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Author statement on mathematical modeling, and the purpose of this study.  

In any outbreak, mathematical modeling efforts are crucial for organizing the available 

information, transforming the unknowns into testable hypotheses, and providing 

projections of how the disease may progress under a set of assumptions (45-46).This 

last point is an especially important, often under-treated aspect of computational and 

mathematical modeling of epidemics: predictions are useful, but only apply to sets of 

circumstances commensurate with the model assumptions.  

 

Note that this study is not tasked with making any predictions about how any particular 

COVID-19 outbreak will happen in any setting. That models like the ones in this 

manuscript might apply to hypothetical scenarios doesn’t mean, however, that they are 

wholly irrelevant. We believe that our study offers a unique perspective on COVID-19 

that can be used to develop a better understanding of disease dynamics, and perhaps, 

more intelligent prevention and interventions.   

 

It is, however, important to communicate what the purpose of a given mathematical 

model is. We believe that the model in this study will aid our understanding of epidemics 

like COVID-19. We reiterate, however, that the purpose of this model is not to explain 

any particular COVID-19 outbreak, nor make specific projections about any setting. 

Alternatively, our general results and perspectives are likely broadly applicable to many 

disease types.  

 

 

 

 

 

 

 

 



SUPPLEMENTAL METHODS 
 

1. Elaborated derivation of formulas 8a and 8b (from the main text).  

 
Here we provide a detailed derivation of several equations described in the main text. 
First, we provide equations 8a and 8b, as described in the main text.:  
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First, Rp represents the number of secondary infections of people through person-to-

person contact. This avenue is captured by the βA and βS terms in equations 1 and 2 in 

the main text. Namely, the rate of converting susceptible individuals to exposed 

individuals through person-to-person contact with infectious individuals is given by βA S 

IA / N for asymptomatic individuals and by βS S IS / N for symptomatic individuals. Near 

the disease-free-equilibrium (DFE), N ~ S0 (i.e. the total population is initially 

susceptible) and so the rate of infection conversion for each, near the DFE, is given 

(approximately) by βA IA and by βS IS. And so, the rate of conversion per infectious 

individual (IA and IS) is given simply by βA and by βS respectively. The average time that 

an individual remains in the infectious state is given by the reciprocal of the “exit”-rate of 

that state, which is 1/(μ + ⍵) for IA, and by 1/(μS + 𝜈) for IS. 

  

Thus the average number of secondary infections by individuals in the asymptomatic-

infectious state is given by βA /(μ + ⍵) and by βS/(μS + 𝜈) for the symptomatic-infectious 

state. It is not sufficient to simply add these quantities together as the rates/probabilities 

of entering the IA and the IS differ from one another. In order to properly combine these 

two rates, we need to determine the fraction of individuals, early-on, that will be in each 

infectious compartment—or, if one prefers, the probability of being in either infectious 

state. Individuals entering the IA compartment can only do so by leaving the E 

compartment. And individuals can only leave the E compartment by entering the IA 

compartment or through death. 



  

The fraction of individuals that move on to the IA compartment is therefore given by ε / 

(μ + ε), i.e. the ratio of the rate of entering the IA compartment to the rate of leaving the E 

compartment, per person. And, the fraction of individuals that move on from the IA 

compartment to the IS compartment is, analogously, (1 - p) ⍵ / (μ + ⍵), i.e. the ratio of 

the rate of entering the IS compartment to the rate of leaving the IA compartment. Note 

that individuals who make it to the IS compartment must also have made it through the 

IA compartment, and only a fraction ε / (μ + ε) do. So the rate of new infections caused 

by asymptomatic individuals and by symptomatic individuals needs to be weighted 

accordingly; ε / (μ + ε) for the former and ε / (μ + ε) x (1 - p) ⍵ / (μ + ⍵) for the latter—the 

latter needs both factors since individuals who make it to IS must also make it through IA 

first. Thus, weighting the rates in a sum accordingly, one finds that the rate of secondary 

person-to-person infections is given by, [ βA /(μ + ⍵) x ε / (μ + ε) ] + [ βS/(μS + 𝜈) x ε / (μ + 

ε) x (1 - p) ⍵ / (μ + ⍵) ], the first term in brackets corresponding to infections by 

asymptomatic individuals, and the second term to symptomatic individuals. This 

expression simplifies to the form given in equation 8a. 

  

A similar story can be told for the number of secondary infections of people, mediated 

by the environment, Re2. Although, in this case, we can break down this reproductive 

ratio further into two sub-components of its own: one representing the flow of infection 

to the environment from people, and another from the environment to people. We will 

call the former Rpe and the latter Rep. 

  

The derivation for Rpe is identical to Rp described above except that we replace βA and 

βS by σA/S0 and σS/S0 respectively, since these latter quantities represent the rates of 

depositing infection to the environment (near the DFE), as opposed to the rates of 

depositing infection to people as in the case of βA and βS. The derivation is otherwise 

identical since the probability of an individual making it to the IA or the IS compartments 

remains unchanged. σA/S0 and σS/S0 can be seen to represent the rate of environmental 

infection per infectious individual (for asymptomatic and symptomatic individuals 

respectively) by examining the full rate in equation 6 (in the main text), namely (σA IA + 



σS IS) (1 - W) /N. Near the DFE, the factor 1 - W is nearly equal to 1, and N ~ S0. Thus, 

as above, the individual rates of infecting the environment per infectious person is given 

by σA/S0 for asymptomatic individuals and by σS/S0 for symptomatic individuals. The 

apparent dependence on S0 in the ℛ0 is a curious feature of the model, although as we 

will soon see, this dependence cancels out entirely, leaving the full ℛ0 devoid of any 

such dependence on population density. Following the lines of the derivation for Rp 

described above, but with βA and βS replaced by σA/S0 and σS/S0 respectively, one 

arrives at, 
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This quantity can be interpreted as the fraction of the environment infected by a single 

infectious individual near the DFE. Note that we do not specify their infectious-type 

(asymptomatic or not) as this feature is implicit in the weighted sum we took to arrive at 

equation S1 (and equation 8a), representing the expectation value of the fraction of new 

environmental infections. Note also that we are justified in discussing increments in the 

fraction of the environment infected as these calculations are performed near the DFE, 

where we can assume only a very small fraction of the environment is infectious and 

thus need not be concerned by scaling the fractional quantities to values exceeding 

unity. 

  

Lastly, the derivation for Rep is straightforward. The rate of infection from the 

environment is given by βW W S (equations 1 and 2 in the main text). Near the DFE, S ~ 

S0, and so the rate of people infected by the environment per fraction of the infected 

environment (W) is given simply by βW S0. The average time any fraction of the infected 

environment remains infected is given by 1/k, i.e. the reciprocal of the exit rate of the W 

compartment. Thus, the number of new infections of people, per fraction of the 

environment, near the DFE, is given simply by 
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Thus, the number of people infected by an individual who has first deposited infection to 

the environment (parameterized here as some “fraction” of the environment) is simply 

the product of the fraction of the environment infected per infectious individual (equation 

S1) and the number of people infected per infectious fraction of the environment 

(equation S2).  
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As promised, the dependency on S0 cancels out in the product. The identification of this 

product with Re2 rather than with Re may be better understood now having gone over its 

derivation by hand. A reproductive ratio representing the number of new infections of 

people per infectious person that are mediated through the environment is really the 

product of two reproductive ratios: one representing the spread of infection from people 

to the environment, and another representing the spread of infection from the 

environment to people. If one follows the lines of previous efforts for calculating 

reproductive ratios in general ODE-systems (47), then they would find that for the 

system of ODEs (equations 1-6 in the main text), the full ℛ0 expression is composed of 

the two subcomponents (Rp and Re2) described here in a way expressed by equation 7 

in the main text. 

  

A brief explanation of the final ℛ0 form (which is made clearer by following methods as 

described in prior studies (47) is that the form in equation 7 in the main text is the 

maximum eigenvalue of the next-generation matrix G: 
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This matrix represents the amount by which the infected populations (taken as a 2 x 1 

vector of inputs to the matrix) are scaled from one infection generation to the next (47).  

For simplicity, here we only consider two infectious components: people and the 

infectious portion of the environment, as opposed to splitting people into all of the 

infected categories in our model (E, IA, & IS), simplifying G to a 2 x 2 matrix. As 

explained in more detail in Diekmann et al. 2010 (47), this simplification will preserve 

the maximum eigenvalue of the system, although one could just as well follow the lines 

of the calculation using the full 4 x 4 version of G, accounting for all infected 

compartments E, IA, IS, & W.  

 

One will notice that G in equation S4 includes the three subcomponents of the ℛ0 

discussed above (equation 8a, and equations S1 & S2). Each element represents an ℛ0 

from a to b where a and b could represent people or the environment, making the 0-0 

component of G (using indices beginning at 0) the ℛ0 of people to people, the 0-1 

component the ℛ0 of the environment to people, the 1-0 component the ℛ0 of people to 

the environment, and lastly the 1-1 component gives the ℛ0 of the environment to the 

environment, which is zero in this case as the environment does not infect itself. Note 

that under this basis, the vector of inputs is the column vector given by (infected people 

at time t, infected fraction of environment at time t). As is readily verifiable, solving for 

the maximum eigenvalue of G gives equation 7 in the main text, with the identification 

that Re2 = RepRpe. 

  

2. Model fitting and parameter estimation 

Mathematical models like the ones developed in this study require the use of 

parameters, terms that dictate the way that the different parts of the model interact. In 

the case of SARS-CoV-2 transmission, we are fortunate that many early studies have 

provided estimates for many terms, like the incubation period, and rate of recovery. That 

said, there remains many terms for which there are no solid estimates. In this scenario, 

we must estimate these values. There are many ways to attempt this. One way to do 

this is to fit the model (using the fixed parameters based on values that we do have less 

uncertainty for) in order to estimate the unknown parameters. To do this, we use real-



world data on the COVID-19 outbreak from 17 countries, in their “early-stage” 

outbreaks. 

  

We define the “early stage” of the epidemic as the 30 days following the first day with 

≥10 cumulative infected individuals within a particular region. This allowed us to 

standardize our comparisons between different regions, leading to more robust fitting 

results. We choose case counts ≥10 in order to avoid early difficulties with testing and 

recording and to give the infection sufficient time to settle into a more consistent 

doubling time. The window of 30 days was chosen in order to maximize the number of 

data points while also allowing enough room to include countries who have had a long 

enough exposure to SARS-CoV-2 to be included in the analysis. 

 

We conduct our analysis using early stage data (30 days) from the following 17 

countries (in alphabetical order): Australia, Austria, Canada, China, Denmark, France, 

Germany, Iran, Italy, Netherlands, Norway, Spain, Sweden, South Korea, Switzerland, 

the United Kingdom, and the United States. These countries were chosen because they 

had both the highest cumulative COVID-19 cases (of the 181 total countries affected) as 

of 03/30/2020, and because the outbreak had developed for at least 30 days following 

the first day with ≥10 cumulative infected cases within each country (37,42). 

 

Fitting our model to data from each of these countries, we deduce values for 6 model 

parameters, βA, βS, βW, σA, σS, and 𝜀 in the SEIR-W case, and 3 model parameters βA, 

βS, and 𝜀 in the SEIR case. Using the fitted parameters, we calculate Akaike Information 

Criterion (AIC) values (equation S6, discussed below) for the two versions of the model: 

one with the environmental reservoir included (SEIR-W) and one without it (SEIR). The 

AIC is an estimator representing the quality of a statistical model given a particular set 

of data and thus provides a means for model selection. 

 

The environment can be “turned off” by setting certain parameters (arrows in the 

compartmental diagram) to 0. These include βW, 𝜎A, and 𝜎S; each representing some 

coupling between the environment and people. The reciprocal of 𝜀 gives the number of 



days an individual is expected to remain in the E compartment before becoming 

asymptomatically infectious. We include this parameter in both fits (SEIR-W and SEIR) 

since little is known about how long the period is, after being initially exposed to SARS-

CoV-2, before an individual becomes infectious (which we assume occurs before 

symptom onset). The only constraint on 𝜀 in the curve fitting is that 1/𝜀 lies between 0 

and 5.5 days (the incubation period). We set 1/ω (the expected time in the IA 

compartment) to be the remainder of the time in the incubation period; i.e. ω-1 = η - 𝜀-1 

where η is the incubation period (5.5 days). All other fitting parameters are constrained 

to lie between 0 and 100, which is expected to provide ample room in the parameter 

space to locate an appropriate fit.  

  

We use the python module scipy.optimize.curve fit to fit our model to the data from each 

country. This program uses the Levenberg-Marquardt algorithm to perform a least-

squares regression analysis (48). Using the optimal parameters, we computed the log-

likelihood, L, using the following formula: 
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𝑓(𝑡, 𝑞) is the number of people infected on day t predicted by the model, y represents 

the data, N is the number of data points (in this case, 30), and σ2 is taken to be the 

maximum-likelihood estimation (MLE) of the variance, given by (49). 
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From this we compute an AIC value using the formula, 

 

𝐴𝐼𝐶 = 2(𝑘A − 𝐿)                                                 (S7) 

 



where k𝞱 is the number of fitting parameters (6 for SEIR-W and 3 for SEIR) and L is the 

log-likelihood with MLE-calculated variance shown above. As mentioned above, we 

compute AIC values with and without the environmental reservoir. In each case, we 

perform the least-squares regression and arrive at the optimal parameters: βA, βS, βW, 

σA, σS, and 𝜀 in the former, and βA, βS, and 𝜀 in the latter. 

  

Having established parameter values from this analysis, our primary aim is to assess 

the impact of SARS-CoV-2 environmental transmission (via copper, steel, cardboard, 

and plastic) on both the general (averaged) and country specific dynamics of the 

COVID-19 pandemic. 

 

As stated previously, these 17 countries were chosen because they both had the 

highest cumulative COVID-19 cases (of the 181 total countries affected) as of the end of 

March, 2020. 

 
Initial values  

Country Value of S0 
(people) 

Value of IS0 Source (S0  & IS0) 

Australia 25,499,881 11 (37) 

Austria 9,006,400 10 (37)  

Canada 37,742,157 11  (37)  

China 60,000,000 27  (37)  

Denmark 5,792,203 10 (37)  

France 65,273,512 11 (37) 

Germany 83,783,945 11 (37) 



Iran 83,992,953 18 (37) 

Italy 60,461,828 17 (37) 

Netherlands 17,134,873 13 (37) 

Norway 5,421,242 15 (37) 

South Korea 51,269,183 12 (37) 

Spain 46,754,783 12 (37) 

Sweden 10,099,270 12 (37) 

Switzerland 8,654,618 12 (37) 

United Kingdom 67,886,004 13 (37) 

United States 331,002,647 11 (37) 

Table S1.  Initial values used for susceptible and symptomatically infected individuals 

for each country. 

  

 
 
Fitted parameter values, SEIR-W (by country) 

Country βA βS βW 𝜎A 𝜎S 1/ε Source 

Australia 0.233 1.231 0.000 2.143 33.960 5.445 [Fitted] 

Austria 0.000 0.000 0.071 2.983 0.001 0.000 [Fitted] 

Canada 1.503 5.015 0.001 0.359 30.454 5.032 [Fitted] 



China 0.915 0.000 0.000 1.641 12.829 2.403 [Fitted] 

Denmark 0.211 0.000 0.128 0.000 11.471 2.749 [Fitted] 

France 0.777 0.000 0.000 0.079 26.404 2.426 [Fitted] 

Germany 0.649 0.000 0.000 4.349 75.298 2.451 [Fitted] 

Iran 0.470 0.000 0.036 0.000 0.000 2.749 [Fitted] 

Italy 0.479 0.000 0.032 0.000 0.482 1.744 [Fitted] 

Netherlands 0.000 0.000 0.037 6.054 0.001 0.003 [Fitted] 

Norway 0.525 0.000 0.075 0.000 0.000 2.748 [Fitted] 

South Korea 0.752 2.100 0.000 2.306 3.804 2.434 [Fitted] 

Spain 0.724 0.000 0.020 0.000 2.243 2.591 [Fitted] 

Sweden 0.523 0.000 0.027 0.000 9.322 2.747 [Fitted] 

Switzerland 0.590 0.000 0.100 0.000 0.000 2.747 [Fitted] 

United 

Kingdom 

0.421 0.000 0.002 27.754 8.622 1.323 [Fitted] 

United 

States 

0.573 0.000 0.000 10.199 14.474 2.540 [Fitted] 

 
Table S2. Fitted parameters used in the SEIR-W model for each of the 17 selected 

countries. 

  

 



Fitted parameter values, SEIR (by country) 

Country βA βS βW 𝜎A 𝜎S 1/ε Source 

Australia 3.042 1.058 0.000 0.000 0.000 5.445 [Fitted] 

Austria 0.000 12.203 0.000 0.000 0.000 0.009 [Fitted] 

Canada 0.000 9.176 0.000 0.000 0.000 5.445 [Fitted] 

China 0.915 0.000 0.000 0.000 0.000 2.404 [Fitted] 

Denmark 0.000 9.626 0.000 0.000 0.000 0.022 [Fitted] 

France 0.777 0.000 0.000 0.000 0.000 2.426 [Fitted] 

Germany 0.649 0.000 0.000 0.000 0.000 2.451 [Fitted] 

Iran 0.000 12.323 0.000 0.000 0.000 5.307 [Fitted] 

Italy 0.233 16.127 0.000 0.000 0.000 5.445 [Fitted] 

Netherlands 0.001 12.427 0.000 0.000 0.000 0.008 [Fitted] 

Norway 0.001 9.250 0.000 0.000 0.000 0.009 [Fitted] 

South Korea 1.097 1.956 0.000 0.000 0.000 3.389 [Fitted] 

Spain 0.000 17.840 0.000 0.000 0.000 0.014 [Fitted] 

Sweden 0.000 9.680 0.000 0.000 0.000 0.106 [Fitted] 

Switzerland 0.000 12.949 0.000 0.000 0.000 0.014 [Fitted] 



United 

Kingdom 

0.000 11.715 0.000 0.000 0.000 5.445 [Fitted] 

United States 0.574 0.000 0.000 0.000 0.000 2.544 [Fitted] 

 
Table S3.  Fitted parameters used in the model for each of the 17 selected countries. 

βW, 𝜎A, and  𝜎S are set to zero when we run the standard SEIR country fits. 

  

 

3. Model fitting and parameter estimation II 

Tables S1-S3 display all the data relevant to the model initial conditions (for each 

country), and the AIC values for the country fits. In Figure S1, we show graphs 

corresponding to individual country fits. Note that four countries with the most explosive 

early outbreaks—Spain, Italy, Iran and Switzerland—appear in the main text (Figure 2). 

Explosiveness was defined by the highest cumulative number of infected cases after 30 

days following the first day when cases were greater than or equal to 10). These four 

also appear in the table, however, so that their fits can be compared to the other 14 

countries in the set. 

  

Akaike Information Criterion (by country) 

  Australia Austria Canada China Denmark 

AIC SEIR-W 94.6 400 311.9 388.5 332.6 

AIC SEIR 88.5 422 307 382.5 349.9 

  

  France Germany Iran Italy Netherlands 

AIC SEIR-

W 

273.7 221.4 427 439.5 377.9 



AIC SEIR 267.7 215.4 472.3 503.8 420.8 

  

  Norway South 
Korea 

Spain Sweden Switzerland 

AIC SEIR-W 344.1 356.1 456 322.7 416.5 

AIC SEIR 363.4 350.1 498.1 339 439.9 

  

  United 
Kingdom 

United 
States 

AIC SEIR-W 372.8 191.9 

AIC SEIR 375 185.9 

  
  
Table S4. The Akaike information criterion (AIC) for the fits conducted of the “early 

stage” (30 days) of the outbreak in each of the selected 17 countries with (SEIR-W) and 

without (SEIR) the WAIT component present. The larger of each pair of AIC scores is 

highlighted in red, and the smaller in green. 

  

 
 
 
 
 
 
 
 



 



 

Figure S1. Graphical depiction of data in the Table S4. A-Z correspond to 13 country 

fits of the mathematical models—SEIR and SEIR-W. Four other country fits are 

depicted in the main text Figure 2 (Spain, Italy, Iran, Switzerland).  

 

4. Model sensitivity analysis 

Partial Rank Correlation Coefficient (PRCC). A key aspect of model building is a 

“sensitivity analysis,” or a test of how the model dynamics change as a result of 

changes in parameters. 

 

We use the Partial Rank Correlation Coefficient (PRCC)—an established method—to 

assess the sensitivity of various aspects of our model with respect to changes in the 

parameter values of our model (50). 

 

Using this method, we can identify certain parameters which may be quite influential to 

the dynamics of the infection. Here we briefly review the steps we took to compute the 

PRCC values for several aspects of the model. As a rough outline of the calculation, 

one begins by constructing M random samples of the parameter values around the 

predetermined set of expected values of parameters—let us say there are n 

parameters. For each of these M samples, which are selected using the Latin 

Hypercube Sampling (LHS) method (51) the value of whatever model aspect is 

calculated, such as the ℛ0 or the number of people infected after 30 days. In the LHS 

method, the n parameters are varied independently of each other and so this procedure 

allows us to assess sensitivity of all parameters collectively, rather than assessing the 

sensitivity of the model with respect to changes in a single parameter at a time. Then 

the sampled values for each of the n parameters are numbered 1 through M depending 

on how they rank in the sample, resulting in n vectors of length M giving some 

permutation of the numbers 1 through M. The same ranking procedure is performed for 

the output of the model, whether that is the ℛ0 or something else. Consequently, there 

are now n+1 permutations of the numbers 1 through M. The next step is to compute the 

ordinary correlation coefficient between all pairs of these n+1 vectors, and to arrange 



them into a matrix C—note that C is a symmetric matrix. Thus, Cij gives the correlation 

between the ith and jth parameter vector or model value vector. In general, most of 

these values are expected to be fairly close to 0, except for the diagonal (all ones) and 

the values associated with correlations with the model value vector. The last step is to 

compute the matrix inverse of C, which we call B. Finally, the PRCC values (one for 

each parameter) are defined by, 

  

𝑃𝑅𝐶𝐶B = −𝐵B	C&*/=𝐵B	B𝐵C&*	C&*                                     (S8) 

                        

where i refers to the ith parameter. 

  
We compute the PRCC values for four aspects of our model, (1) ℛ0 ,(2) cumulative 

number of symptomatic infections after 30 days, (3) time to the symptomatic peak (tmax), 

and (4) symptomatic peak (Imax), 

 

Table S5. Summary of the “surface world” simulations key features.  
 

 
Copper  Cardboard Stainless steel  Plastic  

SARS-CoV-2 decay 

time (1/k) 

4 hours 24 hours 48 hours 72 hours 

ℛ0 2.4 2.67 2.94 3.18 

Time to reach 

maximum # of IS 

88.4 65.1 56.6 52.6 

The maximum 

number of IS 

1,023,100 1,177,930 1,254,260 1,292,010 

The number of IS 

after 30 days 

5960 58240 155390 256420 

The number of 

deaths after 30 days 

55 461 1,133 1,814 


