SUPPLEMENTAL FIGURE 1

Supplemental Figure 1. CD122+Macs are not NK cells, dendritic cells, or neutrophils. (A) Shown is the raw gating scheme used to identify murine CD122+Macs. Data are representative of at least 20 independent experiments. (B) Like cMacs (F4/80hiCD122-), CD122+Macs (F4/80hiCD122+) are among the largest cells in the decidua at E6.5 by flow cytometric analysis. (C) From left, decidual CD122-F4/8010 cells at E8.5 are morphologically monocyte-like, all F4/80hi cells are vacuolated and macrophage-like, and CD122+F4/80- cells are more finely granular and NK-like. Indicated cells were FACS-sorted and stained with hematoxylin and eosin. Data are representative of 2 independent experiments. (D) All myometrial F4/80h Macs, irrespective of CD122 status, express high levels of CD206 and CD209 (DC-SIGN) during gestation. We observed similar results in the decidua at E10.5, as well as similar results at other points throughout gestation. All events shown are live, singlet, CD3-CD19-Ly6G-CD45.2+ leukocytes, with NK cells F4/80-CD122+. Data are representative of at least 5 mice over 2 independent experiments. (E) Conventional splenic NK cells are CD49b/DX5+, decidual NK cells are largely CD49a+, and CD122+Macs express neither CD49a nor CD49b. Data are representative of 2-3 independent experiments with 2-3 mice per experiment. (F) Similarly, decidual NK cells express high levels of both T-bet and Eomes, while neither CD122+Macs nor cMacs express T-bet or Eomes. Data are representative of 2-3 independent experiments with 2-3 mice per experiment. (G) Shown is the sorting strategy to assess transcriptomes of purified decidual CD122+Macs, cMacs, and NK cells. Cells to be profiled by microarray were FACS-sorted to at least 95% purity from 3 independent groups of pooled E7.5 deciduae, with each group consisting of 4-5 mice.

SUPPLEMENTAL TABLE 1

Gene symbol	Abs. FC	Adj. p val	Gene symbol	Abs. FC	Adj. p val	Gene symbol	Abs. FC	Adj. p val	Gene symbol	Abs. FC	Adj. p val
C3ar1	302.56	8.29E-13	Gm6377	62.86	2.12E-11	Dsc2	0.1	1.25E-06	Gimap4	0.05	1.99E-10
Pf4	249.69	1.74E-12	C5ar1	61.92	6.28E-11	Satb1	0.1	3.46E-09	Srgap3	0.05	1.75E-10
Clqa	211.69	1.23E-10	Alox5ap	61.47	8.27E-11	Sidt1	0.1	2.37E-08	Zdhhc15	0.05	5.24E-11
Clqb	200.13	3.16E-10	Clec4n	56.67	2.00E-10	Pecam1	0.09	2.70E-09	Gzmb	0.05	2.80E-09
Ccl3	173.44	1.14E-10	Lst1	56.29	2.33E-10	Gpr141	0.09	4.61E-09	Cst7	0.05	9.70E-10
Ms4a7	171.44	1.62E-12	Apoe	56.07	3.11E-11	Gm40275	0.09	4.43E-09	Itgal	0.04	1.30E-09
Clqc	167.21	2.02E-12	Aifl	55.55	4.21E-11	Klrk1	0.09	8.97E-10	Gzmc	0.04	6.56E-10
Mrc1	159.25	3.09E-11	Tlr8	50.64	1.40E-11	Avil	0.09	9.29E-10	E330009J07Rik	0.04	1.60E-09
Ly86	158.62	3.40E-12	Wfdc17	50.59	9.21E-10	Khdc1a	0.08	3.74E-10	Sh2d1b2	0.04	8.38E-11
Fcgr4	157.7	1.06E-11	Ccl7	50.54	7.01E-11	Cd3g	0.08	1.95E-09	Ctsw	0.04	4.81E-11
Pld4	151.62	1.13E-11	Clec4a1	50.24	2.02E-11	Pglyrp1	0.08	6.18E-09	Klri2	0.04	3.11E-11
Lyz2	147.95	1.51E-10	II1b	49.9	8.89E-11	Ifitm1	0.08	2.07E-09	Prfl	0.04	3.35E-09
Cbr2	144.5	4.39E-12	Cd74	49.5	5.81E-11	Serpinb9	0.08	1.71E-09	Klrb1b	0.03	5.68E-11
Ms4a6d	143.47	5.60E-12	Cd300c2	47.99	2.34E-10	I730030J21Rik	0.08	1.37E-08	Txk	0.03	1.00E-09
Ccl8	141.11	1.27E-10	Cd180	47.75	1.29E-10	Myb	0.08	1.53E-09	Car2	0.03	4.39E-11
Tlr7	112.9	1.16E-11	Cx3cr1	47.47	4.96E-10	Gimap7	0.07	3.22E-09	Eomes	0.03	6.07E-11
Cybb	108.59	3.11E-11	Csflr	47.44	5.43E-10	Sult2b1	0.07	1.91E-08	Sytl2	0.03	1.65E-10
Ctsh	104.16	3.40E-12	Plbd1	46.96	1.13E-11	Tbx21	0.07	6.56E-10	Klrb1c	0.03	5.16E-10
Ifi2712a	102.68	1.06E-11	Cd86	46.65	1.16E-11	Scin	0.07	2.03E-07	Klra5	0.03	1.50E-10
Ms4a6c	101.6	5.40E-12	Ms4a4c	46.59	4.47E-11	Klra21	0.07	2.59E-09	Gzma	0.03	1.51E-10
Sirpa	100.59	1.01E-10	Tlr2	46.54	2.48E-11	Sytl3	0.07	7.50E-10	Cd7	0.03	1.59E-10
Fcrls	100.1	3.40E-12	Fcgr2b	46.51	9.70E-10	Atp1b1	0.06	4.13E-06	Sh2d1a	0.03	8.89E-11
Ms4a14	100.03	5.40E-12	Ms4a4a	45.83	5.24E-09	Sla2	0.06	5.89E-07	Sh2d2a	0.03	5.97E-09
Ccl2	99.48	2.02E-12	1118	45.27	3.15E-11	Samd3	0.06	8.21E-11	Thy1	0.02	7.62E-11
Mpeg1	98.61	1.25E-10	Ifit2	45.07	7.01E-11	Gzmd	0.06	1.37E-09	Gpr87	0.02	2.48E-11
Tlrl	94.76	4.31E-12	Slc15a3	44.62	1.28E-09	P2ry10	0.06	3.21E-08	Tnfrsf9	0.02	2.02E-11
Ifi207	91.95	4.12E-10	Cd33	44.02	3.26E-11	Ctsg	0.06	1.75E-09	Cd96	0.02	6.60E-12
Lgmn	86.64	1.33E-09	Apobec1	44	4.47E-11	Ptprcap	0.06	4.13E-09	Tmsb15a	0.02	1.40E-11
Fcgrl	86.31	3.40E-12	Ifngr2	43.35	2.40E-10	Zbtb32	0.06	1.97E-07	Mcpt8	0.02	1.37E-11
Ccl6	76.14	2.05E-11	Ifit3	42.46	2.02E-11	Ptpn3	0.06	1.85E-09	Ctla4	0.02	1.45E-10
Cxcl16	76.12	3.42E-11	H2-Aa	41.96	9.72E-12	Myo10	0.06	1.89E-09	Il2rb	0.02	6.56E-09
Cxcl2	74.25	5.60E-12	Gpr137b-ps	41.9	6.67E-12	Il2ra	0.05	1.48E-08	Xcl1	0.02	3.09E-11
Tlr13	73.81	5.60E-12	Hpgds	41.69	1.16E-11	Fasl	0.05	4.44E-11	Klrg1	0.02	5.43E-10
Blnk	72.14	5.60E-12	Spi1	40.74	3.42E-11	Gzmg	0.05	9.41E-09	Klrel	0.01	7.23E-12
Adgre1	68.94	1.89E-11	Egr2	37.33	1.45E-10	Icos	0.05	6.69E-10	Klrd1	0.01	5.13E-12
Dab2	64.81	4.24E-11	Oas2	36.75	6.52E-10	Lax1	0.05	3.49E-10	Nkg7	0.01	1.71E-11
P2ry6	63.89	1.27E-10	G530011O06Rik	36.73	1.86E-10	Clnk	0.05	3.53E-11	Ncr1	0.01	4.39E-12
P2rx4	63.22	1.13E-11	Gimap6	0.1	6.07E-09						

Supplemental Table 1. Macrophage-associated transcripts are abundant in decidual CD122+Macs, while killer lymphocyte transcripts are abundant in decidual NK cells. Changes in gene expression by microarray between sort-purified CD122+Macs and NK cells. Only the top 150 differentially expressed genes by fold change (75 enriched in CD122+Macs and 75 enriched in NK cells) with an adjusted p value <0.05 are shown. Absolute fold change of each individual gene refers to level in CD122+Macs relative to level in NK cells. Of note, II2rb (encoding CD122) was highly enriched in NK cells despite modest to no difference in detection of surface CD122 by flow cytometry.

SUPPLEMENTAL TABLE 2

Gene symbol	Abs. FC	Adj. p val	Gene symbol	Abs. FC	Adj. p val	Gene symbol	Abs. FC	Adj. p val	Gene symbol	Abs. FC	Adj. p val
Ccl8	4.16	5.75E-04	Gdf15	2.12	2.41E-03	Tgm2	1.74	1.55E-02	Oasl2	1.51	4.07E-02
Oas3	3.9	7.57E-04	Dhx58	2.12	6.95E-03	Tmsb15a	1.73	7.68E-03	Chst14	1.5	3.52E-02
Cfb	3.47	1.04E-04	Irgm 1	2.09	1.81E-02	Fgl2	1.73	5.67E-03	Msmo1	1.5	3.40E-02
Ifi205	3.35	3.69E-04	Phfl1d	2.07	9.42E-03	H2-T24	1.72	2.66E-02	H2-Ab1	0.5	2.92E-02
Ifit2	3.22	3.06E-04	Ifi209	2.06	3.72E-03	Clen7	1.71	1.50E-02	Timd4	0.5	5.03E-03
Mmp27	3.05	5.55E-03	Gm5431	2.05	3.51E-02	Gpr157	1.7	2.29E-02	Tmem119	0.48	1.82E-03
Zbp1	2.92	1.04E-04	Gzmg	2.04	3.42E-02	1118	1.69	2.04E-02	Tdo2	0.48	2.41E-03
Irf7	2.9	2.77E-02	Ifi206	2.04	3.29E-03	Tent5c	1.69	2.94E-02	Clec4b1	0.47	3.87E-02
Gzmc	2.86	7.57E-04	BC147527	2.02	6.34E-03	Il1m	1.69	5.55E-03	Igfbp7	0.47	6.34E-03
Oasl1	2.85	4.94E-04	Gm12250	2	1.73E-03	Gzma	1.68	4.40E-02	Tmem176a	0.47	2.41E-03
Gzmb	2.84	2.28E-03	Cbr2	1.98	3.20E-03	P2rx4	1.68	1.59E-02	Areg	0.47	2.55E-02
Ifit3b	2.82	1.30E-04	Gbp4	1.98	6.17E-03	Gbp3	1.67	1.75E-02	Cd74	0.46	3.67E-03
Ifi44	2.73	9.05E-04	Stat1	1.97	4.40E-02	Ifih1	1.67	8.33E-03	Plpp1	0.46	1.60E-02
Fabp5	2.72	4.94E-04	Gm1966	1.96	2.07E-02	Slfn5	1.67	2.05E-02	Fprl	0.46	6.34E-03
Fabp3	2.68	4.93E-04	Phfl1c	1.95	3.72E-03	Fcgr4	1.67	4.25E-02	Sparel1	0.45	6.59E-03
S1fn1	2.67	3.17E-03	Gbp9	1.95	2.41E-03	Fcgrl	1.66	6.34E-03	Slpi	0.45	3.94E-02
Spp1	2.66	5.52E-04	S1c9a7	1.95	7.76E-03	Ldlr	1.65	3.41E-02	Mfap5	0.45	2.41E-03
Ifi208	2.59	2.65E-03	Nkg7	1.92	7.07E-03	Lap3	1.64	3.73E-02	Efemp1	0.45	1.58E-02
Gzmd	2.51	1.87E-03	Clec10a	1.92	4.95E-02	P2ry14	1.63	4.33E-02	Tgfb2	0.44	6.59E-03
Cd3001f	2.48	5.63E-04	Trem12	1.9	5.67E-03	Zfp954	1.61	4.45E-02	Siglece	0.44	7.07E-03
Phfl 1a	2.41	9.63E-03	Ddx58	1.89	2.43E-02	Scimp	1.61	3.42E-02	Cd24a	0.42	2.05E-02
Tnfsf10	2.4	2.47E-03	Ddx60	1.88	2.39E-02	Csfl	1.6	9.21E-03	Hpgd	0.41	6.34E-03
Rsad2	2.39	3.72E-03	S1fn2	1.88	2.87E-02	Slfn3	1.59	4.83E-02	H2-Eb1	0.4	3.57E-03
Hpse	2.36	4.51E-04	Msrb1	1.88	1.84E-02	Trim30d	1.59	8.69E-03	F5	0.4	9.12E-03
Ifit3	2.33	5.75E-04	Xdh	1.86	4.18E-02	S1c38a6	1.57	3.32E-02	Plxdc2	0.4	5.52E-04
Atp6v0d2	2.29	2.41E-03	Npl	1.86	1.14E-02	Csf2rb	1.57	4.09E-02	Retnla	0.38	7.82E-03
Cmpk2	2.24	2.28E-03	Lrp12	1.85	2.82E-03	Lgals8	1.57	1.38E-02	Vsig4	0.38	3.43E-04
Ms4a4c	2.23	2.41E-03	Ube216	1.85	1.13E-02	Renbp	1.55	4.40E-02	Selp	0.34	2.41E-03
Ifit1	2.23	4.69E-03	Gas213	1.81	3.85E-02	Cd22	1.55	4.40E-02	Fabp7	0.3	2.76E-03
Isg20	2.22	1.02E-03	Mx1	1.8	4.08E-03	Slfn8	1.55	2.30E-02	Fn1	0.27	5.52E-04
Nt5c3	2.21	6.75E-04	G530011O06Rik	1.8	2.88E-02	Il18bp	1.55	2.30E-02	Adgre4	0.23	2.36E-04
Gpnmb	2.17	2.64E-03	Parp11	1.79	8.69E-03	B430306N03Rik	1.54	1.38E-02	Serpinb10	0.23	1.78E-04
Gbp8	2.16	3.83E-03	Agtrap	1.79	2.60E-02	Tmem144	1.54	2.87E-02	116	0.18	3.25E-04
Cd200r4	2.16	1.65E-02	Papss2	1.78	1.43E-02	F13a1	1.54	3.55E-02	Serpinb2	0.1	1.04E-04
Pde7b	2.15	4.08E-03	Gbp5	1.78	5.44E-03	Pfkfb3	1.53	2.66E-02	Alox15	0.08	6.53E-06
Slfn4	2.14	3.79E-03	Tmem140	1.77	1.00E-02	Themis2	1.53	1.81E-02	Cxcl13	0.08	1.30E-04
Gbp7	2.14	4.18E-02	Stat2	1.77	1.35E-02	Dusp3	1.51	4.14E-02	Saa3	0.05	4.55E-06
Usp18	2.13	2.25E-03	Dtx31	1.77	4.14E-02	Osbpl8	1.51	2.66E-02	Prg4	0.04	2.46E-05
Siglec1	2.13	1.66E-02	Nxpe5	1.76	1.95E-02						

Supplemental Table 2. Interferon-stimulated genes and cytolytic transcripts distinguish the transcriptome of decidual CD122+Macs from that of decidual cMacs. Changes in gene expression by microarray between sort-purified CD122+Macs and cMacs. Only those with an adjusted p value <0.05, absolute fold change of >1.5, or <0.5 are shown. Absolute fold change of each individual gene refers to level in CD122+Macs relative to level in cMacs. Of note, *Il2rb* (encoding CD122) met threshold unadjusted p value but did not meet threshold adjusted p value.

Supplemental Figure 2. Human CD122+Macs are present in first trimester decidua and secretory phase endometrium during the implantation window. (A-D) Additional examples of human CD122+Macs in first-trimester deciduae analyzed after elective terminations of pregnancy. Shown in (A) is the raw gating scheme to identify human CD122+Macs. (E-G) Additional examples of human CD122+Macs in secretory phase endometrium. Like first-trimester decidual CD122+Macs, endometrial CD122+Macs variably express CD56. Up to two samples were sometimes processed simultaneously. Any samples stained and analyzed on the same day are shown in the same sub-figure, with headings to distinguish each individual subject from one another.