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Supplementary Figures 1 | Comparison between putative flat band density-of-states in 

Co3Sn2S2, Fe3Sn2, and CoSn. The STM data of Co3Sn2S2 are reproduced from Ref. 10, which 

exhibits same flat band feature with the data in Ref. 11, but has more extended energy range. The 

Fe3Sn2 STM data are reproduced from Ref. 12. In both Co3Sn2S2 and Fe3Sn2, the DOS 

enhancements from the claimed ‘flat’ bands are actually marginal compared to the overall DOS, 

suggesting a rather limited momentum-space range of flat dispersion. In contrast, the flat band in 

CoSn clearly dominates the DOS in both DFT calculation and ARPES experiment, as expected 

from the ideal flat band. 
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Supplementary Figures 2 | Dirac fermions in CoSn. a, Constant energy map of CoSn at the 

Dirac point energy (ED = −0.57 eV). Dirac points at 𝐾 of the hexagonal surface Brillouin zone can 

be observed. b-d, Energy-momentum dispersion of CoSn across 𝐾	points measured along various 

momentum space directions: at ky = 0.40 Å-1 (b), ky = 0.79 Å-1 (c), and kx = 0.0  ̊Å-1 (d). Linear 

crossing at the Dirac points (marked with white arrows) can be observed in all momentum space 

directions confirming the realization of Dirac fermions in CoSn. We quantified the Dirac velocity 

as vD = 1.8 × 106 m/s, which is one order of magnitude smaller than that of graphene and 

comparable to those observed in related magnetic kagome metals Fe3Sn2 and FeSn.6,7 All data 

were measured with s-polarized 97 eV photons, which correspond to kz = p (mod 2p) according to 

our photon energy-dependent ARPES experiment.  
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Supplementary Figures 3 | Orbital decomposition of the DFT band structure of CoSn. a-c, 

Orbital weights of dxy/dx2−y2, dxz/dyz, and dz2 orbitals on the DFT bands of CoSn respectively.  
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Supplementary Figures 4 | Transport characterization of CoSn single crystals. a, The 

resistivity as a function of temperature with current flown along [210] (blue curve) and [001] (red 

curve) directions. Inset shows the ratio between out of plane and in plane resistivities. b, Hall 

coefficient measured with in-plane (green circles) and out-of-plane (blue circles) configurations. 

c, Schematic of the Cartesian coordinates with respect to the crystallographic axis.  
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Supplementary Figures	5 | Comparison between the DFT calculation and the Wannier tight-

binding model of CoSn. a,b, Band structure of CoSn obtained from DFT (blue) and the Wannier 

tight-binding model (red) with and without spin-orbit coupling respectively. The spin-orbit 

coupling is included as an atomic term 𝜆𝐿 ∙ 𝑆. 
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Supplementary Figures	6 | Real-space spin texture of the flat band Wannier functions. a,b, 

Spin-texture of the dxz/dyz and dxy/dx2−y2 flat band Wannier functions respectively. In-plane spin 

directions are marked with blue arrows, while the out-of-plane spin directions are marked with 

orange and red circles. The length scales of arrows and circles are proportional to the magnitude 

of spin expectation values on each site.	  

Spin texture of dxz / dyz flat band Wannier orbital Spin texture of dxy / dx2-y2 flat band Wannier orbitala b

In-plane spin Positive out-of-plane spin Negative out-of-plane spin



 

Supplementary Figures	7 | Tuning the flat band energy of CoSn via bulk Fe doping. a-c, DFT 

band structure of Co1-xFexSn with x = 0, 1/3, and 2/3 respectively. The dxy/dx2−y2 derived flat band 

at kz = 0 crosses the Fermi level at x = 2/3 doping, while more electrons are required to position 

the dxz/dyz at the Fermi level. Nonmagnetic ground states are assumed in all cases. 
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Supplementary Figures 8 | Tuning the flat band energy of CoSn via in-plane compressive 

strain. a-c, DFT band structure of CoSn with in-plane compressive strain of 0 %, 6 %, and 12 % 

respectively. Such in-plane compressive strain mimics/simulates the case of CoSn thin film grown 

on lattice-mismatched substrate. The out-of-plane lattice constant is relaxed on each calculation. 

The flat band moves upward with the in-plane compressive strain, and can be almost aligned to 

the Fermi level with 12 % compression.  
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Supplementary Figures 9 | Tuning the flat band energy of CoSn via monolayer fabrication. 

DFT band structure of monolayer kagome lattice consists of Co and Sn as shown in the inset. In 

the monolayer limit, flat bands from dxz/dyz and dz2 orbitals locate at the very vicinity of the Fermi 

level or cross it as marked with cyan and brown arrows respectively. The shift of flat band energy 

is partly due to the absence of the spacer Sn layer in the monolayer kagome limit, from which 

electrons are donated to the kagome layer in bulk CoSn. Our analysis of the parity eigenvalues of 

the flat bands in monolayer limit reveal their non-trivial topology similar to the case of kz = 0 flat 

bands in bulk CoSn.  
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Supplementary Figures 10 | d-orbital tight-binding calculations of kagome lattice and the 

real-space orbital textures of the flat band eigenstates. Despite the complexity arising from the 

multiple orbital hopping channels the flat band manifests at specific tp /td  or ts /tp. The orbital 

textures in b2 and b5 resemble those of flat bands in CoSn.  
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Supplementary Figures 11 | Approximate orbital textures of the flat bands in CoSn derived 

from the spinless model. The length-scale of depicted orbitals are proportional to the magnitude 

of the wave function at each lattice site.  

Approximate orbital texture of dxz / dyz flat band Approximate orbital texture of dxy / dx2-y2 flat banda b



 
Supplementary Figures 12 | Initial seeding function for Wannier projection. a, The initial 

Wannier seeding function has non-zero wavefunction on the six sites (i = 1 to i = 6) of the hexagon 

corners. b, The spin texture of the seeding function. c,d, The orbital texture of the seeding function 

in projecting dxz/dyz and dxy/dx2−y2 flat bands.  
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Supplementary Figures 13 | Effective Wannier tight-binding model for the flat bands in CoSn. 

a, Schematics of the first, second, and third nearest neighbor hoppings between the flat band 

Wannier functions centered at each hexagon of kagome lattice. b, Band structure of the effective 

flat band Wannier tight-binding model (blue lines). The hopping parameters resulting from the fit 

to the DFT band structure (red lines) at kz = 0 are given in the Supplementary Table 4.  
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Supplementary Figures 14 | Calculation of the effective interaction parameter U for Co atom 

in CoSn based on the Linear response approach. The calculation is performed with varying 

supercell sizes 1*1*1, 1*1*2, 1*1*3, 2*2*1, 2*2*2, 3*3*1, 2*2*3, and 3*3*2. The corresponding 

number of atoms in the supercells is 6, 12, 18, 24, 48, 54, 72, and 108 respectively. The 

convergence of U is nonmonotonic with respect to the number of atoms due to the different aspect 

ratios in each supercell. However, the resulting U values always fall in 5~6 eV range except that 

from the smallest 1*1*1 calculation.  

0 20 40 60 80 100 120
Number of atoms in a supercell

0

1

2

3

4

5

6

7
U

 (e
V)



Supplementary Note 1. Transport characterization of CoSn single crystals 
We have characterized the transport properties of CoSn single crystals using the standard 

five probe technique with AC current excitation in a commercial superconducting cryostat. The 

crystals show metallicity (Supplementary Figure 4a) along both in and out-of-plane directions with 

residual resistivity ratio between 11 and 16. The steep kz Fermi velocity associated with the dz2 

bands (see Fig. 1e) may account for the lower out-of-plane resistivity observed in Supplementary 

Figure 4a. 

The Hall coefficients shown in Supplementary Figure 4b are estimated from the slope of 

the Hall resistivity between ±1 T and are weakly temperature dependent for both the in and out of 

plane configurations (Supplementary Figure 4c). The negative in-plane Hall coefficient is 

consistent with the ARPES observation and DFT calculation of a large electron pocket centered at 

Γ. The positive out-of-plane Hall coefficient, implying an overall hole behavior, may be related to 

the Fermi surfaces originated from dz2 orbitals. 

 

Supplementary Note 2. Tunning the flat band toward the Fermi level 
To realize exotic correlated electronic phases driven by flat band electrons, the flat band 

should be located at the Fermi level. The binding energy (0.2∼0.3 eV) of the observed flat bands 

in CoSn is already close to the Fermi level, and in Supplementary Figure 7-9, we propose various 

DFT-guided pathways to further tune the flat band position toward the Fermi level. The proposed 

methodology includes bulk doing (Supplementary Figure 7), compressive strain (Supplementary 

Figure 8), and reducing dimensionality (Supplementary Figure 9).  



Supplementary Note 3. Wannier localized states of the d-orbital flat bands 

In a kagome lattice decorated with s-wave orbitals, the flat bands can be understood from 

the localized states as shown in Fig. 1a. In this localized state, the electrons reside on the six corners 

of the hexagon. This state is an exact energy eigenstate for a kagome model with only nearest-

neighbor hopping. The eigenstate and localization properties can be traced back to the wave 

function phase interference. 

We note here about the physical properties of these hexagon localized states. Two adjacent 

hexagon states are not orthogonal with each other due to the wave function overlap at the shared 

kagome site. In a torus geometry of kagome lattice with N hexagon site, only N-1 hexagon states 

are independent (since when the kagome lattice is occupied with these hexagon states at all 

hexagon centers, the superposition of them gives rise to a null wave function). Another equivalent 

view is that, these hexagon states are not well-defined at 𝑘 = 0 in the momentum space. Apart from 

such hexagon states, there are additional non-contractible loop states that can emerge in a torus 

geometry.1 By counting the independent hexagon states and loop states, one can infer the features 

in the bulk electronic spectrum such as the eigenstate degeneracies.1 

An alternative way to derive these localized hexagon states is from the superposition of flat 

band eigenstates in the momentum space. We know this cannot be a linear superposition with 

uniform weight in the momentum space due to the singularity as 𝑘 = 0, which is doubly degenerate. 

A proper weighting function and gauge choice in the momentum  𝑘 that excludes the states at  𝑘 

= 0 has been analytically derived in case of the s-wave kagome lattice to generate these exact 

hexagon states.1 

Although these hexagon states are intuitive objects in gaining insights into the 

wavefunction texture of the flat bands, these objects themselves are not proper orthonormal real-

space Wannier function basis. Later we will see how the spin-orbit coupling gives rise to isolated 

flat band manifold (removing the 𝑘 = 0 double degeneracy) and promote such hexagon states into 

orthonormal Wannier states by introducing intricate spin textures and orbital spin entanglement. 

In CoSn material, the kagome sites are decorated by the d-orbitals which can be more 

complicated than the isotropic s-wave orbitals discussed above. We can classify these d-orbital 

states into three groups, the dz2, dxz/dyz and dxy/dx2-y2 by their angular momentum Lz. Based on the 

comparison of ARPES and DFT presented in the main text, our main interest is on the derivation 



of Wannier objects or compact localized states associated with the dxz/dyz and dxy/dx2-y2 flat bands. 

The dz2 group resembles the s-orbitals, and the analogy can be made for their electronic structures 

(Though there exists a realistic limitation in dz2 orbital-driven flat band that their out-of-plane 

orbital orientation enhances the kz band dispersion as discussed in the main text). 

Below, we present three different methods to motivate and derive Wannier(-like) localized 

states associated with d-orbital based flat bands. First, in the subsection A and B, we considered 

d-orbital-based kagome tight-binding model with perfectly flat bands as the simplest case. From 

this, we could directly construct the real-space localized states possessing characteristic orbital 

textures. The localized states in these cases are fully confined in the single hexagon of the kagome 

lattice similar to the s-wave kagome model in Fig. 1a. Second, in the subsection C, we considered 

more realistic flat bands of CoSn with small but finite band dispersion. We first investigated 

spinless case (i.e. without inclusion of the spin-orbit coupling) to avoid complication from the 

spin-orbital entanglement. As the first-order approximation, we adopted analytically known k-

space weighting function of the s-orbital kagome model1 to construct the corresponding localized 

states. The resulting orbital textures are similar to those derived from the first method, though there 

appears small but finite electron density outside of the hexagon due to the nonzero dispersion of 

the flat bands in CoSn. Finally, in the subsection D and E, we considered the most realistic spinful 

case of the CoSn flat bands. Spin-orbit coupling lifts the degeneracy at 𝑘 = 0 and isolate the flat 

bands from other bands, and the flat band Wannier functions could be rigorously constructed. The 

resulting spin-orbit entangled Wannier states could be locally approximated as a product of 

(majority) spin and orbital wave functions using Schmidt decomposition. In all three cases, the 

orbital textures of the constructed localized states are qualitatively similar as shown in 

Supplementary Figure 10, Supplementary Figure 11, and Fig. 3e,f, confirming the validity of our 

approaches and approximations used. 

 

A. Spinless dxz/dyz kagome lattice. 

First, we consider a kagome lattice with sites decorated by the spinless dxz/dyz orbitals. 

When projected on the xy plane, this set of orbitals resemble the p-wave px and py orbitals. For 

simplicity, we assume only nearest neighbor coupling between orbitals. In a rotated new frame 

with the closest neighbor along the 𝑥 axis, the hopping strength between dxz (dyz) orbitals is tp (td) 

with vanishing crossing terms due to (approximate) xz mirror. 



At specific  tp /td  values (i.e. tp /td  = 1, -1, 1/3, 3), we find perfect flat bands emerge in the 

electronic structure spectrum as illustrated in Supplementary Figure 10. Similar to the s-wave 

kagome lattice, the perfect localized states confined to the hexagon could be constructed by 

considering the destructive interference in the Hamiltonian. The dxz/dyz orbital texture of the 

localized states are depicted in Supplementary Figure 10 for various tp /td values. 

 

B. Spinless dxy/dx2-y2 kagome lattice. 

Similar analysis as above can be carried out for a kagome lattice decorated with dxy and dx2-

y2 orbitals on each site. In a rotated new frame with the nearest neighbor site along 𝑥 axis, the 

coupling between dx2-y2 (dxy) orbitals is ts (tp). Crossing terms are also assumed to vanish due to 

(approximate) xz mirror plane. Specific ts /tp ratios (i.e. ts /tp = 1, -1, 1/3, 3) are identified with 

perfect flat bands in the electronic structure. The band structure and the orbital texture of the 

associated localized states are again illustrated in Supplementary Figure 10. 

In Supplementary Figure 10b6, we illustrate the importance of the derived orbital textures 

in the destructive interference of hoppings on d-orbital kagome lattice. Here we considered the 

orbital textures in Supplementary Figure 10b2 as an example, but the description can be easily 

extended to other orbital textures. An important difference with s-orbital case is the complexity 

arising from the multiple orbital hopping channels, i.e. hoppings to outside of the central hexagon 

can occur to two orbitals (dxz/dyz) in the receiver site (sublattice 3 in the figure). If we define yz 

mirror plane crossing the sublattice 3, the d-orbitals at the sublattice 3 are either even (dyz) or odd 

(dxz). In the former case, the hoppings from sublattices at the central hexagon (sublattice 1 and 2) 

are cancelled with each other as the d-orbitals at sublattices 1 and 2 are aligned antiphase toward 

the sublattice 3. This mechanism is analogous to the destructive interference from alternating 

phases in the s-orbital kagome model. In case of hoppings to odd orbital at sublattice 3 however, 

the same argument results in the constructive interference between hoppings from sublattice 1 and 

2, and an additional mechanism is required to suppress the delocalization of the wave function. 

Indeed, in the given orbital textures, the overlap integral between site 1 and 3 (or between site 2 

and 3) are tuned to zero at the specific tp /td  ratios (in this case tp /td  = −1). This finding indicates 

that the characteristic orbital texture of localized states combined with fine-tuned hopping 

parameters can give rise to the flat band in d-orbital kagome lattices. 

 



C. Spinless CoSn flat bands – the first order approximation. 

We now move on to the more realistic (quasi-)flat bands at kz = 0 of the CoSn band structure. 

We first considered spinless bands to gain some intuitions about the orbital textures. The electronic 

structure without spin-orbit coupling is shown in Supplementary Figure 5a. Based on the xy mirror 

symmetry, the bands can be classified into odd and even symmetry sectors. Under this symmetry 

classification, two sets of flat bands (one odd type dxz/dyz and the other even type dxy/dx2−y2) can be 

easily identified from other bands apart from the degeneracies at Γ point. 

To construct the localized states from the identified flat band manifold of both sectors, we 

employed the weighting function used previously in the s-wave kagome lattice (as the first 

approximation) to sample the flat band eigenstates over the Brillouin zone. The ideal localized 

states found above in various limits of the model are used as the trial states to define the gauge 

condition in taking the weighted superposition. To be specific, we have the flat band eigenstate 

|𝜓 , (𝑘)  and trial state |𝜙(𝑘)  from the ideal localized states at momentum 𝑘. The phase of 

|𝜓 , (𝑘)  is fixed by requiring real and positive 𝜙(𝑘)|𝜓 , (𝑘)  (i.e. gauge condition). One 

should also monitor the singular 𝑘 points where 𝜙(𝑘)|𝜓 , (𝑘)  = 0 apart from 𝑘 = 0 point. If it 

is non-singular for every non-zero 𝑘, we can perform the superposition to obtain the localized real-

space state 
	

𝜙0(𝑅) = 𝑁	 𝑑5𝑘e789∙:𝜔(𝑘) 𝜓(,)(𝑘)  (1) 

with N the normalization factor, and the weighting function 𝜔 𝑘 = 	 sin5(𝑘 ∙ 𝛿@)A
@BC  adopted 

from the s-wave flat band model1 where 𝛿@  are the three nearest neighbor hopping vectors. The 

charge densities and orbital textures of the resulting localized functions are shown in 

Supplementary Figure 11. Despite of the leakage of charge densities outside of the central 

hexagon, the orbital textures around the hexagon resemble those derived in the section A,B 

(Supplementary Figure 10b2,b5). This suggests that the bandwidths of the flat bands in CoSn are 

suppressed by the same mechanism discussed above.  



D. CoSn flat bands with spin-orbit coupling: Wannier construction 

With inclusion of the spin-orbit coupling, two sets of flat bands at the kz = 0 plane are 

isolated from the rest of the bands. The goal is to construct an effective tight-binding model 

description in each set of the flat bands, in terms of spatially localized Wannier function basis.2 

First, we would like to investigate if it is possible to derive such localized exact Wannier states 

from the given band manifold in CoSn, and under what conditions. 

Due to the nontrivial band topology, it is impossible to derive fully symmetric Wannier 

functions for the pair of flat bands.3 Such Wannier obstructions can be understood as following: 

Suppose the Wannier functions represent a symmetry g naturally. Then by rotating to the Wannier 

basis one can describe the energy bands using a g-symmetric tight-binding model. The resulting 

tight-binding model consists of nothing but the bands of interest, and therefore the band topology 

of the bands must be trivial. This would lead to a contradiction if the original bands have nontrivial 

band topology protected by g.  

From the preceding discussion, we see that, in order to derive Wannier functions for the 

pair of nearly flat bands, we have to first identify the symmetries which protect the nontrivial band 

topology. Due to the nontrivial Z2 invariant, time-reversal symmetry cannot be manifest in the 

Wannier functions.3 Furthermore, due to the xy mirror symmetry, the bands can also be 

characterized by their mirror Chern number. The nontrivial Z2 invariant implies the mirror Chern 

number is odd, and therefore one must also forgo the xy mirror symmetry in the Wannier functions. 

Finally, the inversion symmetry, which is utilized in the Fu-Kane parity criterion4 to diagnose the 

Z2 invariant, also leads to a more subtle form of Wannier obstruction.5 With all these symmetries 

forgone, the Wannier functions can at most be manifestly symmetric under the C6 rotation about 

its charge center, together with the combination of inversion and perpendicular mirrors with the 

time-reversal symmetry, as discussed in the main text. 

The complementary symmetry aspects can be viewed from the momentum space 

description. At high symmetry points, one can analyze the symmetry characters of the group of 

bands as in Supplementary Table 1 for the flat bands. The proposed Wannier states with specific 

symmetry representations and Wannier centers have to reproduce the same set of symmetry 

representations at these high symmetry points. 

 

 



 G M K 
P (1,1) (–1, –1) - 

C6z (dxz/dyz) 𝑒±8F/H - - 
C6z (dxy/dx2-y2) −𝑒±8F/H - - 

C3z 𝑒±8F/A - 𝑒±8F/A 
Mxy ±i ±i ±i 
Mxz ±i ±i ±i 
Myz ±i ±i - 
C2x ±i ±i ±i 
C2y ±i ±i - 

 
Supplementary Table 1. The symmetry representations of the dxz/dyz or dxy/dx2−y2 flat bands. The 

values indicate the symmetry eigenvalues under the symmetry operations. 

 

With the symmetry representation and orbital texture of the localized states projected from 

the spinless model, we used the initial seeding functions for the Wannier projection of the 

topological flat bands as shown in Supplementary Figure 12. Each set of flat bands (dxz/dyz or 

dxy/dx2−y2) are doubly degenerate, and initial seeding functions are two wave functions localized at 

the hexagon centers with the weights distributed on the hexagon corner sites. The wave function 

at each site is a direct product of the spin and orbital component. To simplify the notation, we use 

a two component vector to represent the orbital wave function, [𝜓JKL, 𝜓JML] and [𝜓JKM, 𝜓JK57M5] 

respectively, and [𝜒↑, 𝜒↓] for the spinor wave function at each site. The hexagon corner sites are 

indexed as in Supplementary Figure 12a. With these notations, the Wannier seeding functions 

𝑤R =
C
H

|𝜓 SH
SBC ⨂	 𝜒R

(S)  with Wannier function index a = A, B can be written as: 

	

|𝜓 S =

1
2

− 3
2

3
2

1
2

S7C

0
1  (2) 

and spinor wave function 
	

𝜒Y
(S) =

1
2

1
𝑖𝑒8(S7C)F/A ,				 𝜒\

(S) =
1
2
−𝑖𝑒78(S7C)F/A

1
. (3) 

 The Wannier projection procedure is briefly described as follows. At momentum	𝑘, the 

Hilbert space for the flat bands defines a projector 𝑃 , 𝑘 = 𝜓8
(,)(𝑘) 𝜓8

(,)(𝑘)5
8BC  for either 



the dxz/dyz or the dxy/dx2−y2 flat band manifold. The above initial Wannier seeding functions 𝜔R(𝑅)  

in the real space centered at the hexagon centers 𝑅 can be Fourier transformed into reference states 

in the momentum space  
	 𝜔R(𝑘) = 𝑁 𝑒89∙: 𝜔R(𝑅)

:

 (4) 

with a proper normalization factor N. Such reference states are then used to span the flat band 

Hilbert space from 𝑃 , 𝑘 𝜔R(𝑘) . With the singular value decomposition (SVD), a proper set 

of orthonormal basis 𝜔R′(𝑘)  can be derived from the above projection of Wannier seeding 

functions. For the CoSn flat bands manifold, we have examined the above projection to be non-

singular and the associated real-space Wannier functions can be derived from the new orthonormal 

basis by performing the Fourier transformation. 
	

𝜔R′(𝑅) = 𝑁′ 𝑑5𝑘𝑒789∙: 𝜔R′(𝑘) . (5) 

In the following section, we will examine the physical properties of these derived Wannier 

functions. 

 

E. CoSn flat bands with spin-orbit coupling: Wannier function properties 

We first investigate the symmetry properties of the constructed Wannier functions in detail. 

As discussed above, due to the topological/symmetry obstructions in constructing Wannier 

functions for the flat bands, we choose to abandon the inversion P, time-reversal T and mirror Mxy 

symmetries. Similarly, one has to give up two-fold rotations C2x and C2y as well since they can be 

combined with Mxz or Myz symmetry to give rise to forbidden mirror Mxy symmetry operation. 

Instead, the constructed Wannier function satisfies C6z rotational symmetry, Mxz or Myz symmetry, 

combined PT symmetry, and combined MxyT. Each flat band has two-fold degeneracy due to 

combined inversion and time-reversal symmetry of the system. We denote the two Wannier states 

in the Wannier manifolds for each flat band as wA and wB. In Supplementary Table 2, 3 we tabulate 

the symmetry transformation properties of these two Wannier states of each flat band group.  



 
O C6z Mxz Myz PT MxyT 

wA 𝑒78F/HwA –wB –iwB –wB iwB 

wB 𝑒8F/HwB wA –iwA wA iwA 
 
Supplementary Table 2. The symmetry properties of the Wannier orbitals derived from dxz/dyz 
flat bands.  
 
 

O C6z Mxz Myz PT MxyT 

wA – 𝑒78F/HwA wB –iwB –wB -iwB 

wB – 𝑒8F/HwB -wA –iwA wA -iwA 
 
Supplementary Table 3. The symmetry properties of the Wannier orbitals derived from dxy/dx2−y2 

flat bands.  

 

After constructing the Wannier basis functions, one can construct the effective tight- 

binding Hamiltonian for the flat bands. First we would like to argue that in the two band model for 

a set of flat bands degenerate from the inversion symmetry, the coupling between different types 

of Wannier orbitals (wA and wB) always vanishes. One way to see this is that, at a given 𝑘 point, 

the two bands are exactly degenerate. The effective two band Hamiltonian can only be a 2 ´ 2 

matrix proportional to an identity matrix. Hence, the off-diagonal elements are zero at any 𝑘. After 

Fourier transformation to the real space, the coupling between different orbital types can only be 

zero. The other way to see this is based on the PT symmetry properties of the Wannier states as 

following: 
	 𝑡𝑐Y

c 𝑅 𝑐\ 0 + 𝑡∗𝑐\
c 0 𝑐Y 𝑅

:

 

→	 −𝑡∗𝑐\
c −𝑅 𝑐Y 0 − 𝑡𝑐Y

c 0 𝑐\ −𝑅
:

 

→	− 𝑡𝑐Y
c 𝑅 𝑐\ 0 + 𝑡∗𝑐\

c 0 𝑐Y 𝑅
:

 

(6) 

 

Hence, such off-diagonal term has to vanish. 

 Due to the zero off-diagonal elements for the coupling, the model can be viewed as an 

effective one-band model with an emergent triangular lattice. Then the tight-binding model of the 



flat band is given by the hoppings between Wannier sites as shown in Supplementary Figure 13a. 

The hopping terms 𝑡:
gh  of the one-band model can be derived directly from the Fourier 

transformation of the flat band dispersion 𝜖 𝑘 = 𝑡:
gh𝑒789∙:: . The derived hopping parameters 

up to the third nearest neighbor are shown in the Supplementary Table 4. In Supplementary Figure 

13b we show the effective tight-binding band dispersion for both set of flat bands overlapped with 

the DFT band structure. 

 
 𝜖j 𝑡C 𝑡5 𝑡A 

dxz/dyz TBH -435 14.3 –10.8 7.0 

dxy/dx2−y2 TBH -273 -11.9 8.9 –14.9 

 
Supplementary Table 4. The effective tight-binding model for the flat bands. 𝜖j is the effective 

on-site energy, and 𝑡8 are couplings to the ith nearest neighbor sites. The units are in meV. 

	

So far, we have constructed the Wannier orbitals for the group dxz/dyz and dxy/dx2−y2 flat 

bands separately. To gain physical insights of these Wannier objects, we first investigate the actual 

orbital content of the derived localized wave function. The projected electron densities in Co d 

orbitals and Sn s/p orbitals are shown in Supplementary Table 5. The dominant component 

accounts for about 85% of the charge density. The mixing of dxy/dx2−y2 in dxz/dyz Wannier states 

(and the mixing of dxz/dyz in dxy/dx2−y2 Wannier states) can be expected from the band hybridization 

due to spin-orbit coupling as seen in the band orbital analysis near M point, which introduces 

additional orbital mixing.  

On the other hand, the spin texture can be extracted by computing the expectation value of 

𝑆 	⊗	𝕀mno with 𝕀mno the identity operator for the orbital degrees of freedom of each site. The spin 

textures of the Wannier functions are shown in Supplementary Figure 6. The spin texture of only 

one of the two Wannier function manifolds (say ωA) are displayed. In case of ωB the out-of-plane 

spin direction is flipped while the in-plane spin texture remains same with ωA.  



 
 Co dz2 Co dxz/yz Co dxy/x2-y2 Sn s/p 

dxz/dyz Wannier orbitals 0.1 % 86.0 % 12.9 % 1.0 % 

dxy/dx2−y2 Wannier orbitals 0.9 % 7.8 % 85.4 % 5.9 % 

 

Supplementary Table 5. The orbital content for the Wannier orbitals derived from the set of 

dxz/dyz and dxy/dx2-y2 flat bands. The orbital character is represented by the projected charge density 

in Co d orbitals and Sn s/p orbitals. 

Next, we investigate the real space orbital textures of the flat band Wannier states. Based 

on the above analysis on the orbital contents and spin textures, we will focus only on the dominant 

orbital component for each flat band. Due to the orbital and spin entanglement on each site, 

visualizing the orbital content is more subtle. Below, we will present the analysis procedure for 

the dxz/dyz flat band as an example. The analysis for the dxy/dx2−y2 Wannier states can be carried out 

similarly and we will just present the results. If we only consider the dxz/dyz orbitals and the 

associated spin degrees of freedom on each Co site (accounting ∼ 85% of the total charge density 

as discussed above), the Wannier function can be represented by four component wavefunction on 

each site. With the Schmidt decomposition (reduced density matrix by tracing out either the spin 

or orbital degrees of freedom), such entangled wave function can be decomposed into the sum of 

two product wave functions of the orbital and spin part. 

	 𝜓(𝑟) = 𝜙C
(mno)(𝑟) ⊗ 𝜒C 𝑟 + 𝜙5

(mno)(𝑟) ⊗ 𝜒5 𝑟  (7) 

with a larger norm 𝜙C
(mno)(𝑟) ⊗ 𝜒C 𝑟  for the first component. 𝜙8

(mno)(𝑟) 	 𝜒8 𝑟  are 

orthogonal with each other. We call the first (second) product wave function as the majority 

(minority) spin channel. The two spins 𝜒8  are anti-parallel with each other at each site. With two 

angles q and f defining the spin orientations, we have used the gauge convention 

 
	

𝜒q 𝜃, 𝜙 =
cos	(𝜃/2)
sin	(𝜃/2)𝑒8u , 𝜒v 𝜃, 𝜙 = cos	(𝜃/2)𝑒78u

sin	(𝜃/2) , (8) 

for the Wannier orbital with 𝑠L > 0  and 𝑠L < 0  respectively to avoid the singularity. The 

orbital component 𝜙C
(mno)(𝑟)  ( 𝜙5

(mno)(𝑟) )  corresponding to the majority (minority) spin 



component on each site can be further decomposed into 𝜙8
(mno)(𝑟) = 	𝛼8 𝑑KL + 𝛽8 𝑑ML  with 

complex coefficients 𝛼8 and 𝛽8. To visualize the orbital content of the Wannier orbital, we also 

considered the real and imaginary parts separately. In our gauge convention, the dominant 

component is the real part orbital wave function in the majority spin channel as demonstrated in 

Supplementary Table 6. The orbital texture of this channel is displayed Fig. 3e,f. The resemblance 

with the orbital textures derived in Section A-C (Supplementary Figure 10,11) can be readily 

noticed. 

 

 dxz/dyz Wannier states (86.0 %) dxy/dx2−y2 Wannier states (85.4 %) 

𝑅𝑒 𝜙C
(mno)(𝑟) ⊗ 𝜒C 𝑟  85.5 % 81.4 % 

𝐼𝑚 𝜙C
(mno)(𝑟) ⊗ 𝜒C 𝑟  4.4 % 10.4 % 

𝜙5
(mno)(𝑟) ⊗ 𝜒5 𝑟  10.1 % 8.2 % 

 

Supplementary Table 6. The spin-orbital decomposition at each site into majority and minority 

spin channels. Within the majority spin component, the orbital component is further decomposed 

into real and imaginary part. The percentage shows the relative weights in each sector. This is the 

further refinement of decomposition for the dominant content in Supplementary Table 5.  



Supplementary Note 4. Topological properties: Z2 index 
In the s-wave kagome lattice, the spin-orbit coupling is known to induce topological 

insulator phase of the isolated flat bands. Here we would like to examine the topological characters 

of the d-orbital flat bands in the presence of the spin-orbit coupling. For simplicity, we focus on 

the quasi-2D band structure at kz = 0. The two sets of isolated flat bands can be identified over the 

two-dimensional Brillouin zone, separated from all the other bands. In this time-reversal invariant 

system with inversion symmetry, the parity eigenvalues at the time-reversal invariant momentum 

can be used to infer the Z2 topological index on this plane, known as the Fu-Kane parity formula.4 

We examined the flat band states at Γ and M time-reversal invariant momenta under inversion. 

The parity eigenvalues at Γ and M equal to 1 and −1 respectively for both set of flat bands (see 

Supplementary Table 1), indicating their topologically non-trivial nature. 

Apart from the bulk CoSn crystal, we are also interested in the isolated two-dimensional 

kagome layer crystal. The electronic structure as shown in Supplementary Figure 9 also features 

several sets of flat bands near the Fermi level. The system is still inversion symmetric and the flat 

bands are identified to be non-trivial from their parity eigenvalues.  
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