockout mice have spatial reference and working memory 
deficits175 

DUSP6  DUSP6 is expressed in microglia and is regulated by BDNF gene ablation 
in PFC176,177; DUSP6 levels reduced in brains of Alzheimer’s Disease 
patients178 

FOSB CRE/CREB170 DeltaFosB regulates gene expression and cognitive dysfunction in a 
mouse model of Alzheimer's disease179 

GNG4  Implicated in cognitive decline during aging180 and downregulated in aged 
5xFAD mice compared to age-matched WT181  

GRASP  GRASP (tamalin) is a scaffold protein that interacts with metabotropic 
glutamate receptors and regulates synaptic function182 

MSK1 
(RPS6KA
5) 

 Mitogen- and stress-activated kinase (MSK1 or RPS6KA5) regulates 
BDNF signaling to CREB183, hippocampal neurogenesis184, synaptic 
plasticity185, and cognition186 

NPTX2 
(NARP) 

CRE/CREB170 Reduced CSF and cerebral cortical NPTX2 correlated with cognitive 
dysfunction in Alzheimer's Disease187 

PTK2B 
(PYK2) 

 Pyk2 overexpression in 5xFAD Hc improves synaptic markers and 
behavioral performance188; Pyk2 mediates amyloid-β-induced synaptic 
dysfunction and loss189; Pyk2 is a novel tau tyrosine kinase190; in a 
functional screen of Alzheimer risk loci, PTK2B acts as an early marker 
and in vivo modulator of Tau toxicity191 

RPH3A  Decreased rabphilin 3A immunoreactivity in Alzheimer's disease is 
associated with Abeta burden71 

SCG2 CRE/CREB170 Critical for DCV biogenesis and the regulated secretion of neurotrophins, 
neuropeptides, and/or catecholamines153; required for neuronal 
differentiation and neural progenitor maturation154; reduced levels in 
Alzheimer’s disease patient temporal cortex91 

SST CRE/CREB170 Somatostatin-like immunoreactivity reduced in cerebral cortex from 
Alzheimer's disease patients192 

TAC1 CRE/CREB170 Encoding pre-protachykinin 1 peptide precursor with gene expression 
reduced in AD brain193 

VGF CRE/CREB170 Critical for DCV biogenesis and the regulated secretion of neurotrophins, 
neuropeptides, and/or catecholamines153; interacts with amyloid precursor-
like protein 1 (APLP1)158 

 188 
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