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S1 Calculating AUC
We calculate the AUC of a transcript assembly by allowing Scallop to output all predicted tran-
scripts regardless of their minimum coverage. The minimum coverage of a transcript is the minimum
number of reads that are aligned to each position along the transcript’s length and is typically used
to filter transcripts used for analysis. We allow the tools GFFCompare1 and GTFCuff2 to calculate
an AUC by finding the precision and recall of the transcripts at various cutoffs of this value.

Because the reference transcriptome contains a large number of transcripts the computed sen-
sitivity is very low, and in turn so is AUC. Since we may not know how many transcripts to expect
in a sample ahead of time we cannot use any type of numerical correction. While the values are
small, comparing them will still indicate relative performance improvements with respect to num-
ber of true and false positives using various parameter choices. In this work, as opposed to Shao
and Kingsford (2017), we choose to not separately evaluate multi-exon transcripts and single-exon
transcripts but rather maximize a combined AUC.

S2 Scallop Parameters
The Scallop transcript assembler generates a transcriptome from a set of reads that have been
aligned to a reference genome. It first splits the genome into regions of non-overlapping reads,
which are called bundles. These bundles can be thought of as genes or groups of overlapping genes.
Then, within each bundle a splice graph is constructed based on the split reads that define possible
exon boundaries. Paths through the splice graph define potential transcripts, and the final set of
transcripts is formed by decomposing the splice graphs into paths while trying to respect as many
of the read mappings as possible. The tunable parameters of Scallop govern various stages of this
process, but we treat the application as a black box and do not examine the actual function of each
parameter only how the manipulation of it’s value impacts transcript quality.

S3 Analyzing Parameter Behavior
To determine the relationship between AUC and the value of the Scallop parameters, we calculate
the AUC of the assemblies produced when varying a single parameter’s value while keeping the
remaining parameters at their default. Figure S1a shows the effect of varying the “minimum sub-
region gap” and “minimum transcript length, base” parameters. Figure S1b shows the relationship
between the parameters and AUC when varying both at the same time. Note that throughout this

1https://github.com/gpertea/gffcompare
2https://github.com/Kingsford-Group/rnaseqtools
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Figure S1: AUC for various values of the “minimum subregion gap” and “minimum
transcript length base” parameters. The points in the plot show the area under the curve
(vertical axis) for the transcriptome produced by changing the value each of the parameters either
(a) alone or (b) together leaving all other parameters their default values on SRR534291/HISAT
from ENCODE10.

work, we multiply area under the curve values by 104 for ease of presentation. AUC is a value in
the range [0, 1], but generally for transcript assembly the value is very small, typically < 0.1.

We examined the parameter behavior curves for several experiments from the ENCODE database,
and found that the curves for all 16 continuous parameters and all of the pairs of parameters tested
contained only one large visible local maximum. These tests suggest that there may be very few lo-
cal maxima in the high-dimensional parameter space which means iterative optimization procedures
are less likely to get stuck at poor local maxima.

S4 Coordinate Ascent Procedure

One dimension (parameter) at a time, we examine the AUC of the parameter vector with that pa-
rameter changed by one step in each direction and update our current vector if we see an improve-
ment. We continue tuning one dimension until no more improvements are made. Our procedure is
deterministic meaning we would never take a step that decreases (or maintains) AUC, unlike many
implementations of coordinate ascent which include some randomness in decision making. The step
size for each dimension has a time-versus-granularity tradeoff: the larger the step size, the less time
spent in low AUC regions of the landscape; but when the size is too large, the maximum may be
repeatedly stepped over without ever being found. Rather than use a computed step size for every
coordinate in each iteration like many implementations of coordinate ascent, we use predetermined
but decreasing step sizes, taking inspiration from simulated annealing. We start with different step
sizes in each dimension that are large relative to the default value for that parameter, and any time
we interrogate the whole set of parameters without making any change we decrease all of the step
sizes by a factor of 1

4 and repeat the process. We continue optimizing the parameters in this manner
until both: (1) all of the step sizes are small (1 for integer and 0.01 for real valued parameters)
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and (2) no more improvements can be made within one step from the current parameter vector.
For the tunable parameters in Scallop that accept only binary values, we tested both options each
time the parameter was explored.

S5 Data
Details about the datasets used are below. All of experimental identifiers and command line
arguments are available at: https://github.com/Kingsford-Group/scallopadvising

S5.1 ENCODE10

ENCODE10 contains a collection of 10 RNA-Seq experiments from the ENCODE database that were
used to benchmark Scallop and have been extensively used to evaluate transcriptome assem-
bly tools. 30 examples were produced by aligning each sample to the human reference genome
(GRCh38) using three tools: HISAT, STAR, and TopHat2. A subset of these examples was used to
find the Scallop default parameter vector in Shao and Kingsford (2017).

S5.2 ENCODE65

ENCODE65 contains a collection of 65 RNA-Seq experiments, also from ENCODE, that were not
included in ENCODE10 and that had preexisting alignments in the database. These alignments are
produced using an aligner selected by the group that submitted the sample and are mapped to
either GRCh37 or GRCh38.

S5.3 SRA

SRA contains a collection of 1595 RNA-Seq experiments from the Sequence Read Archive (Leinonen
et al., 2010) that have been filtered for quality. We eliminate any sample that contained very few
reads (< 1GB sequence file) or aligned aligned (< 1GB alignment file) since this is an indication
that the experiment may be degraded in some way. All remaining samples were aligned using STAR
to GRCh38.

S6 Training Using ENCODE10

Table S1 shows the parameter vectors found for each of the 30 examples in ENCODE10. While all
parameters were tuned when optimizing parameter choices, for some parameters the final parameter
vectors never included non-default parameter values, namely “maximum dynamic programming
table size”, “maximum edit distance”, and “minimum router count.” When training we placed
no restrictions on any of the ranges of values any particular parameter can take on, so while the
values may seem somewhat unintuitive to domain experts, they are the values that give the highest
AUC value for the training example. The deviation of the parameter vectors from the default is
not surprising given that in this work we are optimizing AUC on all transcripts, rather than only
multi-exon transcripts as was done previously.

S6.1 Advising on the training set

Figure S2 shows the AUC for all of the samples from ENCODE10. For each example (a sample
combined with an aligner) there are two values shown: the AUC of the parameter vector produced
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Figure S2: Increase in AUC for examples in ENCODE10. Each of the 30 examples is listed on
the horizontal axis. Each bar’s height is the normalized difference between the default AUC and
that of the assembly produced using either coordinate ascent (blue) or leave-one-out (red).

as a result of coordinate ascent, and the AUC of the leave-one-out advising parameter vector. For
the leave-one-out experiment, advising was limited to the 18 parameter vectors that were learned
on examples produced using the 2 aligners and 9 samples that are different from the example being
tested. This test shows that the parameter vectors learned on specific examples, can generalize and
improve the AUC for other unrelated examples.

S6.2 Parameter vector subsets

In reduced resource environments (e.g., when 31 processors are not available), it may be desirable to
consider fewer parameter settings to keep the number of parallel processes smaller than the number
of available threads. We used the oracle set-finding method described by DeBlasio and Kececioglu
(2017b,a) to find a subset of parameter vectors that maximizes the average AUC for advising.

Advisor subsets are found using an integer linear program that has two sets of binary variables:
one variable for each parameter vector, and one for each example/parameter pair. Where an
example/parameter pair is a parameter vector used to assemble an example. Constraints are used
to ensure that only one pair for each example is chosen and that the associated parameter setting
is also chosen. The objective is then to maximize the sum of the accuracies of the chosen pairs
while only selecting a predefined number of parameter vectors. Using the samples in ENCODE10, we
found advising subsets of 1, 2, 4, and 8 parameter vectors. The advising subset choices are shown
Table S2, here only the parameter vectors are shown that contribute to one of the subsets. Each
column of the table shows one of the 4 limited sets, and parameter vectors (rows) are in that set if
the cell contains an “X”. An advising set of size 1 is equivalent to finding a new default parameter
vector since it maximizes the average accuracy across the training examples.
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Table S2: Parameter vector subsets

Subset size
Experiment/Aligner 1 2 4 8
SRR545723/TopHat2 X X X
SRR534291/TopHat2 X
SRR387661/TopHat2 X
SRR534307/TopHat2 X
SRR387661/HISAT X
SRR545695/HISAT X
SRR534307/HISAT X X
SRR307911/STAR X
SRR315334/STAR X
SRR534319/STAR X
SRR534307/STAR X X

S6.2.1 ENCODE65

When using the resource limited sets on the samples in ENCODE65, the median increase remains
18.2%, 19.0% and 24.4% for sets of 2, 4, and 8 parameter settings respectively. Even with these
small sets, there is a large increase in AUC.

Table S3 shows the percentage of examples from ENCODE65 for which each of the 31 (the whole
set of parameter vectors learned on ENCODE10 plus the original default parameter vector), 8, 4,
and 2 parameter vectors provides the maximum AUC. Only 9 of the 31 (29%) parameter vec-
tors provide the maximal AUC for any sample in ENCODE65, but a greater fraction (50%) of the
parameter vectors are maximal for each of the reduced size advisor sets. The parameter vector
learned from SRR387661/TopHat2 gives the highest AUC on ENCODE65, as opposed to the vector
SRR545723/TopHat2 which is optimal on ENCODE10 (376.8 vs 373.6) which is why it is used most
in the vector subset of size 2.

S6.2.2 SRA

The resource-limited advisor sets also show an increase in accuracy for examples in SRA where the
median improvement is 25.6%, 24.1% and 24.3% with 2, 4, and 8 parameter vectors, respectively.
The increase in AUC actually goes down slightly when increasing the size from 2 to 4. This means
that the parameter vectors and sets may be slightly overfit to the training data. Table S4 shows the
percentage of examples from SRA for which each of the 31, 8, 4, and 2 parameter vectors provides
the maximum AUC. Surprisingly, even though all of the examples are aligned using STAR, many of
the higher-frequency parameter vectors had been optimized for examples that were aligned using
TopHat2. Ties, if any existed, would be resolved in alphabetical order of the experiment name then
aligner but no ties for the maximum AUC were found in SRA or ENCODE65.

S7 Random Advisor Sets
To confirm that the increase in accuracy is due to our advisor set construction method and not an
artifact of having multiple choices of parameter vectors, a collection of random parameter vectors
were generated and used for parameter advising. A range was defined for each tunable parameter
by examining all of the values that provided an increase in AUC for any example at any stage in

6



Table S3: ENCODE65 Parameter Use
Subset size

Experiment/Aligner 31 8 4 2
SRR545723/TopHat2 0 10.8% 38.5%
SRR534291/TopHat2 3.1% 33.8%
SRR387661/TopHat2 0 92.3%
SRR534307/TopHat2 0 7.7%
SRR315323/TopHat2 21.5%
SRR307903/TopHat2 7.7%
SRR315334/TopHat2 4.6%
SRR534319/TopHat2 1.5%
SRR387661/HISAT 7.7% 10.8%
SRR545695/HISAT 0 0
SRR534307/HISAT 0 0 0
SRR534319/HISAT 1.5%
SRR307911/STAR 0 61.5%
SRR315334/STAR 4.6% 44.6%
SRR534307/STAR 0 0 0
SRR534319/STAR 0 0
SRR534291/STAR 47.7%

Note: only parameter vectors in subsets or those that are chosen by an example from ENCODE65 are listed.
Values are only listed for parameter vectors in the subset corresponding to a column.
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Figure S3: Comparison to randomly generated advisor sets. Each point in the chart
represents one example from ENCODE65 positioned by the AUC value of using a randomly generated
advisor set (horizontal axis) or the trained advisor set (vertical axis) averaged over 100 random
replications. Points above the diagonal line show an improvement of training over random.

7



Table S4: SRA Parameter Use
Subset ize

Experiment/Aligner 31 8 4 2
SRR545723/TopHat2 < 1% 50.9% 67.9%
SRR534291/TopHat2 3.3% 33.7%
SRR387661/TopHat2 < 1% 76.5%
SRR534307/TopHat2 4.2% 23.5%
SRR307903/TopHat2 26.9%
SRR315334/TopHat2 21.6%
SRR315323/TopHat2 < 1%
SRR534319/TopHat2 < 1%
SRR387661/HISAT < 1% 1.2%
SRR545695/HISAT < 1% < 1%
SRR534307/HISAT 0 0 < 1%
SRR534291/HISAT 6%
SRR315334/HISAT 1.5%
SRR307911/HISAT < 1%
SRR545723/HISAT < 1%
SRR307911/STAR 3.2% 2.9%
SRR315334/STAR < 1% 7.0%
SRR534319/STAR < 1% 5.1%
SRR534307/STAR < 1% 2.0% 2.7%
SRR534291/STAR 19.5%
SRR307903/STAR 3.7%
SRR387661/STAR 1.9%
SRR545695/STAR 1.5%
SRR545723/STAR < 1%
SRR315323/STAR < 1%

Note: only parameter vectors in subsets or those that are chosen by an example from SRA are listed. Values
are only listed for parameter vectors in the subset corresponding to a column.
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coordinate ascent. A random vector was then constructed by selecting parameter values for each
parameter uniformly at random in these ranges. In total, 30 such parameter vectors were generated
to match the advisor set size developed using coordinate ascent. This randomization procedure was
then replicated 100 times to ensure stability of the average.

Figure S3 shows the AUC achieved by parameter advising on Scallop using the the coordinate-
ascent-derived advising set versus the AUC of advising using the random advisor sets. The default
parameter vector was left out of the all advising sets. Because of this, many of the randomly
generated advisor sets (29 of 65) led to a decrease in accuracy relative to the default. On some
examples the performance is similar between the two sets, but the average increase in AUC is much
higher for the coordinate ascent advisor set (median AUC increase of 31.23 versus 5.59). In all of
the 65 examples, the coordinate ascent sets outperform the random ones.

S8 Running Time
The wall time of running coordinate ascent is much larger than the running time of any single
instance of Scallop. For the 30 examples from ENCODE10, running coordinate ascent for any single
example took between about 40 hours and over 22 days.

Running an advisor would take only as much wall-time as running a single instance of Scallop
with appropriate resources. Running Scallop using the default parameter vector for these same
samples takes between ∼7 minutes and 1 hour. Even if no parallelization was possible, parameter
advising would be able to run in a fraction of the time of running coordinate ascent.

S9 Justification for a Reference-Based Advising Metric
Simulated datasets were constructed using the samples in ENCODE10. We restricted the reference
transcriptome for each experiment to be the collection of transcripts from the reference that map
to assembled transcripts in that experiment. We then limit the set of sequencing reads to those
that map to the transcripts in this reduced reference.

Since the reduced reference has all of the transcripts in the sample and nothing else, the AUC
using this reduced reference transcriptome in this case is the ground truth accuracy. We can then
compare just how well the other metrics are able to recover this known truth set.

From this reduced reference, we sample transcripts to create a smaller “partial reference” that
contains approximately 70% of the transcripts. The transcripts were included in the partial refer-
ence with probability equal to their frequencies across iterations of coordinate ascent. Transcripts
that are observed more often across parameter vectors are more likely to be included. The resulting
partial reference closely resembles the actual reference transcriptome in a sense that it contains the
majority of frequently encountered transcripts, while missing the ones that are less frequent. To
measure and compare the quality of the optimal assemblies under different metrics, we provide only
the partial reference in optimization, and check for the improvement by calculating AUC against
whole reference.

Metrics that we consider include a de-novo transcriptome assembly quality analysis tool TransRate,
the number of reads mapped to the assembly using Salmon (Num Reads), and linear combination
of the Transrate feature functions, number of reads mapped, and other features (Linear Sum).

Figure S4 shows the improvement of the parameter vectors found using coordinate ascent when
optimizing AUC using the entire restricted reference (“whole AUC”) which represents the best
achievable optimization, AUC using the subset of restricted reference (“partial AUC”) which rep-
resents AUC as used in practice, and the 3 metrics above.
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Table S5: Optimal parameter vectors for StringTie found by coordinate ascent
ID Experiment Aligner M a f g j m t u
1 SRR307903 HISAT 0.13 14 0 52 1 468 false false
2 SRR307911 HISAT 0.11 13 0 54 1 444 false false
3 SRR315323 HISAT 0.10 11 0 37 1 389 false false
4 SRR315334 HISAT 3.03 10 0 58 2 446 false false
5 SRR387661 HISAT 0.93 10 0 0 3 543 false false
6 SRR534291 HISAT 50.92 20 0.01 133 0 483 false false
7 SRR534307 HISAT 3.74 13 0 4 6 474 false false
8 SRR534319 HISAT 0.31 6 0.23 15 3 375 false true
9 SRR545695 HISAT 0.06 10 0.15 11 3 352 false false
10 SRR545723 HISAT 0.11 0 0 11 2 634 false false
11 SRR307903 STAR 0.34 6 0 21 2 464 false false
12 SRR307911 STAR 0.23 11 0.08 71 1 416 false false
13 SRR315323 STAR 50.92 11 0.19 54 0 382 false false
14 SRR315334 STAR 0.57 10 0 43 2 459 false false
15 SRR387661 STAR 50.92 13 0.1 77 4 408 false false
16 SRR534291 STAR 1.01 12 0 58 1 293 false false
17 SRR534307 STAR 50.89 8 0 1 7 596 false false
18 SRR534319 STAR 0.28 9 0.27 39 3 406 false false
19 SRR545695 STAR 0.31 10 0.19 62 4 456 false false
20 SRR545723 STAR 0.46 10 0.01 3 1 551 false false
21 SRR307903 TopHat2 0.06 10 0 64 1 575 false false
22 SRR307911 TopHat2 0.08 8 0 53 1 561 false false
23 SRR315323 TopHat2 0.29 1 0 40 0 536 false false
24 SRR315334 TopHat2 0.07 7 0 38 2 530 false false
25 SRR387661 TopHat2 0.21 6 0 9 3 579 false false
26 SRR534291 TopHat2 12.79 10 0 112 1 492 false false
27 SRR534307 TopHat2 0.12 7 0 2 5 593 false false
28 SRR534319 TopHat2 0.18 5 0.25 39 2 370 false false
29 SRR545695 TopHat2 0.23 8 0.13 14 3 407 false false
30 SRR545723 TopHat2 0.18 3 0 61 1 778 false false

Default 0.95 10 0.1 50 1 10 false false
Initial Step Size 50 1,000 50 5,000 100 10,000 n/a n/a

M — fraction of bundle allowed to be covered by multi-hit reads
a — minimum anchor length for junctions
f — minimum isoform fraction
g — gap between read mappings triggering a new bundle
j — minimum junction coverage
m — minimum assembled transcript length
t — disable trimming of predicted transcripts based on coverage
u — no multi-mapping correction
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Figure S4: Relative increase in accuracy over default of using various transcript assem-
bly metrics for coordinate ascent. The bars represent the difference in accuracy between the
optimal parameter choice vector for each metric and the default vector, normalized by the default
accuracy for each of the examples from ENCODE10.

An ideal test for how much predictive power is lost by optimizing AUC as opposed to other
metrics would be to use a fully simulated RNA-seq sample where we know all of the transcripts that
are present. We choose to use experiments that more closely resemble biological samples in that
they include extraneous sequencing reads that comes from amplification, sequencing, or assembly
errors.

An alternate explanation as to why partial AUC finds more accurate parameter vectors is that
our accuracy measure is inappropriate and the de novo-metric-optimal parameter vectors actually
provide more realistic assemblies. if this were true a large number of transcripts assembled using
the default parameter vector that map to the reference transcriptome but are actually wrong,
since many those transcripts are missing in the de novo-metric-optimal assemblies and are replaced
with transcripts that do not map to the reference. Even though there is some debate over the
completeness of the reference transcriptome (Pertea et al., 2018; Jungreis et al., 2018), it seems
unlikely that the number of transcripts that are missing would be large enough to cause such a
large discrepancy. In the future, it would be ideal to find some new measure that is some hybrid
between AUC and de novo assessment that could both use current knowledge but still be able to
detect novel transcripts. When this is available, it can replace AUC as the measure for constructing
and using advising for transcript assembly.
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