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Supplementary Note 1. The construction of torus knot functions based on the algebraic 
topology 

The mathematical function with helical zero-value braids in the complex plane can be 

expressed as: 

                           Qhelix(u,v)=u2-vn                            (1) 

where u and v are complex variables. n is the number of repeats of the basic crossing sequence. 

The polynomial Qhelix(u,v) corresponds to the torus knots. Here, Hopf link (trefoil knot) belongs 

to polynomial Qhelix(u,v) with n=2 (n=3). To construct the knot function in 3D spaces, we should 

convert the 2D-complex polynomial Qhelix(u,v) into 3D-real space by making u and v be a 

function as r=(x, y, z). The relation between (u,v) and (x, y, z) can be expressed as: 

     u=[(r2-1)+2iz]/(r2+1),    v=2(x+iy)/(r2+1)                   (2) 

In this case, based on the coordinate transformation, Supplementary Equation (1) can be 

transformed into the (x, y, z) space as 𝐶"#$%&(𝑥, 𝑦, 𝑧)1, 2. Then, the field, which satisfies the 

paraxial equation and also concides with z=0 plane of 𝐶"#$%&(𝑥, 𝑦, 𝑧) can be obtained as1, 2: 

fHopf(x,y,z)=[1-2R2-4R2ei2φ+R4]-4iz(1-2R2)-8z2,                  (3) 

ftrefoil(x,y,z)=[(R4-1)(R2-1)-8R3ei3φ]+2i(9R4-4R2-1)z-8(9R2-1)z2-48iz3          (4) 

where Supplementary Equation (3) corresponds to the case with n=2 and Supplementary 

Equation (4) corresponds to the case with n=3. Here, R2=x2+y2 and Reiφ=x+iy with x and y 

referring to the normalized coordinate values along the x- and y-axis. The nodal sets in 

Supplementary Equation (3) possesses the Hopf link topology and Supplementary Equation (4) 

possesses the trefoil knot nodal line. 

 

Supplementary Note 2. Decoupled modulation of phase and amplitude for each pixel of 

initial wavefront to generate the acoustic vortex knots.  

Different from the phase-only diffractive holographic scheme used in the optical system, 

here, each pixel of the initial wavefront (corresponds to a single unit of the metamaterials) 

should possess the ideal value of both phase and amplitude to generate acoustic vortex knot. 

In this condition, the knotted acoustic fields can be created in the transmission domain 

adjoined to the metamaterial. Here, we focus on the case of the Hopf link vortex line. The 

condition of the trefoil knot vortex line is identical. To generate the unbroken Hopf link vortex 



loop, here, we should embed an algebraic knot function at z=zHopf plane [fHopf=(x, y, z=zHopf)] 

into the initial wavefront and then propagating the field. The suitable value of zHopf is limited 

by two factors: (1) The Hopf link nodal line of the knot function Supplementary Equation (3) 

should exist within the range from -zHopf to zHopf. Only in this case, the unbroken Hopf vortex 

line can be realized. (2) The value of zHopf cannot be too large. This is to ensure that the acoustic 

vortex knots can be created with the propagation of the 2D initial wavefront. In our 

experiments, the value of zHopf is chosen as -0.8. Based on the same limitation, the value of 

ztrefoil is chosen as -0.48. 

Similarly, for the generation of the physically acoustic fields based on the knot function, 

the Gaussian profile exp(-R2/2W2) should also be multiplied to the knot function. In this case, 

the explicit expressions of the acoustic field, where the vortex loops form Hopf link and trefoil 

knot, at the initial wavefront plane can be described by: 

𝜓Hopf =fHopf (x,y,z=zHopf)exp[-(x2+y2)/2WHopf
2]                (5) 

𝜓trefoil =ftrefoil (x,y,z=ztrefoil)exp[-(x2+y2)/2Wtrefoil
2]               (6) 

where the WHopf and Wtrefoil represent the normalized widths of the proposed Gaussian profile 

for the vortex structures of Hopf link and trefoil knot, respectively. Here, we select WHopf =1.6 

and Wtrefoil=1.2, respectively. The normalized values of x and y are both ranging from -5 to 5.  

 

Supplementary Note 3. Phase-only diffractive holographic scheme for the generation of 
optical vortex knots 

Both Hopf link and trefoil knot optical vortex lines can be generated by simply 

embedding an algebraic knot function at z=0 plane [fHopf(x, y, z=0) and ftrefoil(x, y, z=0)] into the 

waist of a Gaussian beam and then propagating the field1. It is worthy to note that for the 

generation of the physical optical fields based on the knot function, the Gaussian profile exp(-

R2/2W2) should be multiplied to the knot function. In this case, the explicit expressions of the 

optical field, where the vortex loops are in the form of Hopf link and trefoil knot, at the waist 

plane can be described by: 

𝜓Hopf =fHopf (x,y,z=0)exp[-(x2+y2)/2WHopf
2]                   (7) 

𝜓trefoil =ftrefoil (x,y,z=0)exp[-(x2+y2)/2Wtrefoil
2]                  (8) 



The WHopf and Wtrefoil represent the normalized widths of the proposed Gaussian profile for the 

vortex structures of Hopf link and trefoil knot, respectively. The transverse ranges along x- and 

y-directions are both ranging from -5 to 5. It is important to note that the values of WHopf and 

WTrefoil are crucial in the formation of the desired vortex topology1. 

To embed the Supplementary Equation (7) and Supplementary Equation (8) into the waist 

of a Gaussian beam, the diffractive holographic scheme based on the phase-only metasurface 

hologram can be used. The phase-only holograms can be modified to control not only the phase 

structure of the diffracted beams but their intensity1-3. Here, we focus on the case of the Hopf 

link vortex line. The condition of the trefoil knot vortex line is identical. Firstly, the phase 

distribution of the linked vortex field in the z=0 plane is calculated as 𝜙$%/0(𝑥, 𝑦) =

Arg[Ψ789:(𝑥, 𝑦)]. Then, the proposed phase distribution is added with a blazed diffraction 

grating 𝜙<$=>#?(x, y). In this condition, the first-order diffracted energy is angularly separated 

from the other orders. Finally, the desired intensity of the link beam in the z=0 plane 

𝐼789:(x, y) = Abs[Ψ789:(𝑥, 𝑦)]E is also calculated and applied as a multiplicative mask to the 

phase distribution of the hologram, acting as a selective beam attenuator imposing the necessary 

intensity distribution on the first-order diffracted beam. Consequently, the phase distribution of 

the hologram to generate the Hopf link vortex line can be expressed as: 

𝜙"8$8FG=H(𝑥, 𝑦)={[𝜙$%/0(𝑥, 𝑦) + 𝜙<$=>#?(x, y)]H8?EJ − 𝜋}𝑠𝑖𝑛𝑐[𝜋 − 𝜋𝐼789:(𝑥, 𝑦)] + 𝜋 (9) 

It is important to note that the designed phase-only hologram should possess a large number of 

sub-pixels (about 300×300) where the smooth phase modulation induced by the blazed grating 

can be realized. Mapping this scheme into the acoustic wave, the overall size of samples and 

generated vortex knots should both be extremely large. In this case, it is very difficult to observe 

the acoustic vortex fields experimentally. 

Supplementary Note 4. Optimizing the number of pixels to decrease the transverse size of 

knot metamaterials 

In principle, the larger the pixel number is, the better is the knotted vortex performance. 

Here, the optimization design is conducted to determine the minimal number of pixels (the 

lower limit) required for the metasurface-based hologram to generate the acoustic vortex knot， 

while keeping the unit cell size unchanged. To get the lower limit, we numerically calculated 



the acoustic vortex knot generated by the aperture with different sets of pixel number for the 

creation of Hopf link and Trefoil knot vortex lines, as shown in Supplementary Figures 1 and 

2, respectively. As the cell number decreases, the Hopf link and Trefoil knot vortex lines deform 

in size and shape, yet maintain topologically invariant. It is found that the Hopf link (Trefoil 

knot) vortex line disappears when the number of pixels for the metasurface-based hologram is 

reduced to less than 12×12 (16×16), which corresponds to the pixel limitation of metasurface 

to generate vortex knots. Below this limit, the topological phase transition of the vortex line 

(broken and reconnection) appears. In our study, a moderate pixel number 24×24 that lies above 

the lower limit is chosen, which is adequate to our needs for the vortex knot demonstration. 

 
Supplementary Figure 1. (a)-(d) The numerical results of the vortex lines generated by the 

Hopf link related metasurface with 20×20, 14×14, 12×12, and 10×10 cells. 
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Supplementary Figure 2. (a)-(d) The numerical results of the vortex lines generated by the 

trefoil knot related metasurface with 20×20, 16×16, 12×12, and 8×8 cells. 

Supplementary Figures 3 and 4 show the simulation result of the pressure amplitude and 

phase distribution at transverse-planes with different distances from the initial wavefront plane 

for the Hopf link and trefoil knot, respectively. It can be seen that the dark point with a local 

minimum pressure corresponds very well to the vortex point with phase singularities. By 

connecting the dark points on the different planes, an isolated acoustic Hopf link and trefoil 

knot vortex loop can be created, as shown in Supplementary Figures. 3c and 3f.  

 

Supplementary Figure 3. Simulation results of (a) amplitude and (b) phase distributions of 

acoustic pressure at different z-plane for the Hopf link.  

 



Supplementary Figure 4. Simulation results of (a) amplitude and (b) phase distributions of 

acoustic pressure at different z-plane for the trefoil knot.  
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