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Supplementary Figure S1

Graphical visualization of tabular data. For
a quick tutorial of how to use liputils to
extract residue information from lipidomics
data, the following table is used (A). Data is
arranged with samples in column, with
analytes in row. To be processed directly
with liputils make_residues_table()
function, a table needs to avoid column
multi-indexing, and have lipids as row
index. This table needs to be loaded in
pandas by specifying to skip the first two
rows and to index the second column, or
needs prior editing and all unwanted
columns and row removed.
In B, all lipid residues have ben counted per
sample. NaN stands for “not a number”,
and it is the way Numpy has to represent
blank/missing values. When saved to a csv
or Excel file, these values will result in
empty cells. Missing values derive from
residues that are present in the data, but
are not represented in that particular
sample.



Supplementary Figure S2

A
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Fatty acid moieties extracted from stock media. Residues extracted from lipidomic data of HepG2, human
hepatocyte-like cells (HLCs) and human primary hepatocytes (HPPs) culture media are shown (A-B) (n=1 per
sample). HLCs and PHHs media were chemically defined, while HepG2 medium included 10% FBS comprised of
complex lipid molecules. Units were unchanged during the extraction and are the same as the input data (pmol/µg
protein).
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Supplementary Figure S3

A

B

Graphical output of the online RefMet translator. The RefMet compound
name translator, available at the following address:
(https://www.metabolomicsworkbench.org/databases/refmet/name_to_ref
met_form.php) attempts at translating non-RefMet compliant strings into
official RefMet compounds (A). For low-resolution mass isomers, a list of
possible molecular lipids that can be the parent compound is given (B).

https://www.metabolomicsworkbench.org/databases/refmet/name_to_refmet_form.php


Residue Comparison Difference Lower Upper Adjusted p-value
14:0 HepG2-HLC-3 4.504313941 0.930846547 8.077781336 0.008694647
14:0 HepG2-HLC-4 4.765475723 1.136602429 8.394349017 0.005990598
14:0 HepG2-HLC-5 5.895734412 2.105499871 9.685968952 0.001038805
14:0 HepG2-PHH 8.171247305 3.794661441 12.54783317 0.000106378
14:0 HLC-3-PHH 3.666933364 0.093465969 7.240400759 0.042326626
14:0 HLC-4-PHH 3.405771582 -0.22310171 7.034644876 0.073199923
14:0 HLC-5-PHH 2.275512894 -1.51472165 6.065747434 0.413794388
14:1 HepG2-HLC-3 0.220805953 0.15990581 0.281706095 1.28435E-09
14:1 HepG2-HLC-4 0.256900038 0.195055652 0.318744425 8.0487E-11
14:1 HepG2-HLC-5 0.248820162 0.184225806 0.313414517 3.79583E-10
14:1 HepG2-PHH 0.291483518 0.216896381 0.366070655 2.83046E-10
14:1 HLC-3-PHH 0.070677565 0.009777423 0.131577707 0.01736879
15:2 HepG2-HLC-3 0.137304833 0.083570279 0.191039387 8.57222E-07
15:2 HepG2-HLC-4 0.155224912 0.100657215 0.209792609 1.30395E-07
15:2 HepG2-HLC-5 0.16128325 0.104289149 0.218277351 1.43257E-07
15:2 HepG2-PHH 0.169815569 0.10400445 0.235626688 7.2534E-07
18:1 HepG2-HLC-4 24.90752905 -20.9052291 70.72028722 0.510581085
18:1 HepG2-PHH 78.38682438 23.13455912 133.6390896 0.002810973
18:1 HLC-3-PHH 58.37080932 13.25752365 103.484095 0.006871231
18:1 HLC-4-PHH 53.47929533 7.66653716 99.2920535 0.016581797
18:1 HLC-5-PHH 43.47853545 -4.37132989 91.32840078 0.087584786
18:2 PHH-HepG2 26.67016862 21.63910102 31.70123622 4.61E-13
18:2 PHH-HLC-3 27.06354373 22.95569424 31.17139323 2.4E-14
18:2 PHH-HLC-4 28.73763907 24.56609819 32.90917995 2.2E-14
18:2 PHH-HLC-5 28.21689171 23.85985936 32.57392406 2.6E-14
19:1 HepG2-HLC-3 0.143283663 0.028781198 0.257786128 0.009269628
19:1 HepG2-HLC-4 0.160547234 0.044269432 0.276825037 0.003696694
19:1 HepG2-HLC-5 0.168075629 0.046627425 0.289523833 0.003612389
19:1 HepG2-PHH 0.225053276 0.084816969 0.365289583 0.00072411
20:1 HepG2-HLC-3 1.54129587 0.826598667 2.255993072 1.32953E-05
20:1 HepG2-HLC-4 1.605891514 0.880113074 2.331669954 8.95599E-06
20:1 HepG2-HLC-5 1.844624653 1.086573796 2.602675511 1.94759E-06
20:1 HepG2-PHH 2.205286886 1.329965153 3.080608619 1.08941E-06
20:4 PHH-HepG2 11.81816819 5.894196339 17.74214003 4.21323E-05
20:4 PHH-HLC-3 12.36240042 7.525497661 17.19930318 8.53755E-07
20:4 PHH-HLC-4 13.06167378 8.149775806 17.97357175 4.31178E-07
20:4 PHH-HLC-5 10.59595832 5.46564821 15.72626843 2.54284E-05
24:5 HepG2-HLC-3 0.210227209 0.076868649 0.343585769 0.000891533
24:5 HepG2-HLC-4 0.273972769 0.138546512 0.409399027 3.44339E-05
24:5 HepG2-HLC-5 0.23727735 0.095829237 0.378725463 0.000425134
24:5 HepG2-PHH 0.308441094 0.145110881 0.471771306 9.10419E-05
24:6 HepG2-HLC-3 0.45441577 0.319676332 0.589155208 5.34231E-09
24:6 HepG2-HLC-4 0.504574457 0.367745911 0.641403003 9.15416E-10
24:6 HepG2-HLC-5 0.475211758 0.332299002 0.618124513 7.02772E-09
24:6 HepG2-PHH 0.544408685 0.37938725 0.709430121 8.18578E-09

Supplementary Table 1

Detailed statistically significant differences for each comparison, per residue. Statistically significant
differences were determined with ANOVA followed by Tukey’s post-hoc test (n=9 HLC-3, n=8 HLC-4, n=6 HLC-
5, n=3 PHH and HepG2 samples).



Residue Comparison Difference Lower Upper Adjusted p-value
18:3 Overfeeding-Saturated fats 83.0989348 32.55919384 133.6386758 0.001497514
20:1 Saturated fats-Overfeeding 69.95086247 21.33220413 118.5695208 0.004720554
20:1 Unsaturated fats-Overfeeding 79.98050715 31.36184881 128.5991655 0.001490594
20:2 Saturated fats-Overfeeding 37.06273322 1.541102354 72.58436408 0.040064848
20:2 Unsaturated fats-Overfeeding 37.24209302 1.720462156 72.76372389 0.039035724
20:3 Overfeeding-Saturated fats 46.92097803 1.782919941 92.05903611 0.040873888
20:3 Overfeeding-Unsaturated fats 46.96134996 1.82329187 92.09940804 0.040686328
20:4 Saturated fats-Overfeeding 23.63496846 3.364934857 43.90500207 0.02103841
20:4 Unsaturated fats-Overfeeding 31.10317186 10.83313825 51.37320547 0.002767359
20:5 Overfeeding-Saturated fats 22.77345043 0.33089319 45.21600767 0.046393858
20:5 Overfeeding-Unsaturated fats 26.9670954 4.524538156 49.40965264 0.017378353
22:2 Unsaturated fats-Overfeeding 66.11189494 10.99301677 121.2307731 0.01758215
22:3 Saturated fats-Overfeeding 60.9218937 2.183451685 119.6603357 0.041365586
22:4 Overfeeding-Saturated fats 56.98806747 4.495712921 109.480422 0.032177736
22:6 Saturated fats-Overfeeding 29.37200864 11.42672197 47.31729532 0.001561442
22:6 Unsaturated fats-Overfeeding 22.6405984 4.695311727 40.58588508 0.012548342
24:1 Saturated fats-Overfeeding 39.81046071 12.01919479 67.60172662 0.004888639
24:1 Unsaturated fats-Overfeeding 66.73494923 38.94368331 94.52621514 2.47704E-05
26:0 Saturated fats-Unsaturated fats 384.6559913 60.23615386 709.0758288 0.018933907
30:1 Saturated fats-Unsaturated fats 92.89024137 8.0615839 177.7188988 0.030635146

Supplementary Table 2

Detailed statistically significant differences for each comparison, per residue. Statistically significant
differences were determined with ANOVA followed by Tukey’s post-hoc test (n=7 subjects per group).



Supplemental Materials and Methods 
 

General description. We have developed liputils as a lightweight Python library focused 

on text-based recognition of lipid identifiers that can be seamlessly integrated in a Python-

based data analysis pipeline. Its primary function is to provide fatty acid moieties information 

from any RefMet-compliant lipid annotation. 

 

An in-depth, Python-based analysis of a dataset is available as Supplemental analysis protocol 

online in PDF form, or in its native Jupyter notebook file format at the following address.  

 

In the main text, the User is presented with a basic protocol that automatically processes 

lipidomics data in tabular format in order to extract residue information and package the results 

into a new, easily readable data table. In here, we will be discussing some useful functions and 

methods of the library that can be exploited by the more advanced User and suited to 

personalized analysis pipelines. 

 

Functionality of the Lipid class. In liputils, every lipid identifier (a text string) is 

managed through the Lipid class. Then, lipid properties can be accessed through each object’s 

methods. An example: 

 
>>> from liputils import Lipid 
 
>>> lip = Lipid("Cer(d20:0/22:0)") 
 
>>> lip.name                                                                   
'Cer(d20:0/22:0)' 
 
>>> lip.refmet_class() 
'Cer' 
 

Lipid.name is produced by the class constructor. The vast majority of other methods are 

callable, in order to save time when initializing each new Lipid object. In this case, 

Lipid.refmet_class() is a method that computes the lipid class, given as abbreviation, 

upon call. If needed, the amount parameter can be used to define the amount of the lipid being 

processed (it defaults to picomoles), and to calculate the number of molecules: 

 
>>> lip = Lipid("Cer(d20:0/22:0)", amount=0.12512)  



 
>>> lip.molecules  
75349026402.78401 
 

Other units can be specified: 

 
>>> lip = Lipid("Cer(d20:0/22:0)", amount=0.12512, unit="attomoles") 
 
>>> lip.molecules 
75349.02640278402 
 
 
Fatty moieties identification. The backbone of the Lipid class functionality is the ability of 

decoding from lipid identifiers their carbon chains composition. liputils accepts a generic 

lipid format in the form of CLASS N:N/M:M/../.. or CLASS(N:N/M:M/../..)(other 

mass isobars), or fully RefMet-compliant residue naming. If unsure about your data format, 

you can try and batch-translate your lipid IDs with RefMet’s online translator. By adhering to 

RefMet’s nomenclature, any compliant lipid name will be properly managed by liputils’s 

method Lipid.refmet_residues(). 

 
>>> lip1 = Lipid("octadecatrienoic acid")                                        
 
>>> lip2 = Lipid("linolenic acid")                                               
 
>>> lip3 = Lipid("FA(18:3)")                                                     
 
>>> lip4 = Lipid("linoleyl palmitate") 
 
>>> lip1.refmet_residues()                                                       
(['18:3'], 1) 
 
>>> lip2.refmet_residues()                                                       
(['18:3'], 1) 
 
>>> lip3.refmet_residues()                                                       
(['18:3'], 1) 
 
>>> lip4.refmet_residues()                                                       
(['18:1', '16:0'], 1) 
 

The method returns a list of residues that were found in the lipid identifier, and an integer 

index that refers to the ambiguities found within the lipid identifiers. This feature was 

introduced to let the User choose what to do in the presence of unresolved mass isobars. 



For example, in the case of this non-RefMet compliant lipid identifier taken from a commercial 

lipidomic analysis: 

 
>>> lip = Lipid("TAG 48:2 total (14:0/16:0/18:2)(14:0/16:1/18:1)(16:0/16:1/16:1)") 
 
>>> lip.refmet_residues() 
(['48:2', '14:0', '16:0', '18:2', '14:0', '16:1', '18:1', '16:0', '16:1', '16:1'], 
3) 
 

In this case, liputils reports each residue in the list it returns, but it also returns 3 as 

ambiguity index, to reflect the fact that the molecular lipid was not fully resolved, and there 

were three different but equivalent mass isobars. 

When using non-Refmet compliant lipids, Users are encouraged to use 

Lipid.lipid_class() and Lipid.residues() methods instead: 

 
>>> lip.refmet_class() # not appropriate 
'TAG 48:2 total'  
 
>>> lip.lipid_class() # appropriate 
'TAG'  
 
>>> lip.residues() # same result, in this case 
(['14:0', '16:0', '18:2', '14:0', '16:1', '18:1', '16:0', '16:1', '16:1'], 
3) 
 

If desired, it can be useful to suppress all unresolved mass isobars by setting the 

drop_ambiguous parameter to True (it defaults to False): 

 
>>> lip.residues(drop_ambiguous=True)                                            
([], 0) 
 

In this case, an empty list is returned together with 0 ambiguity index. 

 

Helper functions. liputils contains some functions that complement the Lipid class 

functionality. In the manuscript (Materials and Methods → Procedure), the basic use case 

of make_residues_table() is presented. There are parameters that can be set to alter the 

function’s default behavior: 

drop_ambiguous: defaults to False. As in the case mentioned above, this produces a 

residues table that does not take into account unresolved mass isobars. 



name: as make_residues_table() returns a nameless pandas.DataFrame object, this 

parameters sets a string attribute within the object, under pandas.DataFrame.name, 

that can be useful when a string identifier for exporting the table to a .csv file (or for 

otherwise any other use), especially when working with multiple objects simultaneously. 

Defaults to "residues_table". 

replace_nan: this replaces any missing value (empty cells) in the input table with the desired 

value. It defaults to 0. 

cleanup: this parameter is used to avoid processing some lipids that may be found in the data 

but are not meaningful to process. These may include, for example, identifiers with 

“total” (like “total cholesterol”), or abbreviations thereof (like “TC” for total cholesterol, 

or “FC” for free cholesterol). The list of unwanted terms is read from another parameter, 

unwanted (see below). It defaults to True. 

unwanted: this parameter defaults to a list of unwanted identifiers, that are altogether skipped 

in the processing if cleanup is True (the default behavior). This parameter can be 

replaced by a User-defined list of choice. It defaults to ["total", "fc", "tc"]. 

absolute_amount: this switches the function from counting the actual residues amount, in 

the same unit as in the input table, to counting in the actual number of residues. For 

example, if the input table is in picomoles/μg tissue, by default the table produced by 

make_residues_table() will be in picomoles/μg tissue. Otherwise, if 

absolute_amount is set to True, then the actual number of residues will be counted. 

The default unit is "picomoles", but this can be set otherwise by passing another 

unit as keyword argument. It defaults to False. 

 

In addition to the use case presented in the manuscript, an additional example can be found in 

the Supplemental analysis protocol at page 5. 

 

Two other functions come handy when processing residues subsets. To focus on particular 

residues, it is possible to mix saturated() and max_carbon() to dictate which residues to 

keep and which to discard. Specifically: 

saturated(): its intended use is with string residue identifiers (in the form of \d:\d). It 

returns True if the residue contains unsaturations, False otherwise. 

max_carbon(): its intended use is with string residue identifiers (in the form of \d:\d). An 

integer number of desired carbon atoms must also be specified when calling the function. If 



the number of carbon atoms in the residue is lower or equal to the specified maximum allowed 

value, the function returns True, False otherwise. 

Some examples: 
 
>>> from liputils import saturated, max_carbon 
 
>>> saturated("12:0")                                                            
True 
 
>>> saturated("12:1")                                                            
False 
 
>>> max_carbon("12:1", 11)                                                       
False 
 
>>> max_carbon("12:1", 12)                                                       
True 
 
>>> max_carbon("12:1", 13)                                                       
True 
 

These functions come handy in list comprehensions (especially useful when the result is then 

used to exclude/include elements in an index): 

 
>>> my_residues = ["12:0", "17:1", "24:0", "24:1", "24:2", "26:3"] 

 

>>> [not saturated(x) and max_carbon(x, 24) for x in my_lipids] 

[False, True, False, True, True, False] 

 

Conveniently, saturated() can be negated via the not operator if the residue is required to 

having exactly zero unsaturations. 

Example use of these functions can be found in the Supplemental analysis protocol, starting 

from page 16, when they are used to restrict the plots to specific residues. 

 

Online Documentation. As liputils is in active development, the online documentation 

reflects the latest changes and updates to the library. It can be accessed at liputil’s pip 

package manager page, or in liputil’s GitHub repository. 


